用户名: 密码: 验证码:
钙调蛋白抑制剂三氟拉嗪抗脑缺血作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑缺血是危害人类健康的主要疾病之一,它导致脑功能及脑结构发生不可逆的变化,也是临床上常见的预后较差的一种疾病。如何防治脑缺血损伤引起了基础与临床研究的广泛重视。针对脑缺血损伤的某些环节,寻找切实有效的脑卒中防治药物已成为当今医学领域的重大课题。本文利用离体缺氧模型,研究了钙调蛋白抑制剂三氟拉嗪的抗缺血机制与作用。
     本文应用原代培养海马细胞的缺氧缺糖剥夺模型,通过使用激光扫描共聚焦显微技术和荧光标记技术,对缺氧过程中神经细胞的NO和钙离子变化进行了实时动态的检测。结果表明缺氧过程中,细胞内NO的合成和钙离子浓度有显著升高,NO和钙离子荧光的升高值分别为62%和174%;这种升高在去除细胞外液的钙离子后受到明显抑制,表明缺氧时胞内钙离子的增加主要来源于胞外的钙离子。
     在培养海马细胞的缺氧缺糖剥夺模型中,钙调蛋白抑制剂三氟拉嗪(trifluoperazine,TFP)对缺氧导致的钙离子升高有明显的抑制作用,10μM和50μMTFP能够使缺氧诱导的细胞内Ca~(2+)的荧光升高降低56.4%和72.6%;TFP还能剂量依赖性抑制缺氧诱导的NO合成,50μMTFP能够明显抑制缺氧时细胞内NO合成的增加(P<0.01)。由于通过NMDA受体内流的Ca~(2+)被认为在脑损伤中起重要作用,我们研究TFP对Glu诱发的Ca~(2+)升高的影响。结果表明TFP能够显著地抑制谷氨酸诱导的胞内Ca~(2+)的升高。这一结果也显示TFP可能通过作用NMDA受体来抑制缺氧时的钙离子升高。
     采用海马脑片离体缺氧模型,我们观察了缺氧导致的兴奋性神经递质天冬氨酸(Asp)、谷氨酸(Glu)与抑制性神经递质牛磺酸(Tau)、Y-氨基丁酸(GABA)的含量变化以及TFP对这些氨基酸变化的影响。实验表明:缺氧能促进海马组织各氨基酸的释放,而TFP可以显著降低由缺氧引起的兴奋性氨基酸的释放。
     为了探讨TFP在缺氧损伤中对神经细胞的保护作用,我们采用神经电生理技术,从电生理角度研究了TFP在海马组织缺氧灌流中的保护作用。结果发现TFP可以降低缺氧损伤电位(HIP)的出现率,提高复氧后脑片群峰电位(PS)的恢复率和恢复程度;我们还应用WST—1法,研究了TFP对培养海马神经细
    
     廊江大学尊士学哎讼文
    胞缺氧缺糖后活性的影响,发现用TFP作用后,细胞液的OD值比缺氧缺糖组有
    显著升高(P<0.05)。以上结果表明 TFP在缺氧损伤中对神经细胞有明显的保护
    作用。
     本论文研究了钙调蛋白抑制剂的抗缺血机制与作用,结果表明TFP对缺血
    过程中兴奋性氨基酸释放、细胞内Ca卜升高和NO合成有明显的抑制作用:TFP
    可能通过这些途径减轻缺氧对神经细胞的损伤,起到保护神经细胞的作用。本研
    究为脑缺血的病理研究与临床治疗提供了新的思路,为抗脑缺血药物的开发提供
    了新的筛选平台。
Ischemic stroke is a leading cause of death and serious, long-term disability in adults. Until recently, modem medicine has had very little power over this disease, but the world of stroke medicine is changing and new and better therapies are being developed every day. Researchers are studying the mechanisms of this disease and ways to prevent this injury to the brain. Scientists hope to develop surgical techniques and neuroprotective agents to prevent this damage and restore important functions to the stroke patients. This paper studied the neuroprotective effects and mechanisms of Calmodulin antagonist using animal ischemia model in vitro.
    In this study, the effect of oxygen-glucose deprivation (OGD) on the intracelluar Ca2* and production of NO was investigated in cultured hippocampal neurons. The generation of NO and changes in intracellular Ca2* were evaluated using confocal laser scanning microscopy with diaminofluorescein diacetate (DAF-2 DA), an NO probe, and Fluo-3, a Ca2+ probe respectively. Results showed that OGD induced an increase in NO production and intracellular Ca2+ concentration ([Ca2+]j). when the extracellular calcium was removed, the increase in intercellular Ca2* during OGD was significantly lower, which suggested that ischemic increase in Ca2+ was mainly due to influx through plasma membrane Ca2+ channels. Calmodulin (CaM) antagonist trifluoperazine (TFP) could significantly reduced the OGD-induced elevation of [Ca2+]j .The increase in NO production was also attenuated by TFP dose-dependently. For calcium influx into cells through NMDA receptor was probably played an important pathogenetic role in ischemia, we studied the effect of TFP to Glu-induced The result showed that TFP reduced the increase of [Ca2+]j induced by Glu, which also indicated that TFP may inhibit Ca2+ influx during OGD by blocking NMDA receptor.
    We studied the effect of TFP on the changes of level of amino acids (Asp, Glu, Tau, GABA) in the culture medium of brain slices during OGD. It was found that OGD increase the release of amino acids and TFP can significantly inhibit the increase of the excitatory amino acids (EAA).
    3
    
    
    
    The protective effects of TFP against hypoxic brain injury were studied by the extracellular recording technique in rat hippocampal slices. The results showed that treated with TFP, the appearance of hypoxic injury potential (HIP) was lower and the recovery amplitude of PS after reoxygenation was significantly higher than that of OGD group. We also investigated the effects of TFP to survival activities of cultured neuron injured by OGD using WST-1 assay. It was found that optical density (OD) of TFP group is higher than that of OGD group. Therefore, the above results showed that TFP had protective effects against brain hypoxic injury.
    The protective effects and mechanisms of TFP in ischemia were studied in this thesis. The results indicated TFP have anti-ischemia effects through inhibiting EAA release, Ca2"1" overload and production of NO. Our experiments and results would be helpful for further studies in pathological mechanisms and clinic therapies to this disease.
引文
曹建淳 徐丹令 等 脑缺血大鼠海马组织间液EAA的变化及丹参对其的影响 同济大学学报:医学版.2002,23(1).11-13
    程宝鸾.动物细胞培养技术.华南理工大学出版社,第一版,2000
    程利萍 TNF—α、TGF-β1与缺血性脑损害 实用心脑肺血管病杂志.2001,9(1):62-64
    陈洁文 谭宝璇 苏文.毛冬青甲素对脑细胞缺氧损伤的保护及其机制的实验研究.广州中医药大学学报,1997,14(2):97-101.
    陈立华 神经元细胞内钙离子的生理与测定方法. 国外医学神经病学神经外科学分册 1996:23(2):60-63
    崔景斌 鄢文海 等 大鼠脑缺血再灌注损伤后兴奋性氨基酸、NOS和NO的含量变化 郑州大学学报:医学版.2002,37(2).169-171
    丁敏 曾成鸣 康格非 柱前衍生高效液相色谱法分析脑脊液氨基酸 上海医学检验杂志.1995;10:24—25
    董先平 智刚 徐天乐 钙调素参与离子通道和受体功能的调控自然科学进展 2002:12:232-239
    区耀华 王志刚 酸枣仁皂甙A-新型的钙调蛋白天然拮抗剂 清华大学学报:自科版.1990:30:81-85
    胡波 邱小鹰 r-氨基丁酸与脑缺血性损害的关系 国外医学脑血管疾病分册.1999,7(6).323-326
    何丽娜 何素冰 杨军 等 丹参酮对原代大鼠神经细胞缺血性损伤的保护作用 中国药理学通报 2001;17:214-217
    韩济生 神经科学纲要.北京医科大学,中国协和医科大学联合出版社.1993
    黄如训 苏镇培 脑卒中 人民卫生出版社,2001
    贾健平 贾健民 鼠脑缺血再灌流动物模型和病理学研究进展,中风与神经疾病杂志 1992,9:62—64
    车建途 陈飞松 等 粉防己碱对体外培养大鼠脑皮层神经元损伤的保护作用.Journal of Chinese Pharmaceutical Sciences (中国药学:英文版) 1997,6(3):143-148
    来滨 张卫国 等 脑缺血时神经细胞死亡机制的研究进展 河北医科大学学报.2002:23(1):
    
    44-46
    李菊 杨期东 等 脑缺血大鼠海马细胞外液氨基酸的动态变化 中华医学杂志.1996,76(4).294-296
    李楠,王凤翔,周春喜.荧光探针应用技术. 军事医学科学出版社,第一版,1998
    李伟荣 一氧化氮合酶及其抑制剂在脑缺血中的作用.国外医学:老年医学分册.2000:21:203-205
    林炳承,邹雄,韩培桢.高效液相色谱在生命科学中的应用.山东科学技术出版社,第一版,1996
    刘军 匡培根 李斌 等 丹参对大鼠脑缺血再灌注损伤保护机制的实验研究 中国神经免疫学和神经病学杂志 1998;5:77-82
    刘萍 钙与脑缺血损伤 国外医学:神经病学.神经外科学分册.2002:29(3):274-276
    刘春祥,芮德源,王荣江. 脑梗塞与介入治疗. 吉林科学技术出版社,1997
    刘振伟 王福庄 等 钙离子在海马缺氧损伤中的作用 中国应用生理学杂志 1994;10:34—37
    蓝轲 黄昕 WST-1法用于抗恶性肿瘤药物筛选的实验研究 重庆医科大学学报 1998;23:225-229
    漆松涛 叶春玲 粉防己碱对脑缺血的保护作用 中国药理学通报.1992;8:63-65
    任小巧 李建生 田金州 中药抗脑缺血再灌注损伤的实验研究概况 北京中医药大学学报 2001;24:41-43
    舒鸿钧 韩慧婉 等 鼠脑微透析中游离氨基酸的高效液相色谱分析 化学通报 1999;1:4-8
    舒斯云,包新民. 神经元:细胞和分子生物学. 科学出版社,第一版,2001
    司徒镇强,吴军正. 细胞培养. 世界图书出版公司,第一版,1996
    孙大业,郭艳林,马力耕. 细胞信号传导. 科学出版社,第二版,2000
    谭晓冬 许尚臣 孙若鹏. AMPA受体与缺血性脑损伤.国外医学 (脑血管疾病分册),2002;10(2):137-139
    唐建民 刘振伟 等 海马脑片缺氧损伤电位机制的研究 中国应用生理学杂志 1996;12(2):165-169
    万江华 方玉华 粉防己碱的药理与临床应用进展 中国药学杂志 1996;8:454—457
    王辉 罗顺德 粉防己碱的药理学研究进展 中国药学杂志 2000;35:800-802
    王新高,孙圣刚,童萼塘. 缺血性脑卒中的治疗研究概况.国外医学(老年医学分册),2002;
    
    23(4):153-155
    王晓菲 罗晓星 等 RP-HPLC法检测海马脑片灌流液中氢基酸类神经递质 第四军医大学学报.2002;23(5):426-428
    王中峰 万子兵 粉防己碱对缺氧所致大鼠皮层神经元钙通道功能变化的影响 中国药理学与毒理学杂志 2000:14:58-61
    吴国聪 谷氨酸与神经元死亡 国外医学:老年医学分册.2001;22(5):217-220
    肖苏红 葛金文 川芎嗪对沙土鼠脑缺血再灌注损伤的保护作用 中国中药杂志 1993;18:435-436
    肖卫兵 缺血缺氧性脑损伤和谷氨酸 生理科学紧张 1994;25:323-326
    向敬 中药防治脑缺血生化机制研究进展 北京医学 1992;14:171-173
    许绍芬 神经生物学(第二版). 上海医科大学出版社.1999
    徐科. 神经生物学纲要. 科学出版社,第一版,2000
    徐俊 脑缺血时一氧化氮在谷氨酸兴奋毒性中的作用 国外医学:脑血管疾病分册.1998:6(5):259-263
    叶惟泠 邻苯二甲醛衍生化高效液相色谱法分析脑氨基酸 生理学报 1988;40:308-313
    张雄 黄怀钧 等 粉防己碱对鼠脑缺血海马神经细胞的保护作用 同济医科大学学报2001:30:53-55
    钟慈声,孙安阳. 一氧化氮的生物医学. 上海医科大学出版社,第一版,1997
    周玉祥 刘扬 钙调蛋白的自旋共振研究:拮抗剂和它的相互作用 生物化学杂志.1993;9(6):669-674
    朱洪飞,吴家幂. 缺血性脑血管病治疗进展.中国临床药理学与治疗学,2002:7:286-288
    祝晓光 刘天培 粉防己碱对大鼠急性全脑缺血再灌注损伤的影响 中国病理生理杂志 1999;15:545-547
    邹冈. 基础神经药理学. 科学出版杜,第二版,1999
    Al-Mehdi AB, Song C, Tozawa K, Fisher AB. Ca2+- and phosphatidylinositol 3-kinase-dependent nitric oxide generation in lung endothelial cells in situ with ischemia. J Biol Chem. 2000; 275(51): 39807-39810
    Andersen P, Bliss T, Skrede K. Unit analysis of hippocampal population spikes. Exp. Brain Res. 1971; 13:208-221
    Anderson CM, Bridges RJ, Chamberlin AR, Shimamoto K, Yasuda-Kamatani Y, Swanson RA.
    
    
    Differing effects of substrate and non-substrate transport inhibitors on glutamate uptake reversal. J Neurochem 2001,79:1207-1216
    Aarts M, Liu Y, Liu L, Besshoh S et al. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002;298(5594):846-850
    Balestrino M, Somjen GG. Chlorpromazine protects brain tissue in hypoxia by delaying spreading depression-mediated calcium influx. Brain Res. 1986;385:219-226
    Beresewicz A. Anti-ischemic and membrane stabilizing activity of calmodulin inhibitors. Basic Res Cardiol. 1989;84:631-645
    Bolanos JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta, 1999,1411(2-3):415-436
    Calabresi, P., Marfia, G. A., Amoroso, S., Pisani, A., Bernardi, G., Hum, P. D. Pharmacological Inhibition of the Na+/Ca2+ Exchanger Enhances Depolarizations Induced by Oxygen/Glucose Deprivation but Not Responses to Excitatory Amino Acids in Rat Striatal Neurons? Editorial Comment. Stroke 1999,30:1687-1694
    Chien KR, Abrams J, Pfau RG, Farber JL. Prevention by chlorpromazine of ischemic liver cell death. Am J Pathol. 1977;88:539-558
    Chien KR, Pfau RG, Farber JL. Ischemic myocardial cell injury. Am J Pathol. 1979;97:505-530
    Chou YC, Lin SB, Tsai LH, Tsai HI, Lin CM. Cholesterol deficiency increases the vulnerability of hippocampal glia in primary culture to glutamate-induced excitotoxicity. Neurochem Int. 2003; 43(3):197-209
    Cooper MS, Cornell-Bell AH, Chernjavsky A, Dani JW, Smith SJ. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cell. 1990;61(1):135-145
    Cui Y, Zhang L, Utsunomiya K, Yanase H, Mitani A, Kataoka K. Ischemia-induced glutamate release in the dentate gyrus. A microdialysis study in the gerbil. Neurosci Lett. 1999;271(3):191-194
    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1-105
    Dawson VL, Kizushi VM, Huang LP et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J. Neurosci. 1996;16:2479-2487
    
    
    Dzhala, V., Khalilov, I., Ben-Ari, Y., Khazipov, R. Neuronal mechanisms of the anoxia-induced network oscillations in the rat hippocampus in vitro. J Physiol Lond 2001:536:521-531
    Dubinsky JM, Rothman SM. Intracellular calcium concentrations during "chemical hypoxia" and excitotoxic neuronal injury. J. Neurosci. 1991;11:2545-2551
    Ehlers MD, Zhang S, Bernhadt JP, Huganir RL. Inactivation of NMDA receptors by direct interaction of calmodulin with the NRlsubunit. Cell 1996;84:745-755
    Ehrenberg B. Membrane potentials can be determined in individual cells frm the nernstian distribution of cationic dyes. Biophys J, 1994;53:785-793
    Eimerl S, Schramm M. The quantity of calcium that appears to induce neuronal death. J Neurochem.. 1994:62:1223-1226
    Ellison G. The N-methyl-D-aspartate antagonists phencyclidine, ketamine and dizocilipine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 1995:20:250-267
    Fairchild MD, Parsons JE, Wasterlain CG, Rinaldi PC, Wallis RA. A hypoxic injury potential in the hippocampal slice. Brain Res. 1988:453(1-2):357-361
    Fujiwara N, Higashi H, Shimoji K, Yoshimura M. Effects of hypoxia on rat hippocampal neurones in vitro. J Physiol. 1987;384:131-151
    Furlan A, Higashida R, Wechsler L, Gent M et al. Intra-arterial prourokinase for acute ischemic stroke. The PROACT Ⅱ study: a randomized controlled trial. Prolyse in Acute Cerebral Thromboembolism. JAMA., 1999;282(21):2003-2011
    Gaffin, Stephen L. simplified calcium transport and storage pathways. Journal of Thermal Biology, 1999,24:251-264
    Goldberg MP, Choi DW. Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury. J Neurosci, 1993,13(8):3510-3524
    Goldberg MP, Monyer H, Weiss JH, Choi DW. Adenosine reduces cortical neuronal injury induced by oxygen or glucose deprivation in vitro. Neurosci Lett., 1988;89:323-327
    Gonzalez-Barrios JA, Escalante B, Valdes J, Leon-Chavez BA, Martinez-Fong D. Nitric oxide and nitric oxide synthases in the fetal cerebral cortex of rats following transient uteroplacental
    
    ischemia. Brain Res, 2002,945(1):114-132
    Green HA, Pena A, Price CJ, Warburton EA, Pickard JD, Carpenter TA, Gillard JH. Increased anisotropy in acute stroke: a possible explanation. Stroke. 2002;33(6):1517-1521
    Gross D, Loew LW. Fluorescence indicators of membrane potentials: microspectro-fluorometry and imaging. Meth Cell Biol, 1989;30:193-198
    Gwag BJ, Lobner D, Koh JH, Wie MB, Choi DW. Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience 1995;68:615-619
    Harkany et al. Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev-Neurosci. 2000,11:329-82
    Hashimoto N, Matsumoto T, Mabe H, Hashitani T, Nishino H. Dopamine has inhibitory and accelerating effects on ischemia-induced neuronal cell damage in the rat striatum. Brain Res Bull. 1994;33(3):281-288
    Iadecola C, Zhang F, Xu S, Casey K, Ross ME. Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab., 1995;15:378-384
    Jiang MH, Kaku T, Hada J, Hayashi Y. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia. Brain Res, 2002,946(1):139-147
    Kawahara et al. Molecular mechanism of neurodegeneration induced by Alzheimer's β-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Research Bulletin, 2000,53:389-397
    Kimura C, 0ike M, Koyama T, Ito Y. Impairment of endothelial nitric oxide production by acute glucose overload. Am J Physiol Endocrinol Metab. 2001;280(1):171-178
    Kojima H, Nakatsubo N et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem. 1998;70(13):2446-2453
    Kojima H, Hirata M, Kudo Y, Kikuchi K, Nagano T. Visualization of oxygen-concentration-dependent production of nitric oxide in rat hippocampal slices during aglycemia. J Neurochem. 2001:76(5):1404-1410
    Kone BC. Protein-protein interactions controlling nitric oxide synthases. Acta Physiol Scand. 2000;168(1):27-31
    Koretz BK, Von B, Ahern N, Wang HS et al. Pre- and post-synaptic modulators of excitatory neurotransmission: comparative effects on hypoxia/hypoglycemia in
    
    cortical cultures. Brain Res. 1994;643:334-337
    Koroshetz WJ, Moskowitz MA. Emerging treatment for storke in humans. Trends in Pharmacal Sci., 1996;17:205-234
    Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705-718
    Kuang P, Xiang J. Effect of radix salviae miltiorrhizae on EAA and IAA during cerebral ischemia in gerbils: a microdialysis study. J Tradit Chin Med. 1994;14(1):45-50
    Kuroda S, Nakai A, Kristian T, Siesjo BK. The calmodulin antagonist trifiuoperazine in transient focal brain ischemia in rats. Anti-ischemic effect and therapeutic window. Stroke. 1997;28(12):2539-2544
    Lipton P. Ischemic Cell Death in Brain Neurons. Physiol Rev 1999;79(4):1431-1568
    Lipton SA, Choi YB, Pan ZH, et al. A redox-based mechanism for neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 1993,364;626-632
    Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke. 1994;25(7):1481-1488
    Lobner D, Lipton P. Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippocampal slice during in vitro ischemia: relationship to electrophysiological cell damage. J. Neurosci. 1993,13:4861-4871
    Martin RL, Lloyd HGE, Cowan AI. The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci. 1994;17:251-257
    Masuoka A et al. L-Arginine and calmodulin regulation of the heme iron reactivity in neuronal nitric oxide synthase. J. Biol. Chem. 1994;269:20335-20339
    Mcauley MA. Rodent models of focal ischemia. Cerebrovasc Brain Metab Rev.,1995;7:153-180
    Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130:1007-1015
    Michaels RL, Rothman SM. Glutamate neurotoxicity in vitro: agonist pharmacology and intracellular calcium concentrations. J Neurosci. 1990;10:283-292
    Morimoto T, Globus MY, Busto R, Martinez E, Ginsberg MD. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 1996;16:92-99
    
    
    Morley P, Hogan JH, Hakim AM. Calcium-mediated mechanisms of ischemic injury and protection. Brain Pathol.. 1994;4:3747
    Nakamichi N, 0hno H, Kuramoto N, Yoneda Y. Dual mechanisms of Ca(2+) increases elicited by N-methyl-D-aspartate in immature and mature cultured cortical neurons. J Neurosci Res. 2002:67(2):275-283
    Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001:69(4):369-381
    Obrenovich T, Zilkha E, Urenjak J. Effects of pharmacologic inhibition of glutamate-uptake on ischemia-induced glutamate efflux and anoxic depolarization. Naunyn Schmiedebergs Arch Pharmacol. 1998;357:225-231
    Obrenovitch TP, Urenjak J, Zilkha E, Jay TM. Excitotoxicity in neurological disorders--the glutamate paradox. Int J Dev Neurosci. 2000:18(2-3):281-287
    Ogata T, Nakamura Y, Tsuju K, Shibata T, Kataoka K. A possible mechanism for the hypoxia-hypoglycemia-induced release of excitatory amino acids from cultured hippocampal astrocytes. Neurochem Res. 1995;20:737-743
    Olesen SP, Moller A, Mordvintcev PI, Busse R, Mulsch A. Regional measurements of NO formed in vivo during brain ischemia. Acta Neurol Scand 1997,95(4):219-224
    Otani H, Engelman RM, Rousou JA, Breyer RH, Clement R, Prasad R, Klar J, Das DK. Improvement of myocardial function by trifluoperazine, a calmodulin antagonist, after acute coronary artery occlusion and coronary revascularization. J Thorac Cardiovasc Surg. 1992;97:267-274
    Paddock SW, Langeland JA, DeVries PJ, Carroll SB. Three-color immunofluorescence imaging of Drosophila embryos by laser scanning confocal microscopy. Biotechniques. 1993:14(1):42-48
    Panda K, Ghosh S, Stuehr DJ. Calmodulin activates intersubunit electron transfer in the neuronal nitric-oxide synthase dimer. J Biol Chem, 2001:276(26):23349-23356
    Patel MN, Yiom GK, Isom GE. Blockade of N-methyl-D-aspartate receptors prevents cyanide-induced neuronal injury in primary hippocampal cultures. Toxicol. Appl. Pharmacol. 1992;115:124-129
    Phillis JW, Smith-Barbour M, Perkins LM, O'Regan MH. Characterization of glutamate, aspartate,
    
    and GABA release from ischemic rat cerebral cortex. Brain Res Bull. 1994;34:457-466
    Phillis JW, O'Regan MH. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int. 2003;43(4-5):461-467
    Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat. Stroke. 1996:27:327-332
    Pisani A, Calabresi P, Tozzi A, D'Angelo V, Bemardi G. L-type Ca~(2+) channel blockers attenuate electrical changes and Ca~(2+) rise induced by oxygen/glucose deprivation in cortical neurons. Stroke, 1998,29(1):196-202
    Pohorecki R, Becker GL, Reilly PJ, Landers DF. Ischemic brain injury in vitro: protective effects of NMDA receptor antagonists and calmidazolium. Brain Res 1990:528:133-137
    Radek RJ, Giardina WJ. The neuroprotective effects of dextromethorphan on guinea pig-derived hippocampal slices during hypoxia. Neurosci Lett, 1992 May 25,139(2):191-193
    Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia. Stroke, 1997,28(6):1283-1288
    Saimi Y, Kung C. Calmodulin as an ion channel subunit. Annu Rev Physiol. 2002;64:289-311
    Sargent CA, Sleph PG, Dzwonczyk S, Smith MA, Grover GJ. Effect of calmodulin and protein kinase C inhibitors on globally ischemic rat hearts. J Cardiovasc Pharmacol. 1992;20:251-260
    Savidge TC, Jepson MA. A novel techniques of membranous (M) cell identification using confocal microscopy. J Cell Biol, 1990;111:462-469
    Schmid A, Scholz W, Lang HJ, Popp R. Na+/H+ exchange in porcine cerebral capillary endothelial cells is inhibited by a benzoylguanidine derivative. Biochem Biophys Res Commun. 1992;184(1):112-117
    Schwartz-Bloom RD, Sail R. gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem. 2001;77(2):353-371
    Schuppe H, Cuttle H, Chad JE, Newland PL. 4, 5-diaminofluoroscein imaging of nitric oxide synthesis in crayfish terminal ganglia. J Neurobiol. 2002:53(3):361-369
    Siesjo BK. Historical overview: calcium, ischemia and death of brain cells. Ann N Y Acad Sci. 1988,522:638-661
    Silva et al. Intracelluar release mechanisms: multiple pathways having multiple functions within the same cell type? BBA/Molecular Cell Research, 2000,1498:122-133
    
    
    Silver IA, Erecinska M. Intracellular and extracellular changes of (Ca2+) in hypoxia and ischemia in rat brain in vivo. J Gen Physiol. 1990,95:837-866
    Siman R, Bozyczko CD, Savage MJ, Roberts LJ. The calcium-activated protease calpain I and ischemia-induced neurodegeneration, Adv Neurol.. 1996:71:167-174
    Sitges M, Talamo BR. Sphingosine, W-7, and trifluoperazine inhibit the elevation in cytosolic calcium induced by high K+ depolarization in synaptosomes. J Neurochem 1993;61(2):443-450
    Stelmashuk EV, Andreeva NA, Manukhova L, Zorov DB, Isaev NK Bifonazole modulates death of cultured cerebellar granular cells induced by glutamate and oxygen-glucose deprivation. Bull Exp Biol Med 2001;132(5):1076-1078
    Sun X, Shin C, Windebank AJ. Calmodulin in ischemic neurotoxicity of rat hippocampus in vitro. Neuroreport 1997;8:415-418
    Takagi N, Logan R, Teves L, Wallace MC, Gurd JW. Altered interaction between PSD-95 and the NMDA receptor following transient global ischemia. J Neurochem. 2000;74(1):169-178
    Takahashi A, Camacho P, Lechleiter JD, Herman B. Measurement of intracellular calcium. Physiol Rev. 1999;79(4):1089-1125
    Takizawa S, Matsushima K, Fujita H, Nanri K, Ogawa S, Shinohara Y. A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J. Cereb. Blood Flow Metab. 1995;15:611-618
    Tauskela JS, Comas T, Hewitt K, Monette R, Paris J, Hogan M, Morley P. Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures. Neuroscience. 2001;107(4):571-584
    Tochio H, Mok YK, Zhang Q, Kan HM, Bredt DS, Zhang M. Formation of nNOS/PSD-95 PDZ dimer requires a preformed beta-finger structure from the nNOS PDZ domain. J Mol Biol. 2000;303(3):359-70
    Toner CC, Connelly K, Whelpton R, Bains S, Michael-Titus AT, McLaughlin DP, Stamford JA. Effects of sevoflurane on dopamine, glutamate and aspartate release in an in vitro model of cerebral ischaemia. Br J Anaesth. 2001;86(4):550-554
    Townsend KM, Marsden SJ. Nuclear area measurement on viable cells, using confocal microscopy. Ins J Radiat Biol. 1992:61(4):549-551
    
    
    Ukeda H, Shimamura T, Tsubouchi M, Harada Y, Nakai Y, Sawamura M. Spectrophotometric assay of superoxide anion formed in Maillard reaction based on highly water-soluble tetrazolium salt. Anal Sci. 2002;18(10):1151-1154
    Wahl F, Obrenovitch TP, Hardy AM, Plotkine M, Boulu R, Symon L. Extracellular glutamate during focal cerebral ischemia in rats: Time course and calcium dependency. J Neurochem 1994;63:1003-1011
    Wei H, Perry DC. Dantrolene is cytoprotective in two models of neuronal cell death. J. Neurochem. 1996:67:2390-2398
    Weiss B, Prozialeck WC, Wallace TL. Interaction of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem Pharmacol. 1982;31(13):2217-2226
    White BC, Grossman LI, Krause GS. Brain injury by global ischemia and reperfusion: a theoretical perspective on membrane damage and repair. Neurology, 1993;43:1656-1665
    Villringer A, Haberl RL, Dirnagl U, Anneser F, Verst M, Einhaupl KM. Confocal laser microscopy to study microcirculation on the rat brain surface in vivo. Brain Res. 1989:504(1):159-160
    XU ZC, PULSINELLI WA. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: an in vivo intracellular recording study. Neurosci. Lett. 1994;171:187-191
    Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab, 1994,14(6):924-929
    Yu MJ, McCowan JR, Smalstig EB, Bennett DR, Roush ME, Clemens JA. Phenothiazine derivative reduced rat brain damage after global or focal ischemia. Stroke. 1992;23:1287-1291
    Zhang Y, Lipton P. Cytosolic Ca2+ changes during in vitro ischemia in rat hippocampal slices: major roles for glutamate and Na+-dependent Ca2+ release from mitochondria. J. Neurosci. 1999;19:3307-3315
    Zhang ZG, Chopp M, Bailey F, Malinski T. Nitric oxide changes in rat brain after transient middle cerebral artery occlusion. J Neurol Sci, 1995,128(1):22-27
    Zhu DY, Liu SH, Sun HS, Lu YM. Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci., 2003;23:223-229
    
    
    Zivin JA, Kochhar A, Saitoh T. Phenothiazines reduce ischemic damage to the central nervous system. Brain Res. 1989;482:189-193

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700