用户名: 密码: 验证码:
用于电致变发射率器件工作电极的聚苯胺薄膜修饰电极的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对反射式电致变发射率器件对其面电极和背电极的要求,以PAn作为实现红外发射率调节的功能材料,分别采用Au/PET、Au/PES电极为基底,通过恒电流方法制备了可用于电致变发射率器件面电极和背电极的PAn/Au/PET、PAn/Au/PES。研究了制备过程中电流密度、聚合时间、单体浓度、支持电解质浓度等制备工艺条件对面电极和背电极电化学制备及性能的影响,确定了可用于制备面电极和背电极的电化学制备条件,得到了各制备工艺参数对PAn/Au/PET循环伏安特性及PAn/Au/PES电致变发射率性能的影响规律。以面电极和背电极组成了原理性电致变发射率目标组件,对其电致变色、电致变发射率、响应时间等性能进行了考察。
     对面电极和背电极电化学制备的研究结果表明,制备循环可逆性良好的PAn/Au/PET的较佳聚合溶液组成为1:0.730min。
     对PAn/Au/PES电致变发射率性能的研究表明,PAn/Au/PES初始ε曲线的位置将随电流密度的增加而降低,随聚合时间的延长或单体浓度的增加移向高发射率方向,约在C_(An):C_(H_2SO_4)为1:2时有最小值。外加负电压下PAn/Au/PESε曲线有明显下降,相比初始状态的ε曲线△ε在0.2以上,外加正电压对ε曲线的影响不大;PAn/Au/PES的△ε因电流密度改变引起的变化不大,随聚合时间延长或单体浓度的增加有所提高,但随支持电解质浓度的增加将减小。
     以面电极和背电极组成的电致变发射率目标组件在工作状态下可弯折,具有一定的颜色记忆效应,红外发射率变化从0.4-0.9,最大红外发射率变化范围约为0.27,响应时间为秒级,循环使用寿命约50次。
Aiming at the requirements of the reflective mode IR-electrochromic device and considering the dynamic changes in IR region of polyaniline, this work focuses on preparing the polyaniline-modified electrodes which can be used as the top electrode and the bottom electrode of the IR-electrochromic device. Au/PET was used as the substrate of the bottom electrode, and Au/PES was used as the substrate of the top electrode. The top electrode (PAn/Au/PET) and the bottom electrode (PAn/Au/PES) were both obtained in the sulfuric solution using galvanostatic method. The interrelation between the electrochemical preparation of polyaniline-modified electrodes and conditions in the electropolymerization process, such as current density, polymerization time, monomer concentration and sulfuric acid concentration, had been analyzed. The electrochemical conditions which can be used toprepare PAn/Au/PET and PAn/Au/PES were confirmed. The prototypal IR-electrochromic devices were fabricated with the top electrodes and the bottom electrodes we prepared. It's properties, such as electrochromic , IR-electrochromic, switching time and cyclability, were investigated.
     It was showed that, to prepare the bottom electrodes with the good cycle reversibility, the ideal electrochemical condition was 1:0.730min.
     The emissivity property of the top electrodes was deeply effected by polymeric conditions. The s of the top electrodes without applied potential increased when current density decreased or polymeric time extended, and had the lowest value when C_(An):C_(H_2SO_4) was1:2.The s of the top electrodes with applied minus potential was lower thanεwithout applied potential. The effect of positive potential to the e of the top electrode was indistinctive. Monomer concentration increasing or polymeric time extending would lead to the increase ofΔε,but the increase of the sulfuric acid concentration would cause the decrease of As.
     The prototypal IR-electrochromic devices exhibit an extreme durability, allowing them to be bent and twisted while in active operation without detriment, an optical memory, emittance value from 0.4 to 0.9, the maximum emittance vibration nearly 0.27, switching time at second level and cyclabilities of at least 50 cycles.
引文
[1] Prakash R. Somani, et al.Electrochromic materials and devices: present and future.Materials Chemistry and Physics, 2002, 77:117.
    [2] 冯博学,陈冲等,电致变色材料及器件的研究进展,功能材料,2004,2(35):145-150
    [3] Gentex Corporation. Web site: http://www.gentex.com.
    [4] Lawrence Berckley National laboratory. Web site:http://windows.lbl.gov/comm_perf/electroSys.htm.
    [5] F. Carpi, D. De Rossi.Colours from electroactive polymers: Electrochromic,electroluminescent and laser devices based on organic materials. Optics & Laser Technology 2006, 38: 29.
    [6] P. Chandrasekhar, et al. Conducting polymer(CP) infrared electrochromics in spacecraft thermal control and military applications. Synthetic Metals, 2003 (135-136):23.
    [7] 张吉东.有机近红外电致变色器件:[博士论文].长春:中国科学院长春应用化学研究所,2004.
    [8] R.B.Goldner, et al. Some lessons learned from research on a thin film electrochromic window. Solid State Ionics,1994(70/71): 613.
    [9] Stuart F. Cogan, et al. Variable Transmittance Coatings Using Electrochromic Lithium Chromate and Amorphous WO_3 Thin Films. Journal of The Electrochemical Society,1997,144(3): 956.
    [10] J.Gordon H. Mathew, et al. Large area electrochromics for architectural applications.Journal of Non-Crystalline Solids, 1997(218): 342.
    [11] Jeffrey S. Hale, John A. Woollam. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999(339): 174.
    [12] A.Azen,G.Gustavsson, et al. Electrochromic devices on polyester foil. Solid StateIonics. 2003, 165(1-4):1.
    [13] Dynam IR Corporation. Web site: http://www.dynamircorp.com.
    [14] C. G. Granqvist. Electrochromic devices. Journal of the European Ceramic Society 2005,25:2907.
    [15] E. B. Franke, et al.All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Applied physics letters, 2000,77(7): 930.
    [16] Prasanna Chandrasekhar, et al. Large, Switchable Electrochromism in the Visible Through Far-Infrared in Conducting Polymer Devices. Adv. Funct. Mater. 2002, 12(2):95.
    [17] 江燕.新盛世计划的第血颗卫星ST-5——“纳卫星星座计划开拓者”.国际太空.2003.4:19.
    [18] 郭宁.可变发射率热控器件的研究进展.真空与低温.2003,9(4):187
    [19] A.Bessiere, et al. Optical properties of an all-plastic WO_3·H_2O-based infrared modulator. Journal of Applied Physics, 2004(95): 7701.
    [20] N.Kislov, Electrochromic Variable Emittance Devices on Silicon Wafer for Spacecraft Thermal Control, Space Technology and Applications International Forum-STAIF 2004.
    [21] P.Topart, P.Hourquebie. Infrared switching electroemissive devices based on highly conducting polymers. Thin Solid Films, 1999, 352:243.
    [22] Prasanna Chandrasekhar, et al. Variable emittance materials based on conducting polymers for spacecraft thermal control. In: Space Technology Applications International Forum 2003. AIP Conference Proceedings. Albuquerque, NM: American institude of physics, 2003, 157.
    [23] 周琴.聚苯胺类导电聚合物的电化学现场ESR研究:[博士论文].武汉:武汉大学,2004.
    [24] 李永舫.导电聚合物的电化学制备和电化学性质研究.电化学,2004,10(4):369.
    [25] Roncali, J. Synthetic principles for bandgap control in linear π-conjugated systems.Chemical Reviews, 1997, 97:173.
    [26] Irina Schwendeman. Optical and transport properties of conjugated polymers and their application to electrochromic devices:[Dissertation]. Florida: The Graduate school of the university of of Florida, 2002.
    [27] L.Groenendaal, et al.Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past,Present, and Future. Advanced Materials, 2000, 12(7): 481.
    [28] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,1995.
    [29] 许一婷等.聚苯胺衍生物膜修饰电极的电化学和催化性质.物理化学学报,2003,19(6):564.
    [30] 杨周生.聚苯胺修饰Pt微电极pH传感器的研究.安徽师范大学学报,2002,25(1):35.
    [31] 钟平等.PAn/Pt修饰电极的电色效应及其在滴定分析中的应用.理化检验-化学分册,2002,38(12):595.
    [32] 肖红等.聚苯胺膜修饰电极测定废水中的硝酸根离子.赣南师范学院学报,2003(6):35.
    [33] 黄可龙,陈振华等.电化学活性高聚物材料聚苯胺及其进展.材料导报,1999,13(5):39.
    [34] 侯丽波等.聚苯胺薄膜电极的制备及性能研究.北京化工大学学报,2004,31(4):65.
    [35] 王辉等.电化学合成聚苯胺薄膜光电性能的研究.西安交通大学学报,1999,33(8):104.
    [36] Jesús López-Palacios, et al. Study of polyaniline films degradation by thin-layer bidimensional spectroelectrochemistry. Electrochimica Acta, 2006, 52: 234.
    [37] D.D. Borole, et al. Electrochemical synthesis and characterization of conducting copolymer: Poly(o-aniline-co-o-toluidine). Materials Letters, 2006, 60: 2447.
    [38] P. Chandrasekhar, US Patent 5 995 273, 1999.
    [39] 元西敏等.聚苯胺在离子液体中的电合成及其电催化性质.华东师范大学学报,2005(3):53.
    [40] 郭兴武等.本征导电聚合物薄膜在镁合金基体上的制备.见:中国材料研究学会.2002年材料科学与工程新进展(上册).北京:冶金工业出版社,2002,514.
    [41] 封玮等.π-共轭导电高分子材料的研究进展及存在问题.新型材料,1998,6:13.
    [42] 颜流水,等.聚苯胺膜的电化学合成机理及掺杂行为.功能材料,2000,31(5):548.
    [43] 蔡林涛等.聚苯胺的成核及生长机理.化学学报,1995,53:1150.
    [44] 李根喜等.聚苯胺修饰电极制备过程中几个问题的探讨.分析实验室,1994,13(3):16.
    [45] 方惠群,李根喜等.低电流密度下恒电流法制备的聚苯胺修饰电极.高等学校化学学报,1994,15(3):348.
    [46] 帅敏.恒电流法聚合苯胺及其电化学研究.九江师专学报(自然科学版),1995,14(5):25.
    [47] 帅敏等.苯胺在高氯酸溶液中恒电流法电化学聚合研究.分析科学学报,1996.12(1):40.
    [48] 黄怡等.聚苯胺自支撑导电膜的电化学合成及性能.功能高分子学报,1998,11(1):44.
    [49] 傅谊等.恒电位条件下制备聚苯胺PAn及其电化学行为.化学研究与应用,1998,10(2):133.
    [50] 苏光耀等.聚苯胺(PAn)的电化学合成及应用.湘潭大学自然科学学报,1992,14(4):61.
    [51] 龙晋明等.不同酸溶液中电化学合成聚苯胺膜的研究.表面技术,2005,34(5):30.
    [52] 牛林等.电解质溶液组成对聚苯胺电化学合成的影响.山东大学学报,2002,37(1):65.
    [53] 孙东豪,穆绍林.苯胺的电聚合研究.苏州丝绸工业学院学报,1999,19(3):21.
    [54] 曹大均,吴霞琴等.苯胺电聚合时阴离子掺杂效应研究.化学传感器,1994,14(4):257.
    [55] 魏守强,陆嘉星等.苯胺电化学聚合机理的研究.合成化学,1994,2(3):258.
    [56] 穆绍林等.苯胺电化学聚合的速率测定.扬州大学学报(自然科学版),2000,3(3):9.
    [57] 杨周生等.超微盘电极上苯胺的循环扫描伏安法电化学聚合.分析化学,1996,24(5):559.
    [58] 焦树强等.脉冲电流法电解合成聚苯胺.高等学校化学学报,2003,24(6):1118.
    [59] 彭霞辉,刘静宇.脉冲电流聚合苯胺.湖南文理学院学报(自然科学版),2004,16(4):25.
    [60] Sandra R. Moraes, et al.Characteristics of polyaniline synthesized in phosphate buffer solution. European Polymer Journal 2004, 40: 2033.
    [61] 王辉等.电化学合成聚苯胺薄膜光电性能的研究.西安交通大学学报,1999,33(8):104.
    [62] S. Biallozor, et al. Conducting polymers electrodeposited on active metals. Synthetic Metals, 2005, 155:443.
    [63] 王少龙.电化学沉积聚苯胺膜及其耐蚀性研究:[硕士论文].昆明:昆明理工大学,2003.
    [64] Carl Salvaggio, Craig J. Miller. Methodologies and protocols for the collection of midwave and longwave infrared emissivity spectra using a portable field spectrometer.Image Exploitation and Target Recognition, Algorithms for Multispectral,Hyperspectral, and Ultraspectral Imagery VII, Volume 4381,2001.
    [65] E.T.Kang, et al. Polyaniline: A polymer with many interesting intrinsic redox states.Prog. Polym.Sci.,1998,23:211.
    [66] 景遐斌,王利祥,王献红等.导电聚苯胺.高分子学报,2005,5:655.
    [67] 牛振江,倪亚红等.Zn~(2+)对电化学合成聚苯胺膜的影响.浙江师范大学学报(自然科学版),2005,28(1):47.
    [68] 魏守强,张五昌.电化学聚合过程中聚苯胺降解的研究.沈阳化工,1994,2:10.
    [69] V. N. Prigodin, A. J. Epstein. Nature of insulator-metal transition and novel mechanism of charge transport in the metallic state of highly doped electronic polymers. Synthetic Metals, 2002, 125: 43.
    [70] 苑同锁.导电聚合物的合成及其红外反射性能在节能材料中的应用:[博士论文].成都:四川大学,2002.
    [71] S. Stafstr(?)m,et al.Polaron Lattice in Highly Conducting Polyaniline:Theoretical and Optical Studies. Physical Review Letters. 1987, 59(13): 1464.
    [72] Vandna Luthra, et al. Mechanism of dc conduction in polyaniline doped with sulfuric acid.Current Applied Physics, 2003, 3: 219.
    [73] W.Lee, et al.Charge Transport Properties of Fully-Sulfonated Polyaniline. Synthetic Metals, 1997, 84: 807.
    [74] 浦鸿汀,黄平.电致变色器件用聚合物电解质材料的研究进展.功能材料与器件学报,2005,11(2):127.
    [75] 邓妹皓,易丹青等.硫酸掺杂导电聚苯胺正极材料的电化学制备及性能.电池,2007,37(3):208.
    [76] 刘瑛,魏守强.霸书红.表面活性剂SDS对聚苯胺电化学合成及其降解的影响.沈阳工业学院学报,2000,19(3):27.
    [77] 亢晓峰等.苯胺电聚合过程动力学的现场电化学SPR研究.北京大学学报(自然科学版),2001,37(2):157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700