用户名: 密码: 验证码:
大功率半导体激光器列阵的热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断进步,光电子技术已经与人们生产和生活息息相关。其中,半导体激光器技术作为光电子技术的重要组成部分也起着非常重要的作用。现在,半导体激光器技术已经成为二十世纪发展快、成果多、学科渗透广的综合性高新技术,并广泛应用于光纤通信、工业材料处理、激光医疗、国防建设等领域。本论文从大功率半导体激光器的热特性出发,研究了800nm大功率半导体激光器列阵的结构设计、工艺制作、热特性和封装引入应变特性。在博士论文期间,取得的主要成绩和创新性成果是:
     1.系统介绍了半导体激光器的基本原理和基本组成,包括光增益、量子阱结构、侧向限制、光波导和谐振腔的基本理论。
     2.设计了800nm半导体激光器列阵结构。为了减小阈值电流,降低热阻和串联电阻,采用GaAs_(0.86)P_(0.14)应变单量子阱作为有源区,Al_(0.35)Ga_(0.65)As作为波导层,Al_(0.7)Ga_(0.3)As作为包层。采用大光腔波导结构,减少进入到包层的光强度,降低光损耗和热阻。提高包层掺杂能级,减小热阻和串联电阻。为了提高输出功率,列阵的填充因子为50%,腔长为1mm。为了抑制假模的出现,通过刻蚀沟道深隔离,并在沟槽上沉积SiO_2介质绝缘层,增加沟槽对假模的吸收。
     3.优化了刻蚀技术、P、N面欧姆接触,研制出800nm大功率半导体激光器列阵,当占空比为20%的脉冲电流为106.5A时,峰值功率达到100.9W。
     4.阈值电流方法测量有源区温度的理论基础是阈值电流随温度呈现指数变化,斜率效率随温度呈现线性变化。实际上,斜率效率随温度也呈现指数变化。我们对阈值电流方法进行修正,提出了测量有源区温度的功率-阈值电流方法,其最大偏差为4.2K,而用阈值电流法计算的偏差值最小也在9K以上。
     5.将双边冷却技术引入到CS封装中,优化后的CS封装形式具有更好的散热性能,热阻更小。通过实验证实,改进后的CS封装激光器在占空比为20%时,热阻为0.1588K/W,与传统的CS封装激光器相比热阻减小了0.03K/W。
     6.对激光器封装过程产生的应变进行研究,在理论上和实验上证实电致发光谱可以定性和定量测量封装引入应变和焊料层的缺陷。测量结果证实了激光器芯片焊接中由于芯片和热沉的热膨胀系数不同,封装引入应变不可避免的被引入到有源区中。此外,通过实验证实增加铟焊接层的界面厚度,可以减小封装引入应变。
With the advancement of science and technology, optoelectronic technology has been closely linked with the people’s production and livings. Semiconductor laser technology, which is an integral part of optoelectronic technology, also plays an important role. Nowadays, semiconductor laser technology has become the comprehensive, high and new technology with the more rapid development, the more results, and the wider discipline permeability in the twentieth century. It has been widely used in optical fiber communication, industrial materials processing, laser medicine, military and many other fields. In this paper, the structure design, the manufacture, the thermal characteristics and the packaging-induced strain of 800nm high power diode laser arrays were studied, taking account for the thermal characteristics, and some innovative achievements are listed as below:
     The first one:the paper showed systematically the basic principles and the fundamental aspects of diode laser operation, including optical gain, quantum well structures, lateral confinement, optical waveguides and resonators.
     The second one: we designed an 800nm semiconductor laser array structure. In order to reduce the threshold current, the thermal resistance and the series resistance, we used strained GaAs_(0.86)P_(0.14) single quantum well, Al_(0.35)Ga_(0.65)As material and Al_(0.7)Ga_(0.3)As material as the active region, the waveguide layer and the cladding layers, respectively. By manufacturing large optical cavity, the energy being transported in the cladding layers was very small, which leaded to small thermal and series resistances. The cladding layers could be highly doped to reduce the thermal and series resistances. To improve the output power of the diode laser arrays, the fill factor was 50% and the cavity length was 1mm. In order to suppress the appearance of so-called spurious modes, we etched deep grooves and deposited SiO2 in the grooves. These could have a sufficiently high absorption.
     The third one: 800nm diode laser arrays were provided after optimizing on the etching technique and metallization The peak power can reach to 100.9W at 106.5A at the duty cycle of 20%.
     The fourth one: the theoretical principle was that the threshold current and slope efficiency could be expressed as an approximately empirical and linear function of temperature. However, the temperature variation of the slope efficiency was an empirical expression indeed. After the optimization of the threshold current method, a method for the temperature of the active region, which was called power-threshold current, was provided, and the deviation was decreased to 4K.
     The fifth one: Double-side cooling was induced in the CS packaging diode laser arrays. The optimized CS packaging diode laser arrays dissipated the waste heat more efficiently. The thermal resistance of the optimized diode laser arrays was 0.1588K/W and reduced 0.03K/W compared to the traditional CS packaging diode lasers.
     The last one: The strain caused by device packaging was studied in high power semiconductor laser arrays. In the theory and experiment, we demonstrated that the electroluminescence microscopy could show the qualitative information for the packaging-induced strain and defects on the solder layers. After soldering, Due to the different thermal expansion coefficients of laser bar and Cu heat sink, the packaging-induced strain was induced to the active region inevitably. Furthermore, in experiments, we showed that the maximum strain level could be reduced by increasing the solder interface thickness.
引文
[1] B.Mroziewicz, M. Buqajski, W. Nakwaski. Physics of Semiconductor Laser[M], Amsterdam: Noth-holland, 1991.
    [2] H.Kressel, J.K.Butler,Semiconductor Lasers and Heterojunction LED[M], New York: Academic Press 1977.
    [3] T.Fujimoto, High-Power InGaAs/AlGaAs Laser Diodes With Double Heterostructure[J], Proc of SPIE, 1999,3628:38-45.
    [4] L.J.Mawst and D.Botez, High-Power InGaAs(P)/InGa(Al)P/GaAs Semiconductor Diode Laser[J],Proc of SPIE, 1997,3001:7-12.
    [5] Jafprit Singh, Semiconductor Optoelectronics, Physics and Technology[M] .M.C.Graw-Hill Incomp,1995.
    [6] J.Jandeleit, N.Wiedmann, A.Ostlender, et.al, Fabrication and characterization of high power diode lasers[J],Proc of SPIE, 1999,3896:65-70.
    [7] Wegscheider.W, Pfeiffer. L, West.K, Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth[J], Appl. Phys. Lett., 1994, 65(20):2510-2512.
    [8] http://www.ece.rochester.edu/courses/ECE580/docs/Quantum_Dot_Lasers.pdf.
    [9] S.W.Koch,F.Jahnke, W.W.Chow, Physics of semiconductor microcativity lasers[J], Semicond. Sci. Technol.,1995,10(6): 739-751.
    [10] Zhang Yan,Ning Yongqiang, Wang Ye,et.al.,A linear array of 980 nm VCSEL and its high temperature operation characteristics[J], J. of Semicond, 2009,30(11):114008-1-114008-4.
    [11]晏长岭。垂直腔面发射激光器的研制及其特性分析[D]:[博士学位论文].长春:中科院长春光学精密机械与物理研究所,2000.
    [12]杜国同。半导体激光器件物理[M].长春:吉林大学出版社,2002年:240-245.
    [13]李成明。量子级联激光器材料生长及器件制作[D]:[博士学位论文].北京:中科院半导体所,2004.
    [14] Liu Guangyu, Ning Yongqiang, Li Te,et.al.,Central hole effect on whispering-Gallery-mode of the triangular lattice photonic crystal microcavity[J], Proc. Of SPIE, 7135:71353K-1-71353K-7.
    [15] M.P.Nesnidal, L.J.Mawst, A.Bhattacharya,et.al., Single-frequency, single-spatial-mode ROW-DFB diode laser arrays[J], IEEE PHOTONICS TECHNOLOGY LETTERS, 1996, 8(2):182-184.
    [16] Hanxuan Li, Frank Reinhardt, Irving Chyr, et.al., High-efficiency, high-power diode laserchips,bars,and stacks[J], Proc of SPIE, 2008,6876:68760G-1-68760G-6.
    [17] E.Deichsel, D.Schr?der, J.Meusel, et.al., High reliable qcw laser bars and stacks[J], Proc of SPIE, 2008,6876:68760K-1-68760K-8.
    [18] C.Fiebig, B.Eppich, W.Pittroff, et.al., Stable and compact mounting scheme for >1kW QCW diode laser stacks at 940nm[J], Proc of SPIE, 2008,6876:68760J-1-68760J-10.
    [19]史全林。高功率半导体激光器的军事应用及国内外状况[J].长春光学精密机械学院学报,1992,15(4):71-74.
    [20] Friedrich Bachmann.Present Status and Future Prospects of High Power Diode and Diode-Pumped Solid-State-Laser Technology and Applications in Germany[J]. Proceedings of the Laser Materials Processing Conference,2001,53:53-62.
    [21] LI H X,CHYR I,JlN X,et a1.>700 W continuous·wave output power from single laser diode bar [J].Electronics Letters,2007,43(1):27-28.
    [22] KANSKAR M,EARLES T,GOODNOUGH T J,et a1.73% CW power conversion efficiency at 50 W from 970 am diode laser bars[J].Electronics Le tters,2005,41(5):226-227.
    [23] KNIGGE A, ERBERT G,J~NSSON J, et a1. Passively cooled 940 nlTIlaser barswith 73% wall-plug efficiencyat 70W and 25℃[J].Electronics Le tters,2005,4l(5):246—247.
    [24] Hanxuan Li, Terry Towe, Irving Chyr,et al. Continuous Improvement of High-Efficiency, High-Power 800-980nm Diode Lasers at Spectra-Physics [J].Proc.of SPIE, 2009, 7198: 719805-1-719805-7.
    [25] David Schleuning, Rajiv Pathak, Calvin Luong,et al. High Brightness kW QCW Diode Laser Stacks with Ultra-low Pitches[J]. Proc.of SPIE,2009,7198:719802-1-719802-8.
    [26] Jihua Du, Hailong Zhou, David Schleuning, et al. 8xxnm kW Conduction Cooled QCW diode arrays with both electrically conductive and insulation submounts[J]. Proc.of SPIE,2008,6876:687605-1-687605-11.
    [27] R. Hülsewede, H. Schulzea, J. Sebastiana, et al. High Brilliance and High Efficiency: Optimized High Power Diode Laser Bars[J]. Proc.of SPIE,2008,6876: 68760F-1- 68760F-9.
    [28] Koechner W, Solid State Laser Engineering[M]. Berlin: Springer-Verlag, 1966.
    [29] DiehlR(ed.), High-Power Diode Lasers[M]. Berlin: Springer-Verlag,2000.
    [30] Carlsson NW (ed.), Monolithic Diode-Laser Arrays[M]. Berlin: Springer-Verlag, 1994.
    [31] Suhura T, Semiconductor Lasers Fundamentals[M]. New York: Marcel Dekker, Inc., 2004.
    [32] M. J. Adams, A. G. Steventon, W. J. Devlin, et al. Semiconductor Lasers for Long-Wavelength Optical-Fibre Communications Systems[M]. London: Institution of Electrical Engineers, 1987.
    [33] R. Michalzik, M. Grabherr, K. J. Ebeling, High-power VCSELs: modeling and experimental characterization[J], Proc of SPIE, 1998,3286: 206–218.
    [34] D.Z.Gabuzov, N.Ju.Antonishkis,S.N.Zhigulin,et.al., High-power buried InGaAsP/GaAs (λ=0.8μm) laser diodes[J], Appl. Phys. Lett, 1993,62(10):1062-1064.
    [35] D. Marcuse,Theory of Dielectric Optical Waveguides[M], Boston :Academic, 1991.
    [36] H. C. Casey, M. B. Panish, Heterostructure Lasers[M], Florida:Academic Press,1978.
    [37] C.J.Panchal, S.N.Mistry, K.M.Patel, et. al., Facet coating of diode laser for high power and high reliable operation[J], SPIE, 2003, 4829:18-19.
    [38] T. Ikegami, Reflectivity of mode at facet and oscillation mode in doubleheterostructure injection lasers[J], IEEE J. QE, 1972, 8, 470–476.
    [39] J. Buus, Analytical approximation for the reflectivity of DH lasers[J], IEEE J. QE, 1981, 17, 2256–2257.
    [40]拉里·A·科尔德伦,斯科特·W·科尔津.二极管激光器与集成光路[M].史寒星译.北京:北京邮电大学出版社,2006.
    [41]新国锋,陈国鹰,花吉珍等,941nm大功率应变单量子阱激光器的波长设计[J],物理学报,2004,53(5):1293-1298.
    [42] Sadao Adachi, GaAs,AlAs, and AlxGa1-xAs:material parameters for use in research and device applications[J], J.Appl.Phys.1985, 58(1):R1-R29.
    [43] Sadao Adachi, Material parameters of In1-xGaxAsyP1-y and related binaries[J], J. Appl. Phys. 1982, 53(12):8775-8792.
    [44]杜宝勋,半导体激光器原理[M].北京:兵器工业出版社,2004.
    [45] Matthew Peters, Victor Rossin, Bruno Acklin,High Efficiency, High Reliability Laser Diodes at JDS Uniphase[J], Proc of SPIE, 2005,5711: 142–151.
    [46] Botez, D., Mawst, L. J., Bhattacharya,et.al. 66% CW wallplug efficiency from Al-free 0.98μm-emitting diode lasers[J], Electron. Lett. 1996, 32(21):2012-2013.
    [47] Bour, D. P. and Rosen, A, Optimum cavity length for high conversion efficiency quantum well diode lasers[J], J. Appl. Phys., 1989, 66(7):2813-2818.
    [48] ManasevitHM, The use of metal-organics in the preparation of semiconductor materials I. Epitaxial gallium-V compounds[J]. Appl. Phys. Lett,1969, 1725:116.
    [49] ManasevitHM, The use of metal-organics in the preparation of semiconductor materials: Growth on insulation substrates[J]. J. of Crystal Growth, 1972, 306:13–14.
    [50]孙俊人,边拱,陆崇真,等。电子工业生产技术手册半导体与集成电路卷[M],北京:国防工业出版社,1992.
    [51] Grovenor CRM, Microelectronic Materials[M]. Bristol and Philadelphia: Institute of Physics, 1992
    [52] Thompson LF, Willson CG, Bowden MJ, Introduction to Microlithography,2nd Edition[M]. American Chemical Society,1994.
    [53] S.M.Sze,Kwok K.Ng,Physics of Semiconductor Devices[M]. JohnWiley & Sons,2007.
    [54] Roland Diehl, High-Power Diode Lasers[M]. Berlin: Springer-Verlag,2000.
    [55] W. C. Tsang, H. J. Rosen, P. Vettiger, et.al. Evidence for current density-induced heating of AlGaAs single-quantum well laser facets[J], Appl.Phys. Lett.1991,59:1005–1007.
    [56] A. Valster, A. T. Meney, J. R. Downes,et.al. Strain-overcompensated GaInP-AlGaInP quantum well laser structures for improved reliability at high-output powers[J], IEEE J. Sel.Topics Quantum Electron,1997,3:180–187.
    [57] L. W. Tu, E. F. Schubert, M. Hong, et.al: In-vacuum cleaving and coating of semiconductor laser facets using thin silicon and a dielectric[J], J. Appl. Phys,1996, 80:6448.
    [58] V. N. Bessolov, M. V. Lebedev, B. V. Tsarenko,et.al. Increase in the degree of catastrophic optical degradation of InGaAs/AlGaAs (977 nm) laser diodes after sulfidization in solutions based on isopropyl alcohol[J], Tech.Phys. Lett.,1995, 21:561–562.
    [59] A. J. Howard, C. I. H. Ashby, J. A. Lott, et.al. Electrochemical sulfur passivation of visible (670 nm) AlGaInP lasers[J], J. Vac.Sci. Technol. A 1994,12: 1063–1067.
    [60] P. Tihany, D. R. Scifres, R. S. Bauer, Reactive outdiffusion of contaminants from (AlGa)As laser facets[J], Appl. Phys. Lett.,1983, 42: 313–315.
    [61] M. Ohkubo, T. Ijichi, A. Iketani, et.al. Aluminium-free In-GaAs/GaAs/InGaAsP/InGaP GRINSCH SL-SQW lasers at 0.98μm[J], Electron.Lett.1992,28: 1149–1150.
    [62] D. F. Welch, B. Chan, W. Streifer, et.al., High power 8W CW single quantum well laser-diode array[J], Electron. Lett. 1988, 24: 113–115.
    [63] T. Fujimoto, Yu. Yamada, Yo. Yamada, et.al., High-power InGaAs/AlGaAs laser diodes with decoupled confinement heterostructures[J], Proc of SPIE, 1999, 3628:38–45.
    [64] Christian Scholz, Konstantin Boucke, Reinhart Poprawe, et.al.,Investigation of indium solder interfaces for igh-power diode lasers[J],Proc of SPIE,2003,4973:60-67.
    [65] High power diode lasers[M], Berlin: Springer-Verlag,2000.
    [66] D.C. Liu,C.P.Lee, C.M.Tsai, et al., Role of cladding layer thickness on trained—layer InGaAs/GaAs sigle and multiple quantum well lasers[J]. J.Appl.Phy.,1993,73(12): 8027-8034.
    [67] Todoroki S, Sawai M, Aiki K, Temperature distribution along the striped active region in hig-power GaAlAs visible lasers[J]. Journal of Appl Phys, 1985,58(3):1124-1128.
    [68] Brugger H, Epperlein PW, Mapping of local temperature distributions on mirrors of GaAs/AlGaAs laser diodes[J]. Appl Phys Lett, 1990, 56: 1049-1051.
    [69] Tang WC, Rosen HH, Vettinger P,et.al., Raman microprobe study of the time development of AlGaAs single quantum well laser facet temperature on route to catastrophic breakdown[J]. Appl Phys Lett,1991, 58(6): 557-559.
    [70] Kranz MC, Rosen HJ, Lenth W, Localised temperature dynamics of GaAlAs laser facets investigated by Raman microprobe measurements[J]. El. Lett,1990, 26(14): 990-992.
    [71] Tomm JW, Thamm E, B?wolff A, et.al.,Facet degradation of high power diode laser arrays[J]. Appl Phys A,2000, 70:1-5.
    [72] H. I. Abdelkader, H. H. Hausien, and J. D. Martin. Temperature rise and thermal rise-time measurements of a semiconductor laser diode [J]. Rev. Sci. Instrum, 1992, 63(3): 2004-2007.
    [73] P.W.Epperlein, G.L.Bona, Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers[J], Appl.Phys.Lett,1993,62(24):3074-3076.
    [74]罗丹,郭伟玲,徐晨等。半导体激光器结温测试研究[J].半导体光电,2007,28(2):183-190。
    [75] Han-Youl Ryu, Kyoung Ho Ha, Jung-Hye Chae, et al., Measurement of junction temperaturein GaN-based laser diodes using voltage-temperature characteristics[J]. Proc of SPIE, 2005, 5738: 238-244.
    [76] Sheng-Hui Yang, Xiaoguang He, Manoj kanskar et al.,Optimization of high-power broad-area semiconductor lasers [J]. Proc of SPIE, 2000, 3944: 366~375.
    [77] H. Li, I. Chyr, D. Brown, et al., Next-generation high-power, high-efficiency diode lasers at spectra-physics[J], Proc of SPIE,2008, 6824: 68240S-1– 68240S-12.
    [78] Andreas Schilling, Hans Peter Herzig, Laurent Stauffer, et.al., Efficient beam shaping of linear, high-power diode lasers by use of micro-optics[J], APPLIED OPTICS, 2001,40(32):5852-5859.
    [79] MA X Y, LI Z. Advances in high power semiconductor diode lasers[J]. Proc.of SPIE, 2007, 6824: 682402-1- 682402-16.
    [80] Nemes G, Correlation between geometrical and intrinsic classification of general astigmatic laser beams[J], Proc of SPIE, 2006,6101;610118-1-610118-12.
    [81] MARTIN P, LANDESMAN J P, MARTIN E, et al.. Micro-photoluminescene mapping of packaging-induced stress distribution in high-power AlGaAs laser diodes [J]. Proc.of SPIE, 2000, 3945: 308-316.
    [82] XIA R, LARKINS E C, HARRISON I, et al.. Mounting-induced strain threshold for the degradation of high-power AlGaAs laser bars[J]. IEEE Photon. Technol. Lett, 2002, 14 (7):893-895.
    [83] TOMM J W, GERHARDT A, MüLLER R, et al.. Spatially resolved spectroscopic strain measurements on high-power laser diode bar[J]. J. Appl. Phys, 2003, 93(3): 1354-1362.
    [84] http://arxiv.org/abs/physics/0207045v1.
    [85] Purkrt.A, Poruba.P, Van??ek.M,et.al., Photoelectric study of P3HT:PCBM solar cell annealing with varying composition of the active layer[J].
    [86] J.W.Tomm, A.Jaeger, A.B?rwolff, et.al., Aging properties of high power laser diode arrays analyzed by Fourier-transform photocurrent measurements[J], Appl.Phys.Lett, 1997,71(16):2233-2235.
    [87] TOMM J W, GERHARDT A, ELSAESSER T, et al.. Simultaneous quantification of strain and defects in high-power diode laser devices[J]. Appl. Phys. Lett, 2002, 81(17): 3269-3271.
    [88] TOMM J W, MüLLER R, B?RWOLFF A, et al.. Direct spectroscopic measurement of mounting-induced strain in high-power optoelectronic devices[J]. Appl. Phys. Lett, 1998, 73(26): 3908-3910.
    [89] TOMM J W, GERHARDT A, LORENZEN D, et al.. Diode laser testing by taking advantage of its photoelectric properties[J]. Proc.of SPIE, 2002, 4648: 9-21.
     [90] TOMM J W, MüLLER R, B?RWOLFF A, et al., Spectroscopic measurement of packaging-induced strains in quantum well laser diodes[J]. J. Appl. Phys, 1999, 86(3): 1196-1201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700