用户名: 密码: 验证码:
MdSPDS1基因的功能分析及转化毛白杨的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,土壤盐渍化严重影响农林业生产和生态环境,如何使大片的盐碱地以及丰富的咸水资源被充分利用,成为当前研究的热点问题。而多胺(polyamines,PAs)对提高植物抗逆性起着重要的作用,为此,本研究开展了对多胺合成途径中的相关基因苹果亚精胺合成酶(apple spermidine synthase genes1,MdSPDS1)的基因功能分析,并首次将其转入毛白杨(Populus tomentosa Carr.)中,从而提高转基因毛白杨的耐盐能力。本研究工作结果如下:
     (1)农杆菌介导法将MdSPDS1基因转入普通烟草(Nicotiana tabacum)中,采用实时荧光定量PCR方法和高效液相色谱法(HPLC)分别检测了植株中MdSPDS1基因的相对表达情况,以及三种主要多胺——腐胺、亚精胺、精胺(Put、Spd、Spm)的含量,结果发现转MdSPDS1基因的烟草中Spd含量是非转基因的2-3倍。
     (2)在初步探讨MdSPDS1基因功能中,耐盐性分析时发现MdSPDS1表达量高的转基因烟草D14可以在400mM的NaCl胁迫下生存,在进一步的多胺含量变化趋势测定中,结果表明Spd的含量和(Spd+Spm)/Put比值的增加对提高植物的耐盐性起到重要的作用。同时在转基因烟草抗病性分析中,D14的抗烟草花叶病毒(TMV)能力强于为转基因植株WT,WT植株感病后,Put含量比初始增加了5倍多,而D14中Spd含量增加4倍左右,暗示Spd的增加可能是促进植物抗烟草花叶病毒能力提高的原因。
     (3)初步建立了毛白杨遗传转化体系,对卡那霉素抗性芽进行了PCR和Southern检测,结果表明,成功获得了转MdSPDS1基因的毛白杨植株。并测定了转基因毛白杨中MdSPDS1基因相对表达量和多胺的含量,其中T7的Spd含量是未转化植株的1.65倍。转基因毛白杨耐盐性初步分析中发现转MdSPDS1基因的毛白杨可以在200mM的盐胁迫下生存。
The problem of the salty soil has represented some of the most significant constraints to agricultural and forestry productivity. It has become an important topic and hotspot on the researching of the future development in agriculture and forestry that how to make use of the large quantity of salty soil and salty water resources. Polyamines play an important role in plants to enhance environmental stress tolerance. So, functional analysis of MdSPDS1 gene which is encoding Polyamines biosynthesis has been carrying out. And transgenic Populus tomentosa Carr. with MdSPDS1 was abtained. The major results and conclusions are described as follows.
     (1) MdSPDS1 was transferred to Nicotiana tabacum by Agrobacterium–mediated, and the expression of MdSPDS1 gene was analyzed by Real time Quantitative PCR. The contents of three main polyamines -- Put、Spd、Spm were detected by HPLC. The result showed that the Spd levels in transgenic plants were 2-3 fold when compared to untransgenic plants.
     (2) It was found that transgenic plant D14 which has high expression of MdSPDS1 could live under 400mM NaCl stress. Under this stress, contents of polyamines were detected to learn the changes of three main polyamines. The results illustrated that the increase of Spd content and (Spd+Spm)/Put played an important role in enhancing tolerance to salt stress. On the other hand, it was found that the ability of resistance to TMV in D14 was higher than WT, and PAs levels altered by TMV infected. Put levels in WT were enhanced more than 5-folds when compared to healthy control; while Spd levels in D14 were enhanced 4-folds. The result showed that increase of Spd was one of the reseaons of enhancing plant resistance to TMV.
     (3) The primary transformation system was established in Populus tomentosa. The integration of the MdSPDS1 gene into plant genomes of transgenic Populus tomentosa was confirmed by PCR and Southern blot analysis. The expressions of MdSPDS1 gene and polyamines levels were also detected. The result showed that the Spd levels in transgenic plants were 1.65-folds when compared to untransgenic plants. It was also found that transgenic Populus tomentosa could live under 200mM NaCl stress.
引文
1. 白爽, 宋启平, 刘桂丰. 转betA基因的小黑杨花粉植株耐盐性分析[J]. 分子植物育种, 2006, 4(1): 41-44.
    2. 陈颖, 韩一凡, 李铃. 苏云金杆菌杀虫晶体蛋白基因转化美洲黑杨的研究[J]. 林业科学, 1995, 31(2): 97-103.
    3. 戴尧仁. 多胺及其在植物体内的生理作用[J]. 植物学通报, 1988, 5(2): 69.
    4. 杜金友, 孟宪强, 徐兴友. 植物耐盐相关基因克隆与基因工程的研究进展[J]. 河北科技师范学院学报, 2006, 20(1): 68-72.
    5. 杜喜梅, 张俊莲, 王蒂, 等. 烟草试管苗对盐胁迫的生理响应[J]. 干旱地区农业研究, 2007, 25(4): 238-242.
    6. 段辉国, 袁澍, 刘文娟, 等. 多胺与植物逆境胁迫的关系[J]. 植物生理学通讯, 2005, 4(41): 531-536.
    7. 樊军锋, 韩一凡, 李铃, 等. mtlD/gutD 双价基因转化美洲黑杨×青杨的研究[J]. 林业科学, 2002, 38(6): 30-35.
    8. 龚月桦, 王俊儒, 荆家海. 高等植物对多胺的吸收和转运[J]. 植物生理学通讯, 1998, 34(1): 64-68.
    9. 关军锋, 刘海龙, 李广敏. 干旱胁迫下小麦幼苗根、叶多胺含量和多胺氧化酶活性的变化[J]. 植物生态学报, 2003, 27(5): 655-660.
    10. 郭北海, 张艳敏, 李洪杰等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达[J]. 植物学报, 2000, 42(3): 279-283.
    11. 郝贵霞, 朱祯, 朱之悌. 毛白杨遗传转化系统优化的研究[J]. 植物学报, 1999, 41(9): 936-940.
    12. 何永明, 丁秀英, 丛林晔, 等. β-氨基丁酸诱导烟草产生PR蛋白及对TMV的抑制作用[J]. 植物病理学报, 2007, 37(3): 271-277.
    13. 胡淑明, 张学英, 李青云等. 多胺与植物耐盐性关系的研究[J]. 河北林果研究, 2005, 20(2): 128-132.
    14. 胡忠, 曹军, 庄东红. 耐盐性植物转基因工程的研究进展[J]. 热带亚热带植物学报, 2006, 14(2): 169-178.
    15. 江行玉, 赵可夫, 窦君霞. NaCl 胁迫下外源亚精胺和二环己基胺对滨藜内源多胺含量和抗盐性的影响[J]. 植物生理学通讯, 2001, 37(1): 6-9.
    16. 李玲, 韩一凡. 杨树耐盐突变体筛选的研究[J]. 林业科学, 1990, 26(4): 359-362.
    17. 李驹, 陈维明. 杨树耐盐细胞系的筛选及不定苗再生的研究[J]. 林业科技通讯, 1984, 1: 1-31.
    18. 李如铁, 沈惠娟, 李梅枝. 酸胁迫对几种林木体内脯氨酸及腐胺含量的影响[J]. 南京林业大学学报, 1995, 19(3): 88-93.
    19. 李树华, 许兴, 惠红霞等. 不同小麦品种(系)对盐碱胁迫的生理及农艺性状反应[J]. 麦类作物学报, 2000, 20(4): 63-67.
    20. 李银心, 常风启, 杜立群, 等. 转甜菜碱醛脱氢酶基因豆瓣菜的耐盐性[J]. 植物学报, 2000, 5: 480-484.
    21. 李子银, 张劲松, 陈受宜. 水稻盐胁迫应答基因的克隆、表达及染色体定位[J]. 中国科学C辑, 1999, 29(6): 561-570.
    22. 李周岐. 高等植物体细胞突变体离体筛选技术及其在林木抗盐育种上的应用[J]. 陕西林业科技, 1994, 4: 50-55.
    23. 李周岐, 周志华, 郭军战, 等. 河北杨体细胞抗盐性突变体离体筛选的研究[J]. 西北林学院学报, 1995, 10(3): 1-71.
    24. 梁峥, 马德钦, 汤岚, 等. 菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J]. 生物工程学报, 1997, 3: 238-240.
    25. 林栖凤主编. 耐盐植物植物研究[M]. 北京: 科学出版社, 2004.
    26. 林栖凤, 李冠一. 植物耐盐性研究进展[J]. 生物工程进展, 2000, 120(2): 20-25.
    27. 刘凤华, 孙仲序. 细菌mtl-D基因的克隆及在转基因八里庄杨中的表达[J]. 遗传学报, 2000, 27(5): 428-433.
    28. 刘桂丰, 杨传平, 蔡智军,等. 转betA基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7): 33-36.
    29. 刘俊, 吉晓佳, 刘友良. 检测植物组织中多胺含量的高效液相色谱法[J]. 植物生理学通讯, 2002, 38(6): 596-598.
    30. 刘俊, 刘友良. 盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系[J]. 植物生理与分子生物学学报, 2004, 30(2): 141-146.
    31. 刘俊君. 高度耐盐双价转基因烟草的研究[J]. 生物工程学报, 1995, 11(4): 381-384.
    32. 刘志成, 潘成良, 杨志岩, 等. 抗盐杨树优良品种的选择[J]. 辽宁林业科技, 1999, 5: 60-61
    33. 马焕成, 王沙生. 胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J]. 西南林学院学报, 1998, 18(1): 15-23.
    34. 马雅琴, 翁跃进, 赵勇等. 植物耐盐相关基因克隆的研究进展[J]. 植物遗传资源学报, 2004, 5(1): 81-86.
    35. 沈惠娟, 曾斌, 李梅枝. 渗透胁迫下多效唑对刺槐幼苗体内多胺、脯氨酸和保护酶系统的影响[J]. 植物生理学报, 1993, 19(1): 53-60.
    36. 沈义国, 杜保兴, 张劲松, 等. 山菠菜胆碱单氧化物酶基因(CMO)的克隆与分析[J]. 生物工程学报, 2001, 1: 1-6.
    37. 史燕山, 骆建霞, 张涛, 等. 核果类果树砧木耐盐性差异的研究[J]. 西北农林科技大学学报(自然科学版), 2004, 32(3): 45-48.
    38. 孙仲序, 杨红花, 崔得才, 等. 转基因杨树的抗盐性分析[J]. 生物工程学报, 2002, 18(4): 481-485.
    39. 孙仲序, 陈受宜, 王建设等. 农杆菌介导AGK基因转化葡萄的研究[J]. 果树学报, 2003, 20 (2): 89-92.
    40. 谈建康, 安树青. 钠盐胁迫对小麦叶片核酸损伤和多胺积累的影响[J]. 农业环境科学学报, 2004, 23(3): 428-431.
    41. 陶晶, 秦彩云, 姚露贤等. 杨树耐盐性突变体育种的研究进展[J]. 吉林林业科技, 2000, 29(2): 5-8.
    42. 陶晶, 宋全民, 秦彩云等. 杨树基因工程抗性育种的研究现状与发展前景[J]. 吉林林科技, 2001, 30(5): 6-9.
    43. 王关林, 方宏筠主编. 植物基因工程原理与技术[M]. 北京: 科学出版社, 1998.
    44. 王惠中, 刘俊君, 卢德赵. 1-磷酸甘露醇脱氢酶基因转化水稻的研究[J]. 中国水稻科学, 2003, 01: 6-10.
    45. 王仑山, 王鸣刚, 王亚馥. 利用组织和细胞培养筛选作物耐盐突变体的研究[J]. 植物学通报, 1996, 13(2): 7-12.
    46. 王淑芳, 王峻岭. 赵彦修, 等. 胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定[J]. 植物生理学报, 2001, 3: 248-252.
    47. 汪沛洪. 植物多胺代谢的酶类与胁迫反应[J]. 植物生理学通讯, 1990,26(1):1-7.
    48. 王玮, 李德全. 植物盐分胁迫与水分胁迫的异同[J]. 植物生理学通讯, 2003, 39(5): 491-492.
    49. 王晓云, 李向东, 邹琦, 等. 外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响[J]. 中国农业科学, 2000, 33(3): 30-35.
    50. 王衍安, 李际红, 张有朋, 等. 耐盐杨树新无性系选育续报[J]. 山东林业科技, 1997, 4: 7-1.
    51. 王瑶, 林木兰, 沈锡辉, 等. 农杆菌介导的木本植物遗传转化[J]. 生物技术通报, 1999, 6: 23-27.
    52. 王自章, 张树珍, 杨本鹏等. 甘蔗根癌农杆菌介导转化海藻糖合酶基因获得抗渗透胁迫能力增强植株[J]. 中国农业科学, 2003, 36(2): 140-146.
    53. 邢更生, 周功克, 李志孝等. 水分胁迫下山黧豆多胺代谢与b-N-草酰-L-a, b-二氨基丙酸积累相关性的研究[J]. 植物学报, 2000, 42(10): 1039-1044.
    54. 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6(4): 379-387.
    55. 闫新甫. 转基因植物[M]. 北京:科学出版社, 2001.
    56. 杨传平, 刘桂丰, 梁宏伟, 等. 耐盐基因bet-A基因转化小黑杨的研究[J]. 林业科学, 2001, 37(6): 34-38.
    57. 杨敏生, 李艳华, 梁海永, 等. 白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应[J]. 林业科学, 2006, 42(4): 19-26.
    58. 尹建道, 张洪岭, 王淑英, 等. 转抗盐基因中天杨新品种扦插育苗耐盐试验[J]. 生态学杂, 2006, 25(2): 125-128.
    59. 应天玉, 刘国生, 姜中珠. 植物耐盐的分子机理[J]. 东北林业大学学报, 2003, 23(1): 31-33.
    60. 於丙军, 吉晓佳, 刘俊, 等. 氯化钠胁迫下野生和栽培大豆幼苗体内的多胺水平变化[J]. 应用生态学报, 2004, 15(7): 1223-1226.
    61. 于海武. 毛白杨无性系耐盐性比较与转耐盐基因的研究[J]. 北京:北京林业大学硕士学位论文, 2004.
    62. 翟凤林, 曹鸣庆等编译. 植物的耐盐性及其遗传改良[M]. 北京:农业出版社, 1989.
    63. 张慧, 董伟, 周骏马, 等. 果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育[J]. 生物工程学报, 1998 , 14(2): 181-186.
    64. 张立钦, 郑勇平, 金佩英. 用组织培养技术筛选杨树耐盐种质[J]. 浙江林学院学报, 1996, 13(4): 397-404.
    65. 张立钦, 郑勇平, 吴纪良, 等. 黑杨派新无性系水培苗对盐胁迫反应的研究[J]. 浙江林学院学报, 2000, 17(2): 121-125.
    66. 张木清, 陈如凯, 余松烈. 多胺对渗透胁迫下甘蔗愈伤组织的诱导和分化的作用[J]. 植物生理学通讯, 1996, 32(3): 175-178.
    67. 张绮纹, 张望东. 群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导[J]. 林业科学研究, 1995, 8(4): 395-401.
    68. 张学彬, 夏秀英, 毕晓颖, 等. 欧美杨107耐盐转基因植株的试验[J]. 沈阳农业大学学报, 2006, 37(5): 712-715.
    69. 赵可夫, 冯立田. 中国盐生植物资源[M]. 北京: 科学出版社, 2001.
    70. 赵茂林. 组培方法筛选杨树耐碱性盐变异体的研究[J]. 山西林业科技, 1989, 4 :19-22.
    71. 赵鑫, 詹立平, 刘桂丰. 杨树基因工程抗性育种研究进展[J]. 东北林业大学学报, 2004, 32(6): 76-78.
    72. 郑进, 刘凯于, 洪华珠. 杨树抗性转基因研究进展[J]. 湖北林业科技, 2004, 1: 31-33.
    73. 周冀明, 卫志明, 许智宏, 等. 根癌农杆菌介导转化诸葛菜子叶获得转基因植株[J]. 生物工程学报, 1996, 12(1): 34-39.
    74. 周玉萍, 王正询, 田长思. 多胺与香蕉抗寒性的关系的研究[J]. 广西植物, 2003, 23(4): 252-256.
    75. Akihiro I, Takashi M, Yoshie H et al. Spermidine synthase genes are essential for survival of Arabidopsis[J]. Plant Physiol, 2004, 135(9): 1565-1573.
    76. Alcazar R, Marco F, Cuevas JC et al. Involvement of polyamines in plant response to abiotic stress[J]. Biotechnology Letters, 2006b, 28(23): 1867-1876.
    77. Asthir B, Spoor W. Duffus CM. Involvement of polyamines, diamine oxidase and polyamine oxidase in resistance of barley to Blumeria graminis f.sp. Hordei[J]. Euphytica, 2004, 136: 307-312.
    78. Bagni N, Tassoni A. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants[J]. Amino Acids, 2001, 20: 301-317.
    79. Bais HP, Ravishankar GA. Role of polyamines in the ontogeny of plants and their biotechnological applications[J], Plant Cell Org, 2002, 69: 1-34.
    80. Bhatnagar P, Minocha R, Minocha SC. Genetic manipulation of the metabolism of polyamines in poplar cells[J]. Plant Physiol, 2002, 128(4): 1455-1469.
    81. Borrell A, Bestford T, Altabella T et al. Regulation od arginine decarboxylase by spermine in osmotically-stressed oat leaves[J]. Physiologia Plantarum, 1996, 98: 105-110.
    82. Bouchereau A, Aziz A. Larher F et al. Polyamines and environmental challenges: recent development[J]. Plant Science, 1999, 140(22): 103–125.
    83. Capell T, Escobar C, Lui H et al. Overexpression of the oat arginine decarboxylases cDNA in transgenic rice affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants[J]. Theor Appl Genet, 1998, 97: 246-254.
    84. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J]. Proceedings of the National Academy of Sciences USA, 2004, 101: 9909-9914.
    85. Carpenter JF, Growe JH. The mechanism of cryoprotection of proteins by solutes[J]. Cryobiology, 1988, 25: 244-255.
    86. Cowley T, Walters DR. Polyamine metabolism in barley reacting hypersensitive to the powdery mildew fungus Blumeria graminis f. sp. Hordei[J]. Plant, Cell and Environment, 2002, 25: 461-468.
    87. De Agazio M, Zacchini M, Federico R et al. Putrescine accumulation in maize roots treated with spermidine: evidence for spermidine to putrescine conversion[J]. Plant Science, 1995, 111: 181-185.
    88. Drolet G. Radical scavenging properties of polyamine[J]. Phytochemistry, 1986, 25: 367-371.
    89. Evans PT, Malmberg PL. Do polyamines have roles in plant development?[J]. Annual Review of Plant Physiology and Plant Molecular, 1989, 40: 235-269.
    90. Franceschetti M, Perry B, Thompson B et al. Expression proteomics identifies biochemical adaptation and defense responses in transgenic plants with perturbed polyamine metabolism[J]. FEBS Letters, 2004, 576 (3): 477-480.
    91. Galston AW, Sawhney RK. Polyamines in plant physiology[J]. Plant Physiol, 1990, 94(2): 406-410.
    92. Greenland AJ, Lewis DH. Amines in barley leaves infected with brown rust and their possible relevance to formation of ‘green island’ [J]. New Phytologist, 1984, 96: 283-291.
    93. Grieve G M, Guzy M R, Poss J A et al. Screening Eucalytus clone for salt tolerance[J]. Hortscience, 1999, 34(5): 867-870.
    94. He L, Nada K, Kasukabe Y et al. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.) [J]. Plant Cell Physiol. 2002, 43: 196-206
    95. Heby O, Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells[J]. Trends Biochemistry Science, 1990, 15: 153-158.
    96. Heimer YM, Filner P. Regulation of the nitrate assimilation pathway of cultured tobacco cells 2: properties of a variant cell line[J]. Biochim Biophys Acta, 1970, 215: 152- 165.
    97. Heschbach C, Kopriva S. Transgenic trees as tools in tree and plant physiology[J]. Trees, 2002, 16: 250-261.
    98. Holmstrom K, Mantyla E, Welin B et al. Drought tolerance in tobacco[J]. Nature, 1996, 379 : 683-684.
    99. Ibrahim Mohamed zeid. Response of bean ( phaseolus vulgaris) to Exogenous putrescine treatment under salinity stress[J]. Parkistan Journal of Biologycal Sciences, 2004, (2): 219- 225.
    100. Jang IC, Oh SJ, Seo JS et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose- 6- phosphate synthase and trehalose-6- phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J]. Plant Physiol, 2003, 131(2): 516-524.
    101. JIANG Xing-yu, SONGJie, FAN Hai et al. Regulations of exogenous calcium and spermidine on ion balance and polyamine levels in maize seedlings under NaCl stress. Acta Phytophysiologica Sinica, 2000, 26 (6): 539-544.
    102. Kakkar RK, Sawhney VK. Polyamines research in plants – a changing perspective[J]. Physiologia Plantarum, 2002, 116 (3): 281-292.
    103. Kasukabe Y, He L, Nada K et al. Overexpression of Spermidine Synthase Enhances Tolerance to Multiple Environmental Stresses and Up-Regulates the Expression of Various Stress Regulated Genes in Transgenic Arabidopsis thaliana[J]. Plant Cell Physiol, 2004, 45(6): 712–722.
    104. Kasukabe Y, He L, Watakabe Y et al. Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase[J]. Plant Biotechnology, 2006, 23: 75–83.
    105. Kaur-Sawhney R, Tiburcio AF, Altabella T et al. Polyamines in plants: An overview[J]. Journal of Cell and Molecular Biology, 2003, 2: 1-12.
    106. Kishor P, Hong Z, Miao G et al. Overexpression of Δ'-Pyrroline-5-Carboxylate Syntheses Increases Proline Production and Confers Osmotolerance in Transgenic Plants[J]. Plant Physiol, 1995, 108: 1387-1394.
    107. Krishnamurthy R, Bhagwat KA. Polyamines as modulators of salt tolerance in rice cultivars[J]. Plant Physiology, 1989, 91: 500-504.
    108. Kumar A, Altabella T, Taylor MA et al. Recent advances in polyamine research[J]. Trends Plant Science, 1997, 2: 124-130.
    109. Kytoviita MM, Sarjala T. Effects of defoliation and symbiosis on polyamine levels in pine and birch[J]. Mycorrhiza, 1997, 7: 107-111.
    110. Langebartels C, Kemer K, Leonardi S et al. Biochemical plant responses to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco[J]. Plant Physiol. 1991, 95: 882-889.
    111. Lepri O, Bassie L, Safwat G et al. Over-expression of the human ornithine decarboxylase cDNA intransgenic rice plants alters the polyamine pool in a tissue-specific manner[J]. Molecular and general genetics, 2001, 266: 303-312.
    112. Li CZ, Jiao J, Wang GX. The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress[J]. Plant Science, 2004, 16: 303-316.
    113. Li ZY, Chen SY. Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress[J]. Theor Appl Genet, 2000, 100: 782-788.
    114. Liu HP, Dong BH, Zhang YY et al. Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings[J]. Plant Science, 2004, 166: 1261-1267.
    115. Liu HP, Yu BJ, Zhang WH et al. Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seeding roots[J]. Plant Science, 2005b, 168: 1599-1607.
    116. Liu J, yu BJ, Liu TL. Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H+-ATPase and H+-PPase activities in barly roots[J]. Plant Growth Regulation, 2006a, 49: 119-126.
    117 Liu JH, Kitashiba H, Wang J et al. Polyanmines and their ability to provide environmental stress tolerance to plants[J]. Plant Biotechnology, 2007, 24: 117-126.
    118. Malabika R, Ray W. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance[J]. Plant Science, 2002, 163: 987-992.
    119. Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches) [J]. Plant Growth Regular, 2001, 100: 675-688.
    120. Masgrau C, Altabella T, Farrás R et al. Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants[J]. Plant Journal, 1997, 11 (9): 465–473.
    121. Mehta RA, Cassol T, Li N et al. Enginerred polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life[J]. Nature Biotechnology, 2002, 20(6): 613-618.
    122. Mitsuya Y, Takahashi Y, Uehara Y et al. Identification of a novel Cys2/His2-type zinc-finger protein as a component of a spermine-signaling pathway in tobacco[J]. Journal of Plant Physiology, 2007, 164: 785-793.
    123. Moya JL, Tadeo FR, Gomez- CadenasA et al. Transmissible salt tolerance traits identified through recip rocal grafts between sensitive Carrizo and tolerant Cleopatra citrus genotypes[J]. Journal of Plant Physiology, 2002, 159 (9): 991-998.
    124. Pang XM, Zhang ZY, Wen XP et al. Polyamines, all-purpose players in response to environment stresses in plants[M]. Plant stress. Global Science Book, 2007, 1 (2): 173-187.
    125. Panicot M, Masgrau C, Borrell A et al. Effects of putrescine accumulation in tobacco transgenic plants with different expression of oat arginine decarboxylases[J]. Physiol Plant, 2002a, 114: 281-287.
    126. Pilon-Smits EAH, Ebskamp MJM, Paul MJ et al. Improved performance of transgenic fructan-accumulating tobacco under drought stress[J]. Plant Physiol, 1995, 107: 125-130.
    127. Prasad K VSK, Sharmila P, Kumar PA, et al. Transformation of Brassica juncea (L.) Czern. with bacterial codA gene enhances its tolerance to salt stress[J]. Molecular Breed, 2000, 6: 489-499.
    128. Racz I, Kovacs M, Lasztity D et al. Effects of short-term and long-term low temperature stress on polyamine biosynthesis in wheat genotypes with varying degrees of frost tolerance[J]. Plant Physiol, 1996, 148: 368–373.
    129. Rajam MV, Dagar S, Waie B et al. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants[J]. Journal of Bioscience, 1998, 23: 473-482.
    130. Redmond JW, Tseng A. High-press liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine[J]. Journal of Chromatograghy, 1979, 170: 479-481.
    131. Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice[J]. Plant Science, 2001, 160: 869-875.
    132. Saneoka H, Nagasaka C, Hahn DT et al. Salt tolerance of glycinebetine-deficient and containing maize lines[J]. Plant Physiology, 1995, 107: 631- 638.
    133. Sannazzaro AI, Echeverria M, Alberto EO. Molulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza[J]. Plant Physiology and Biochemistry, 2007, 45: 39-46.
    134. Sawahel WA, Hassan AH. Generation of transgenic wheat plants producing high levels of Osmotolerance Proline[J]. Biotechnology letters, 2002, 24(9): 721-725.
    135. Shen HJ, Xie YF, Li RT. Effect of acid stress on polyamine levels, ion efflux, protective enzymes and macro-molecular synthesis in cereal leaves[J]. Plant Growth Regulation, 1994, 14 (1): 1-5.
    136. Shen W, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology, 2000, 124 (1): 431-439.
    137. Shinozaki K. Molecular responses to drought and cold stress[J]. Current Opinion in Biotechnology, 1996, 7: 161- 167.
    138. Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiol, 1997, 115: 327-334.
    139. Sun C, Liu YL, Zhang WH. Mechanism of the effect of polyamine on the activity of tonoplasts of barley roots under salt stress[J]. Acta Botanica Sinica, 2002, 44(10): 1167-1172.
    140. Takahashi Y, Uehara Y, Berberich T et al. A subset of hypersensitive response marker genes, includind HSR203J, is the downstream target of a spermine signal transduction pathway in tobacco[J]. The Plant Journal, 2004b, 40: 586-595.
    141. Taleisnik, Pérez, Córdoba. Salinity effects on the early development stages of Panium coloratum: cultivar differences[J]. Grass&Forage Science, 1998, 53(3): 270-278.
    142. Tanji Kenneth K. Agricultural Salinity Assessment and Management[M]. New York: American Society of Civil Engineers, 1990.
    143. Teresa C, Ludovic B, Paul C. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress[J]. Proceedings of National Academy of Sciences of the USA, 2004, 101: 9909-9914.
    144. Torrigiani P, Rabiti AL, Bortolotti C et al. Polyamine synthesis and accumulation in the hypersensitive response to TMV in Nicotiana tabacum[J]. New Phytologist, 1997, 135: 467-473.
    145. Thu-Hang P, Bassie L, Safwat G et al. Expression of a heterologous Sadenosylmethionine decarboxylase cDNA in plants demonstrates that changes in SAMDC activity determine levels of the higher polyamines spermidine and spermine[J]. Plant Physiology, 2002, 129: 1744-1754.
    146. Uehara Y, Takahashi Y, Berberich T et al. Tobacco ZFT1, a transcriptional repressor with a Cys2/His2 type zinc finger motif that functions in spermine-signaling pathway[J]. Plant Molecular Biology, 2005, 59: 435-448.
    147. Waie B, Rajam MV. Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene[J]. Plant Science, 2003, 164: 727-734.
    148. Walden R, Cordeiro A, Tiburcio AF. Polyamines: Small molecules triggering pathways in plantgrowth and development[J]. Plant Physiology, 1997, 113: 1009-1013.
    149. Walters DR. Polyamines and plant disease[J]. Phytochemistry. 2003, 64: 97-107.
    150. Wang WX, Tzfira T, Levin V et al. Plant tolerance to water and salt stress: the expression pattern of a water stress responsive protein(BspA) in transgenic aspen plants[J]. Jerusalem, Isreal: In plant biotechnology and in vitro biology in the 21st century, 1998, June: 14 -19.
    151. Wen XP, Pang XM, Liu JH et al. Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers[J]. Transgenic Reseacher, 2008, 17: 251–263.
    152. Wi SJ, Kim WT, Park KY. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stress in transgenic tobacco plants[J]. Plant Cell Reports, 2006, 25 (11): 1111-1121
    153. Wu R, Jin S, Jayappakash T. How to obtain optimal gene expression in transgenic plants[J]. 北京:第七次基因学术会议, 1999.
    154. Yamaguchi K, Takahashi Y, Berberich T et al. The polyamines spermine protect against high salt stress in Arabidopsis thaliana[J]. FEBS Letters. 2006, 580: 6783-6788.
    155. Yamaguchi K, Takahashi Y, Berberich T et al. A protective role for the polyamines spermine against drought stress in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2007, 352: 486-490.
    156. Yan SP, Zhang QY, Tang ZC et al. Comparative proteomic analysis provide new insights into chilling stress responses in rice[J]. Molecular Cell Proteomics, 2006, 5: 484-496.
    157. Yoda H, Hiroi Y, Sano H. Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells[J]. Plant Physiology. 2006, 142: 193-206.
    158. Yohannes E, Thurber AE, Wilks JC et al. Polyamines stress at high pH in Escherichia coli K-12[J]. BMC Microbiology, 2005, 5: 59.
    159. Yoshihisa K, Lixiong H, Kazuyoshi N et al. Overexpression of spermidine syntase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana[J]. Plant Cell Physiol, 2004, 45: 712-722.
    160. Zapata PJ, Serrano M, Pretel MT et al. Polyamines and ethylene changes during germination of different plant species under salinity[J]. Plant Science, 2004, 167: 781-788.
    161. Zhang FH, Guo SL, Wang ZL et al. Recent advances in study on transgenic plants for salt tolerance[J]. Plant Physiol Mol Biol, 2003, 29(3): 171-178.
    162. Zhao FG, Sun C, Liu YL et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings[J]. Acta Botanica Sinica, 2003, 45(3): 295-300.
    163. Zhang FS. Environ mental Stress and Plant Breeding[M]. Beijing: Agriculture Press, 1993: 330-335.
    164. Zhu JK. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Physiology and Plant Molecular, 2002, 53: 247- 273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700