用户名: 密码: 验证码:
人风湿性心脏病心肌的蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过对风湿性心脏病患者及二尖瓣脱垂患者的左心室乳头肌的蛋白质组分析与比较,建立人风湿性心脏病心肌二维凝胶电泳图谱,寻找并鉴定可以代表风湿性心脏炎心肌损伤的蛋白质,并探讨其在风湿性心脏病心肌损伤病理生理过程中的意义与机制。
     方法:选取风湿性心脏病二尖瓣病变患者为研究组,二尖瓣脱垂患者为对照组。采取术中切得的二尖瓣腱索根部分离左室乳头肌同时采集临床资料。将两组患者配对后行二维凝胶内差示电泳,两组间比较的差异蛋白点用T-test p Value和Average Ratio来筛选,将筛选所得的差异点蛋白行基质辅助激光解析电离飞行时间质谱分析,检索数据库鉴定蛋白质。
     结果:共有9组一一配对左室乳头肌样本行二维凝胶内差示电泳,行Decyder6.5软件分析后得到风湿性心脏病左室乳头肌蛋白质二维凝胶电泳谱,与对照组比较后有39个位点有统计学差异,其中28个位点切胶成功并行质谱分析,鉴定出12种已知的蛋白质,其中3个蛋白丰度有显著差异:热休克蛋白60,AV-RATIO为-3.17;结蛋白,AV-RATIO为-1.62;蛋白酶体,AV-RATIO为-1.71,并且有100%阳性率。
     结论:通过本次研究,我们建立了人风湿性心脏病心肌的二维凝胶内电泳图谱,并且发现热休克蛋白60、结蛋白及蛋白酶体的显著增高,提示其可能与风湿性心脏病的特征性心肌炎症有关,特别是热休克蛋白60可能在风湿性心脏病心肌的自身免疫性炎症进程具有关键作用。
Objective:By means of proteomic analysis and comparison of the left ventricular papillary muscles from patients with rheumatic heart disease or mitral valve prolapse, we tried to establish the human myocardial two-dimensional gel electrophoresis (2-DE) map in rheumatic heart disease, looking for and identified the characteristic proteins on behalf of the chronic inflammatory myocardium injury after rheumatic fever, and to explore their significance and mechanism in the pathophysiological process of the myocardial lesion in rheumatic heart disease.
     Methods:We defined the patients with rheumatic mitral valve disease as experimental group, patients with mitral valve prolapse as the control group. Took the left ventricular papillary muscle from resected mitral valve during the mitral valve replacemen, at the same time to collect the clinical material. Matched the two groups of patients, underwent two-dimensional differential in-gel electrophoresis (DIGE). We used T-test, P-Value and Average Ratio to screen the differentially expressed protein sites between the two groups.Then the sites indicated statistical difference (P<0.05) were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and database searching.
     Results:A total of9pairs of the left ventricular papillary muscles underwent DIGE. We established the human myocardial2-DE map in rheumatic heart disease by the analysis of Decyder6.5. Compared with the control group,39protein sites indicated statistical differences, of which28gel sites were successfully cut for MALDI-TOF-MS.12known proteins were identified, in which there were3protein abundance indicated significantly difference:heat shock protein60(HSP60), the AV-RATIO was-3.17; desmin, the AV-RATIO was-1.62; proteasome, the AV-RATIO was-1.71, and their probability of appearance was100%.
     Conclusion:In this study, we established the human myocardial2-DE map in rheumatic heart disease, and found that HSP60, desmin and proteasome were significantly higher expressed, suggesting they could be relative to characteristic myocarditis in rheumatic heart disease. It must be noted that HSP60may play a key role in the autoimmune inflammatory process in rheumatic heart disease.
引文
[1]Goon, P.K. and G.Y. Lip, Proteomics, metabolomics and circulating endothelial progenitor cells in acute coronary syndromes. J Thromb Thrombolysis,2006. 22(2):p.155-6.
    [2]Fu, Q. and J.E. Van Eyk, Proteomics and heart disease:identifying biomarkers of clinical utility. Expert Rev Proteomics,2006.3(2):p.237-49.
    [3]Knecht, M., et al., Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis. Eur Heart J,1994.15 Suppl D:p.37-44.
    [4]Knecht, M., et al., Dilated cardiomyopathy:computer-assisted analysis of endomyocardial biopsy protein patterns by two-dimensional gel electrophoresis. Eur J Clin Chem Clin Biochem,1994.32(8):p.615-24.
    [5]Jungblut, P., et al., Protein composition of the human heart:the construction of a myocardial two-dimensional electrophoresis database. Electrophoresis,1994. 15(5):p.685-707.
    [6]McGregor, E. and M.J. Dunn, Proteomics of the heart:unraveling disease. Circ Res,2006.98(3):p.309-21.
    [7]Van Eyk, J.E., Proteomics:unraveling the complexity of heart disease and striving to change cardiology. Curr Opin Mol Ther,2001.3(6):p.546-53.
    [8]Vasan, R.S., Biomarkers of cardiovascular disease:molecular basis and practical considerations. Circulation,2006.113(19):p.2335-62.
    [9]Maisel, A.S., V. Bhalla, and E. Braunwald, Cardiac biomarkers:a contemporary status report. Nat Clin Pract Cardiovasc Med,2006.3(1):p.24-34.
    [10]Zerkowski, H.R., et al., Proteomics strategies in cardiovascular research. J Proteome Res,2004.3(2):p.200-8.
    [11]Mehra, M.R., et al., Surrogate markers for late cardiac allograft survival. Am J Transplant,2004.4(7):p.1184-91.
    [12]Mehra, M.R., The emergence of genomic and proteomic biomarkers in heart transplantation. J Heart Lung Transplant,2005.24(7 Suppl):p. S213-8.
    [13]Matt, P., et al., Proteomics in cardiovascular surgery. J Thorac Cardiovasc Surg, 2007.133(1):p.210-4.
    [14]Mateos-Caceres, P.J., et al., Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol,2004.44(8):p.1578-83.
    [15]McDonough, J.L. and J.E. Van Eyk, Developing the next generation of cardiac markers:disease-induced modifications of troponin I. Prog Cardiovasc Dis,2004. 47(3):p.207-16.
    [16]Dupont, A., et al., The proteome and secretome of human arterial smooth muscle cells. Proteomics,2005.5(2):p.585-96.
    [17]Vivanco, F., et al., Quest for novel cardiovascular biomarkers by proteomic analysis. J Proteome Res,2005.4(4):p.1181-91.
    [18]Lipinski, M.J., et al., Technology insight:targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat Clin Pract Cardiovasc Med,2004.1(1):p.48-55.
    [19]Feezor, R.J., et al., Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J Immunol,2004.172(11): p.7103-9.
    [20]Fae, K.C., et al., PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun,2008.31(2):p. 136-41.
    [21]Skowyra, D., C. Georgopoulos, and M. Zylicz, The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner. Cell,1990.62(5):p.939-44.
    [22]Knowlton, A.A., P. Brecher, and C.S. Apstein, Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest,1991.87(1):p. 139-47.
    [23]Nakano, M., D.L. Mann, and A.A. Knowlton, Blocking the endogenous increase in HSP 72 increases susceptibility to hypoxia and reoxygenation in isolated adult feline cardiocytes. Circulation,1997.95(6):p.1523-31.
    [24]Marber, M.S., et al., Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest,1995.95(4):p.1446-56.
    [25]Plumier, J.C., et al., Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest,1995.95(4):p. 1854-60.
    [26]Marber, M.S., et al., Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation, 1993.88(3):p.1264-72.
    [27]Welch, W.J. and J.R. Feramisco, Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem, 1984.259(7):p.4501-13.
    [28]Sun, J.Z., et al., Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest,1995.95(1): p.388-403.
    [29]Soltys, B.J. and R.S. Gupta, Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res,1996.222(1):p.16-27.
    [30]Sakai, J., et al., Two-dimensional differential gel electrophoresis of rat heart proteins in ischemia and ischemia-reperfusion. Methods Mol Biol,2007.357:p. 33-43.
    [31]Tontsch, D., S. Pankuweit, and B. Maisch, Autoantibodies in the sera of patients with rheumatic heart disease:characterization of myocardial antigens by two-dimensional immunoblotting and N-terminal sequence analysis. Clin Exp Immunol,2000.121(2):p.270-4.
    [32]Kim, S.C., et al., Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res,2009.105(12):p.1186-95.
    [33]Knowlton, A.A., NFkappaB, heat shock proteins, HSF-1, and inflammation. Cardiovasc Res,2006.69(1):p.7-8.
    [34]Stice, J.P. and A.A. Knowlton, Estrogen, NFkappaB, and the heat shock response. Mol Med,2008.14(7-8):p.517-27.
    [35]Pockley, A.G., Heat shock proteins as regulators of the immune response. Lancet, 2003.362(9382):p.469-76.
    [36]Vabulas, R.M., et al., Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem,2001.276(33):p.31332-9.
    [37]Cohen-Sfady, M., et al., Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol,2005.175(6):p.3594-602.
    [38]Schett, G., et al., Myocardial injury leads to a release of heat shock protein (hsp) 60 and a suppression of the anti-hsp65 immune response. Cardiovasc Res,1999. 42(3):p.685-95.
    [39]Mahdi, O.S., et al., Serum immunoglobulin G antibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease. Circulation,2002.106(13):p.1659-63.
    [40]Horvath, L., et al., Antibodies against different epitopes of heat-shock protein 60 in children with type 1 diabetes mellitus. Immunol Lett,2002.80(3):p.155-62.
    [41]Thompson, C.B., Apoptosis in the pathogenesis and treatment of disease. Science, 1995.267(5203):p.1456-62.
    [42]Brustovetsky, N., et al., Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J Neurochem,2002.80(2):p.207-18.
    [43]Danial, N.N. and S.J. Korsmeyer, Cell death:critical control points. Cell,2004. 116(2):p.205-19.
    [44]Thornberry, N.A. and Y. Lazebnik, Caspases:enemies within. Science,1998. 281(5381):p.1312-6.
    [45]Kroemer, G., The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med,1997.3(6):p.614-20.
    [46]Kuwana, T., et al., Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell,2002.111 (3):p.331-42.
    [47]Wolter, K.G., et al., Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol,1997.139(5):p.1281-92.
    [48]Wei, M.C., et al., Proapoptotic BAX and BAK:a requisite gateway to mitochondrial dysfunction and death. Science,2001.292(5517):p.727-30.
    [49]Yang, J., et al., Prevention of apoptosis by Bcl-2:release of cytochrome c from mitochondria blocked. Science,1997.275(5303):p.1129-32.
    [50]Kluck, R.M., et al., The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science,1997.275(5303):p.1132-6.
    [51]Cheng, E.H., et al., BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell,2001. 8(3):p.705-11.
    [52]Nechushtan, A., et al., Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J,1999.18(9):p.2330-41.
    [53]Ghatan, S., et al., p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol,2000.150(2):p.335-47.
    [54]Beere, H.M., et al., Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol,2000.2(8): p.469-75.
    [55]Garrido, C., et al., HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J,1999.13(14):p.2061-70.
    [56]Jolly, C. and R.I. Morimoto, Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst,2000.92(19):p. 1564-72.
    [57]Mao, H., et al., hsp72 inhibits focal adhesion kinase degradation in ATP-depleted renal epithelial cells. J Biol Chem,2003.278(20):p.18214-20.
    [58]Mosser, D.D., et al., The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol,2000.20(19):p.7146-59.
    [59]Samali, A. and T.G. Cotter, Heat shock proteins increase resistance to apoptosis. Exp Cell Res,1996.223(1):p.163-70.
    [60]Wang, Y., et al., Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells. Kidney Int,1999.55(6):p.2224-35.
    [61]Kamradt, M.C., F. Chen, and V.L. Cryns, The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem, 2001.276(19):p.16059-63.
    [62]Gabai, V.L., et al., Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging. FEBS Lett,1998.438(1-2):p.1-4.
    [63]Jaattela, M., et al., Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J,1998.17(21):p.6124-34.
    [64]Galea-Lauri, J., et al., Increased heat shock protein 90 (hsp90) expression leads to increased apoptosis in the monoblastoid cell line U937 following induction with TNF-alpha and cycloheximide:a possible role in immunopathology. J Immunol,1996.157(9):p.4109-18.
    [65]Lin, K.M., et al., Combined and individual mitochondrial HSP60 and HSP10 expression in cardiac myocytes protects mitochondrial function and prevents apoptotic cell deaths induced by simulated ischemia-reoxygenation. Circulation, 2001.103(13):p.1787-92.
    [66]Samali, A., et al., Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J,1999.18(8):p. 2040-8.
    [67]Kirchhoff, S.R., S. Gupta, and A.A. Knowlton, Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation,2002.105(24):p.2899-904.
    [68]Shan, Y.X., et al., Hsp10 and Hsp60 modulate Bcl-2 family and mitochondria apoptosis signaling induced by doxorubicin in cardiac muscle cells. J Mol Cell Cardiol,2003.35(9):p.1135-43.
    [69]Gupta, S. and A.A. Knowlton, HSP60, Bax, apoptosis and the heart. J Cell Mol Med,2005.9(1):p.51-8.
    [70]Gupta, S. and A.A. Knowlton, HSP60 trafficking in adult cardiac myocytes:role of the exosomal pathway. Am J Physiol Heart Circ Physiol,2007.292(6):p. H3052-6.
    [71]Lin, L., et al., HSP60 in heart failure:abnormal distribution and role in cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol,2007.293(4):p. H2238-47.
    [72]Alard, J.E., et al., Modulation of endothelial cell damages by anti-Hsp60 autoantibodies in systemic autoimmune diseases. Autoimmun Rev,2007.6(7):p. 438-43.
    [73]Carmody, R.J. and Y.H. Chen, Nuclear factor-kappaB:activation and regulation during toll-like receptor signaling. Cell Mol Immunol,2007.4(1):p.31-41.
    [74]Perlman, H., et al., Evidence for the rapid onset of apoptosis in medial smooth muscle cells after balloon injury. Circulation,1997.95(4):p.981-7.
    [75]Miyamoto, T., et al., Differential expression of mucin core proteins and keratins in apocrine carcinoma, extramammary Paget's disease and apocrine nevus. J Cutan Pathol,2009.36(5):p.529-34.
    [76]Kitamura, S., et al., Protein kinase C phosphorylation of desmin at four serine residues within the non-alpha-helical head domain. J Biol Chem,1989.264(10): p.5674-8.
    [77]Di Somma, S., et al., Desmin-free cardiomyocytes and myocardial dysfunction in end stage heart failure. Eur J Heart Fail,2004.6(4):p.389-98.
    [78]Pawlak, A., et al., Cardiomyocyte desmin abnormalities-an accurate predictor of long-term survival in patients with chronic heart failure. Kardiol Pol,2009.67(7): p.724-33.
    [79]Tanaka, K., Molecular biology of proteasomes. Mol Biol Rep,1995.21(1):p. 21-6.
    [80]Pye JP, Ardeshirpour F, McCain A, et al. Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol,2003.284(3):H919-926.
    [81]Jie Li, Kathleen M. Horak, Huabo Su,et al.,Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. The Journal of Clinical Investigation,2011.121(9):p.3689-3700.
    [1]Fujii, K., et al., Clinical-scale high-throughput human plasma proteome analysis: lung adenocarcinoma. Proteomics, 2005. 5(4): p. 1150-9.
    [2]Jiang, M., et al., Protein disregulation in red blood cell membranes of type 2 diabetic patients. Biochem Biophys Res Commun, 2003. 309(1): p. 196-200.
    [3]Puchades, M., et al., Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease. Brain Res Mol Brain Res, 2003. 118(1-2): p. 140-6.
    [4]Van den Bogaerdt, A.J., et al., Differential expression of CRABP-Ⅱ in fibroblasts derived from dermis and subcutaneous fat. Biochem Biophys Res Commun, 2004. 315(2): p. 428-33.
    [5]HOU Shu, H.L., CHAN Ming, et al, Proteomic research of early differentiation induced by NGFinPC12 cells using DIGE system and MALDI-TOF-MS. Journal of Apoploxy and Nervous Diseases, 2006.123(1): p. 52-57.
    [6]XU Hui, CM., ZHANG Lei, et al, The expression of glucose regulating protein 78 in a model of Parkinson's disease induced by 6-Hydroxy dopamine in PCI 2 cells. J Apoplexy and Nervous Diseases, 2007.14(2): p. 154-156.
    [7]Gallagher, P.G., et al., Use of microarrays for investigating the subtoxic effects of snake venoms: insights into venom-induced apoptosis in human umbilical vein endothelial cells. Toxicon, 2003. 41(4): p. 429-40.
    [8]Petricoin, E.F. and L.A. Liotta, SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol, 2004. 15(1): p. 24-30.
    [9]Petricoin, E.F., et al., Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 2002. 359(9306): p. 572-7.
    [10]Wu, W., et al., Identification and validation of metastasis-associated proteins in head and neck cancer cell lines by two-dimensional electrophoresis and mass spectrometry. Clin Exp Metastasis, 2002. 19(4): p. 319-26.
    [11]Gerszten, R.E., et al., Challenges in translating plasma proteomics from bench to bedside:update from the NHLBI Clinical Proteomics Programs. Am J Physiol Lung Cell Mol Physiol,2008.295(1):p. L16-22.
    [12]Malmstrom, J., H. Lee, and R. Aebersold, Advances in proteomic workflows for systems biology. Curr Opin Biotechnol,2007.18(4):p.378-84.
    [13]Arrell, D.K., I. Neverova, and J.E. Van Eyk, Cardiovascular proteomics: evolution and potential. Circ Res,2001.88(8):p.763-73.
    [14]Jaffe, A.S., L. Babuin, and F.S. Apple, Biomarkers in acute cardiac disease:the present and the future. J Am Coll Cardiol,2006.48(1):p.1-11.
    [15]Vivanco, F., et al., Quest for novel cardiovascular biomarkers by proteomic analysis. J Proteome Res,2005.4(4):p.1181-91.
    [16]Stanley, B.A., et al., Heart disease, clinical proteomics and mass spectrometry. Dis Markers,2004.20(3):p.167-78.
    [17]Arab, S., et al., Cardiovascular proteomics:tools to develop novel biomarkers and potential applications. J Am Coll Cardiol,2006.48(9):p.1733-41.
    [18]Matt, P., et al., Biomarker discovery:proteome fractionation and separation in biological samples. Physiol Genomics,2008.33(1):p.12-7.
    [19]Schoenhoff, F.S., Q. Fu, and J.E. Van Eyk, Cardiovascular proteomics: implications for clinical applications. Clin Lab Med,2009.29(1):p.87-99.
    [20]McDonald, T., et al., Expanding the subproteome of the inner mitochondria using protein separation technologies:one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics, 2006.5(12):p.2392-411.
    [21]Tammen, H., et al., Peptidomic analysis of human blood specimens:comparison between plasma specimens and serum by differentialpeptide display. Proteomics, 2005.5(13):p.3414-22.
    [22]Rai, A.J., et al., HUPO Plasma Proteome Project specimen collection and handling:towards the standardization of parameters for plasma proteome samples. Proteomics,2005.5(13):p.3262-77.
    [23]Matt, P., et al., Recent advances in understanding Marfan syndrome:should we now treat surgical patients with losartan? J Thorac Cardiovasc Surg,2008. 135(2):p.389-94.
    [24]Knecht, M., et al., Characterization of myocardial protein composition in dilated cardiomyopathy by two-dimensional gel electrophoresis. Eur Heart J,1994.15 Suppl D:p.37-44.
    [25]Knecht, M., et al., Dilated cardiomyopathy:computer-assisted analysis of endomyocardial biopsy protein patterns by two-dimensional gel electrophoresis. Eur J Clin Chem Clin Biochem,1994.32(8):p.615-24.
    [26]Jungblut, P., et al., Protein composition of the human heart:the construction of a myocardial two-dimensional electrophoresis database. Electrophoresis,1994. 15(5):p.685-707.
    [27]McGregor, E. and M.J. Dunn, Proteomics of the heart:unraveling disease. Circ Res,2006.98(3):p.309-21.
    [28]Van Eyk, J.E., Proteomics:unraveling the complexity of heart disease and striving to change cardiology. Curr Opin Mol Ther,2001.3(6):p.546-53.
    [29]Goon, P.K. and G.Y. Lip, Proteomics, metabolomics and circulating endothelial progenitor cells in acute coronary syndromes. J Thromb Thrombolysis,2006. 22(2):p.155-6.
    [30]Fu, Q. and J.E. Van Eyk, Proteomics and heart disease:identifying biomarkers of clinical utility. Expert Rev Proteomics,2006.3(2):p.237-49.
    [31]Vasan, R.S., Biomarkers of cardiovascular disease:molecular basis and practical considerations. Circulation,2006.113(19):p.2335-62.
    [32]Maisel, A.S., V. Bhalla, and E. Braunwald, Cardiac biomarkers:a contemporary status report. Nat Clin Pract Cardiovasc Med,2006.3(1):p.24-34.
    [33]Zerkowski, H.R., et al., Proteomics strategies in cardiovascular research. J Proteome Res,2004.3(2):p.200-8.
    [34]Mehra, M.R., et al., Surrogate markers for late cardiac allograft survival. Am J Transplant,2004.4(7):p.1184-91.
    [35]Mehra, M.R., The emergence of genomic and proteomic biomarkers in heart transplantation. J Heart Lung Transplant,2005.24(7 Suppl):p. S213-8.
    [36]Matt, P., et al., Proteomics in cardiovascular surgery. J Thorac Cardiovasc Surg, 2007.133(1):p.210-4.
    [37]Mateos-Caceres, P.J., et al., Proteomic analysis of plasma from patients during an acute coronary syndrome. J Am Coll Cardiol,2004.44(8):p.1578-83.
    [38]McDonough, J.L. and J.E. Van Eyk, Developing the next generation of cardiac markers:disease-induced modifications of troponin I. Prog Cardiovasc Dis,2004. 47(3):p.207-16.
    [39]Dupont, A., et al., The proteome and secretome of human arterial smooth muscle cells. Proteomics,2005.5(2):p.585-96.
    [40]Lipinski, M.J., et al., Technology insight:targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat Clin Pract Cardiovasc Med,2004.1(1):p.48-55.
    [41]Feezor, R.J., et al., Genomic and proteomic determinants of outcome in patients undergoing thoracoabdominal aortic aneurysm repair. J Immunol,2004.172(11): p.7103-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700