用户名: 密码: 验证码:
全光纤掺Tm~(3+)脉冲激光器及放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2μm激光处于大气透明窗口和人眼安全波段,被广泛的应用于激光遥感、激光医疗和材料加工等领域,其中2μm脉冲激光器是获得3~5μm中红外波长参量振荡输出理想泵浦源。和2μm固体激光器相比,全光纤掺Tm~(3+)脉冲激光器具有结构紧凑和抗干扰能力强等优点,但受到器件工艺等因素限制,关于全光纤掺Tm~(3+)脉冲激光器及放大器的研究鲜有报道。本论文以获得2μm全光纤掺Tm~(3+)脉冲激光器,并将其作为种子源进行全光纤掺Tm~(3+)脉冲放大器的探索研究作为基本出发点,分别从理论和实验方面详细研究了带内泵浦的增益开关掺Tm~(3+)光纤激光器激光特性以及全光纤掺Tm~(3+)脉冲放大器的输出特性,期望为相关领域发展做出一定贡献。
     理论方面,首先在考虑功率重叠因子和Stark能级分裂情况下,建立带内泵浦的掺Tm~(3+)光纤激光器速率方程理论模型,推导出了反转粒子数、腔内光子数、阈值能量、脉冲提取效率等解析式,并在此基础上对激光器的上能级粒子数、腔内光子数、脉冲建立时间、脉冲宽度等参数时间特性进行研究;文中还建立掺Tm~(3+)光纤激光器的行波方程理论模型,讨论了上能级粒子数、腔内光子数沿光纤轴向变化情况,并研究了腔内可提取能量和激光器功率输出特性。其次,在考虑ASE对LMA高掺杂光纤放大器输出特性影响的基础上,建立了掺Tm~(3+)光纤放大器的速率方程理论模型,分别对其在稳态放大和脉冲放大情况下进行数值仿真。在稳态放大情况下,研究了上能级粒子数、泵浦光和ASE沿光纤轴向分布情况;在一定泵浦功率下,分析了种子光功率和增益光纤长度对放大器功率输出特性的影响;在脉冲放大情况下,研究了不同重频和泵浦功率下,上能级粒子数和ASE沿光纤轴向分布情况,分析了脉冲输出能量和光纤存储能量随时间变化情况,以上理论分析为掺Tm~(3+)光纤放大器实验研究奠定基础。
     实验方面,首先进行了1558nm双级脉冲掺Er~(3+)光纤放大器实验研究,分别对每级放大器的输出能量、ASE功率和输出光谱进行详细测量和分析,讨论了ASE抑制与滤除方法。进行了800nm飞秒激光器刻写大芯径多模FBG的实验研究,通过在线监测激光器输出功率与刻写FBG辐射时间的变化关系,并结合掺Tm~(3+)光纤激光器速率方程模型对FBG反射率和纤芯折射率调制等光栅参数进行估算;进行了紫外曝光法刻写了单模FBG实验研究,并使用宽带光源和高精度OSA对FBG光谱特性进行了研究,获得了中心波长相同,反射率不同的FBG。利用1558nm掺Er~(3+)脉冲放大器作为泵浦源和单模FBG作为输入输出镜,进行了全光纤增益开关掺Tm~(3+)光纤激光器实验,详细研究激光器的输出功率、脉冲宽度和脉冲建立时间。其次利用空间耦合方式将2054nm Q开关Tm,Ho:YVO4脉冲光耦合入LMA掺Tm~(3+)光纤中进行脉冲放大实验,研究了放大器的输出功率、转换效率、光谱特性、光束质量因子、光斑分布情况和放大脉冲波形畸变情况。最后将实验研究的增益开关掺Tm~(3+)光纤激光器作为种子源,进行了全光纤掺Tm~(3+)脉冲放大器的实验研究,详细测量和分析了放大器输出功率、光谱特性、光束质量因子、光斑分布以及放大脉冲波形情况,最后指出ASE功率积累、寄生振荡和自脉冲效应是影响放大器能量输出的主要因素。
2μm lasers which locate in atmospheric transmission window and eye-saferange, are being widely used in the field of laser remote sensing, medical andmaterial processing. In addition,2μm pulsed lasers are excellent pump sourcesobtaining Middle-infrared3~5μm optical parametric oscillation lasers. Comparedwith2μm solid lasers, all-fiber pulsed Tm~(3+)-doped fiber lasers have advantages ofcompact structure and strong anti-interference capability. However, due to thelimition of fiber device technology, all-fiber pulse Tm~(3+)-doped fiber lasers andamplifiers are few reported. This thesis investigates the band pumped gain-switched Tm~(3+)-doped fiber laser characteristics theoretically and experimentally,in which all-fiber2μm pulse Tm~(3+)-doped laser and amplifier with the pulse laseras injected seed laser are taken as the basic starting point. The outputcharacteristics of pulse Tm~(3+)-doped fiber amplifier are investigated in detailed.We expect to make some contribution to the development of related fields.
     Theoretically, the band-pumped Tm~(3+)-doped fiber laser rate equation modelis established with power overlapping factor and Stark energy level considered.The expressions of inversion population, intracavity photon density, thresholdenergy, and pulse extraction efficiency are derived. Time characteristic of upper-level population, cavity photo density, pulse built-time and pulse width arediscussed on this basis meanwhile. In addition, the traveling-wave equations ofTm~(3+)-doped fiber laser are also established. The change of upper level populationand cavity photo density along fiber axis are discussed, as well as the extractableenergy and output power. Secondly, taking into account the influence of ASEabout LMA highly doped fiber amplifier output characteristics, we established theTm~(3+)doped fiber amplifier rate equation model and studied the steady-stateamplification and pulse amplification numerically. In steady-state mode, the upperlevel population, pump light and ASE light distributing along the fiber axis areinvestgated, and the output characteristics of amplifier are also investigated indifferent injection power. In pulse amplification mode, the upper level population,the pump light and ASE light distributing along the fiber axis are investgated, therelationship between output pulse energy, storage energy and repetition rate arealso analysed, establishing a good foundation for next experimental study.
     Experimentally, the1558nm two stages Er~(3+)doped pulse amplifier wasstudied in detailed. The output energy, ASE power and output spectra weremeasured and analysed. The relationship of ASE and amplifier output power wasalso discussed. The experiment of large core double-cladding FBG inscribed by 800nm fs laser was investigated. The output power variation during the process ofinscribing FBG was recorded. Combined to the Tm~(3+)-doped fiber laser rateequation model, the FBG reflectivity and the core refractive index modulation areanalysed. The experiment of single mode FBG inscribed by UV exposure methodwas investigated, and the spectra characteristic are measured by a broadband lightsource and high-resolution OSA. The experiment of all fiber gain-switched Tm~(3+)-doped fiber laser was investgated, in which the laser output power, pulse widthand pulse built-time were studied. Secondly, the2054nm Q-switchedTm,Ho:YVO4pulse laser was coupled into the core of LMA Tm~(3+)-doped fiber.The output power, conversion efficiency, output wavelength, beam quality factor,spot distribution and amplified pulse waveform distortion were all discussed indetailed. The gain-switched1940nm laser was injected into highly Tm~(3+)-dopedfiber as a seed laser. The output characteristics of all fiber pulse amplifier werestudied, the output power, peak power, output wavelength, beam quality factor,spot distribution, and the amplified output pulse waveform parameters weremeasured and analysed. The ASE light, parasitic oscillation and self-pulsing effectwere the main reason which influence the amplifier output.
引文
[1] Cariou J P, Augere B and Valla M. Laser source requirements for coherentlidars based on fiber technology[J], C. R. Physique,2006,7(6):213-223.
    [2] Koch G J, Beyon J Y, Gibert F, Barnes B W, Ismail S, Petros M, Petzar P J,Yu J, Modlin E A, Davis K J and Singh U N. Side-line tunable lasertransmitter for differential absorption lidar measurements of CO2: design andapplication to atmospheric measurements[J], Appl. Opt.,2008,47(7):944-956.
    [3] Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E,Ismail S, Stephanie V, Davis K J and Singh U N. Coherent DifferentialAbsorption Lidar Measurements of CO2[J], Appl. Opt.,2004,43(26):5092-5099.
    [4] Koch G J, Beyon J Y, Barnes B W, Mulugeta Petros Petros M, Petzar P J,Yu J, Modlin E A, Davis K J and Singh U N. High-energy2μm Doppler lidarfor wind measurements[J], Opt. Eng.,2007,46(11):116201-116211.
    [5] Koch G J, Dharamsi A N, Fitzgerald C M, and McCarthy J C. FrequencyStabilization of a Ho:Tm:YLF Laser to Absorption Lines of CarbonDioxide[J], Appl. Opt.,2000,39(21):3664-3669.
    [6] Browell E V, Ismail S and Grant W B. Differential absorption lidar (DIAL)measurements from air and space[J], Appl. Phys. B,1998,67(12):399-410.
    [7] Wulfmeyer V and B senberg J. Ground-Based Differential Absorption Lidarfor Water Vapor Profiling: Assessment of Accuracy, Resolution andMeteorological Applications[J], Appl. Opt.,1998,37(18):3825-3844.
    [8] Murray E R and Vander J E. Remote measurement of ethylene using a CO2differential Absorption Lidar[J], Appl. Opt.,1978,17(5):814-817.
    [9] Edner H, Faris G W, Sunesson A and Svanberg S. Atmospheric atomicmercury monitoring using differential Absorption Lidar Tecniques[J], Appl.Opt.,1989,28(5):921-930.
    [10] Scholle K, Lamrini S, Koopmann P, and Fuhrberg P(2010).2μm LaserSources and Their Possible Applications, Frontiers in Guided Wave Opticsand Optoelectronics, Bishnu Pal (Ed.), ISBN:978-953-7619-82-4, InTech,http://www.intechopen.com/articles/show/title/2-m-laser-sources-and-their-possible-applications#reference.
    [11] Orii K, Nakahara A, Takase Y, Ozaki A, Sakita T, and Iwasaki Y.Choledocholithotomy by Yag laser with a choledochofiberscope: case reportsof two patients[J]. Surgery,1981,90(1):120-122.
    [12] Teichman J M H, Schwesinger W H, Lackner J, and Cossman R M. Holmium:YAG laser lithotripsy for gallstones[J]. Surg. Endosc.,2001,15(9):1034-1037.
    [13] Fried N M and Murray K. High-Power Thulium Fiber Laser Ablation ofUrinary Tissues at1.94μm[J], Endourology,2005,19(1):25-31.
    [14] Snitzer E, Po H, Hakimi F, Tumminelli R, McCollum B C. Double-clad,offset core Nd fiber laser[C], Optical fiber communication Conf,1988, PD5:533-536.
    [15] Goldberg L, Cole B and Snitzer E. V-groove side-pumped1.5pm fibreamplifier(J), Electron. Lett.,1997,33(25):2127-2129.
    [16] Goldberg L, Koplow J P, Moeller R P, Kliner D A V. High-powersurperfluorescent source with side-pumped Yb double-cladding fiber[J], Opt.Lett.,1998,23(13):1037-1039.
    [17] Zellmer H, Willamowski U, Tunnermann A, Welling H, Unger S, Reichel V,Muller H R, Kirchhof J, and Albers P. High-power CW neodymium-dopedfiber laser operating at9.2W with high beam quality[J]. Opt. Lett.,1995,20(6):578-580
    [18] Liu A, Song J, Kamatani K and Ueda K. Rectangular double-clad fibre laserwith two-end-bundled pump[J]. Electron. Lett.,1996,32(18):1673-1674.
    [19] Anping L, and Kenichi U. The absorption characteristics of circular, offset,and rectangular double-clad fibers[J]. Opt. Comm.,1996,132(56):511-518.
    [20] Leproux P,Valérie D, Philippea R, Dominiquea P, Mortessagne F,Legrand O.Experimental study of pump power absorption along rare-earth-doped doubleclad optical fibres[J]. Opt. Comm.,2003,218(4-6):249-254.
    [21] Dritsas I, Sun T and Grattan K T V. Numerical simulation based optimizationof the obsorption efficiency in double-clad fibers[J]. J. Opt. A: Pure Appl.Opt.,2006,8(12):49-61.
    [22] Ripin D J and Goldberg L. High efficiency side-coupling of light into opticalfibers using imbedded v-grooves[J]. Electron. Lett.,1995,31(25):2204-2205.
    [23] Goldberg L and Ripin D J. High-efficiency side-coupling of light intodouble-cladding fibers using imbedded v-grooves[C]. OFC’96TechnicalDigest.1996,91-92.
    [24] Goldberg L, Cole B and Snitzer E. V-groove side-pumped1.5μm fibreamplifier[J]. Electron. Lett.,1997,33(25):2127-2129.
    [25] Goldberg L,Koplow J P, and Moeller R P. High-power superfluorescentsource with a side-pumped Yb-doped double-cladding fiber[J]. Opt. Lett.,1998,23(13):1037-1039.
    [26] Koplow J P, Moore S W and Kliner D A V. A new method for side pumpingof double-clad Fiber Sources[J]. IEEE J. Quantum Electron.,2003,39(4):529-540.
    [27] Xu J P, Lu J H, Lu J R and Ueda K. Sode-pumping of double clad fiber laserwith a Non-fusional fiber coupler[C]. Proc. of SPIE,2001,4594:271-276.
    [28] Xu J P, Lu J H, Lu J R and Ueda K. A non-fused fiber coupler for side-pumping of double-clad fiber lasers[J]. Opt. Commun.,2003,220:389-395.
    [29] Pan Q, Yan P, Gong M L, Wei W L and Yang Y Y. Studies of pump lightleakage out of couplers for multi-coupler side-pumped Yb-doped double-clad fiber lasers[J]. Opt. Commun.,2004,239:421-428.
    [30] Pan Q, Yan P, Gong M L and Wei W L. Coupling efficiency of angle-polished methodfor side-pumping technology[J]. Opt. Eng.43(4):816-821.
    [31] Jauregui C, Bohme S, Wenetiadis G, Limpert, J and Tunnermann A. Side-pump combiner for all-fiber monolithic fiber lasers and amplifiers[J]. J. Opt.Soc. Am. B.,2010,27(5):1011-1015.
    [32] Xiao Q, Yan P, Yin S, Hao J and Gong M L.100W ytterbium-dopedmonolithic fiber laser with fused angle-polished side-pumpingconfiguration[J]. Laser Phys.Lett.2011,8(2):125-129.
    [33] Snitzer E. Optical maser action of Nd3+in a barium crown glass[J]. Phys.Rew. Lett.1961,7(12):444-446.
    [34] Snitzer E, Po H, Hakimi F, Tumminelli R and Mccollum B C. Double clad,offset core Nd fiber laser[C]. OFC’96Technical Digest.1988,533-536.
    [35] Cao J D, Laliberte B, MMinns R, ARobinson R, FRockney B, HTricca R Rand Zhang Y H. High power neodymium-doped single transverse mode fibrelaser[J].1993,29(17):1500-1501.
    [36] Zellmer H, Willamowski U, Tunnermann A, Welling H, Unger S, Reichel V,Muller H R, Kirchhof J and Alber P. High-power CW neodymium-dopedfiber laser operating at9.2W with high beam quality[J].1995,20(6):578-580.
    [37] Pask H M, Archambault J L, Hanna D C, Reekie L, Townsend J E, andTropper S C. Operation of cladding-pumped Yb3+dopedsilica fiber lasers in1μm region[J]. Electron. Lett.,1994,30(11):863-865.
    [38] Dominic V, Maccormac S, Waarts R, Sanders S, Bicknese S, Dohle R, WolakE, and Zucker E.110W fiber laser[J]. Electron. Lett.,1999,35(14):1158-1160.
    [39] Platonov N S, Gapontsev D V, Gapontsev V P and Shumilin V.135W CWfiber laser with perfect single mode output[C]. Lasers and Electro-opticsCLEO.2002, CPDC3-1-CPDC3-4.
    [40] Gapontsev V P, Platonov N S, and Shumilin O.400W low-noise single-modeCW ytterbium fiber laser with an integrated fiber delivery[C]. Lasers andElectro-optics CLEO.2003, CTHPDB9-1-CTHPDB9-4.
    [41] Jeong Y, Sahu J K, Payne D N and Nilsson J. Ytterbium-doped large-corefiber laser with1kW continue-wave output power[C]. Advanced solid-statephotonics.2004, PDP-1-PDP-3.
    [42] Jeong Y, Sahu J K, Payne D N and Nilsson J. Ytterbium-doped large-corefiber laser with1.36kW continue-wave output power[J]. Opt. Exp.2004,12(25):6088-6092.
    [43] Liu C H, Ehlers B, Doerfel F, Heinemann S, Carter A, and Galvanauskas A.810W continue-wave and single-transverse-mode fiber laser using20μmcore Yb doped double-clad fiber[J]. Electron. Lett.,1994,40(23):563-864.
    [44] Gapontsev D, Platonov N, Shkurikhin O, FominV, Mashkin A, Abramov M,and Ferin S.2kW CW ytterbium fiber laser with record diffraction-limitedbrightness[C]. Lasers and Electro-Optics Europe.2005,
    [45] Http://www.ipgphotonics.com.cn/newsletter,2006
    [46]周军,楼祺洪,李铁军,董景星,魏运荣,王之江.4.9W掺Yb3+双包层光纤激光器及器输出特性[J].光学学报[J].2003,23(4):476-479.
    [47]赵鸿,周寿桓,朱辰,李尧,吴健.大功率光纤激光器输出功率超过1.2kW[J].激光与红外[J].2006,36(4):930.
    [48]楼祺洪何兵薛宇豪周军董景星魏运荣王炜李震漆云凤杜松涛赵宏明陈卫标.1.75kW国产掺Yb双包层光纤激光器[J].中国激光[J].2009,5(4):1277.
    [49] Hanna D C, and Januncey I M. Continuous-wave Oscillation of a MonomodeThulium-doped Fiber Laser[J]. Electron. Lett.,1988,24(19):1222-1223.
    [50] Hanna D C, Percival R M, Smart R G and Tropper A C. Efficient andTunable Operation of a Tm-doped Fiber Laser[J]. Opt. Comm.,1990,75(34):283-286.
    [51] Hanna D C, Perry I R and Lincoln J R. A1-watt Thulium-doped CW FiberLaser Operating at2μm[J]. Opt. Comm.,1990,80(1):52-56.
    [52] Jackson S D, and King T A. High-power Diode-cladding-pumped Tm-dopedSilica Fiber Laser[J]. Opt. Lett.,1998,23(18):1462-1464.
    [53] Hayward R A, Clarkson W A, and Turner P W. Efficient Cladding-pumpedTm-doped Silica Fiber Laser with High Power Single mode Output at2μm[J].Electron. Lett.,2000,36(8):711-712.
    [54] Clarkson W A, Barnes N P, Turner P W, Nilsson J and Hanna D C. Highpower cladding-pumped Tm-doped silica fiber laser with wavelength tuningfrom1860to2090nm[J].Opt. Lett.,2002,27(22):1989-1992.
    [55] Frith G, Lancaste D G and Jackson S D.85W Tm3+-doped silica fiberlaser[J]. Electron. Lett.,2005,41(12):687-688.
    [56] Jackson S D, Sabella A and Lancaster D G. Application and Development ofHigh-Power and Highly Efficient Silica-Based Fiber Lasers Operating at2μm[J]. IEEE J. Sel Topics in Quantum Electronics.2007,13(3):576-572.
    [57] Slobodtchikov E V and Moulton P F. Efficient, High-Power, Tm-doped SilicaFiber Laser[C]. Adv. Solid-State Photon. Conf. Postdeadline Paper.2007,MF2.
    [58] Moulton P F, Rines G A, Slobodtchikov E V, and Cater A L G. Tm-dopedfiber laser: fundamentals and power scaling[J]. IEEE J. Sel Topics inQuantum Electronics.,2009,15(1):85~92.
    [59] Yeh H C, Shelton M J, Tsang Y H and King T A. Fabrication andcharacterization of fibre Bragg gratings for near2μm operation[J].Measurement Science and Technology.2003,14:1747-1752.
    [60] Meleshkevich M, Platonov N, Gapontsev D, Drozhzhin A and Sergeev V.415W Single-Mode CW thulium Fiber Laser in all-fiber format[C]. CLEOE-IQEC European Conference.2007, Page1-2.
    [61] Bennetts S, Hemming A, Davidson A and Lancaster D G.110W790nmpumped1908nm thulium fibre laser[C]. OECC/ACOFT Australianconference.2008, Page1-2.
    [62] Creeden D, Johnson B R, and Setzler S D. High Efficiency1908nm Tm-doped Fiber Laser Oscillator[C]. Advanced photonics congress.2012,SW2F.4.
    [63] Tang Y L, Huang C Y, Wang S L, Li H Q, and Xu J Q. High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Opt. Exp.2012,20(16):17539-17544.
    [64] Alcock I P, Tropper A C, Ferguson A I, Hanna D C. Q-switched operation ofa neodymium-doped monomode fiber laser[J]. Electron.Lett.,1986,22(2):84~85.
    [65] Myslinski P, Pan X, Chrostowski C B, Sullivan B T, Bayon J F. Q-switchedthulium-doped fiber laser[J]. Optic. Engineering.1993,32(9):2025-2030.
    [66] ElSherif A F. High-peak-power operation of a Q-switched Tm3+-doped silicafiber laser operating near2μm[J]. Opt. Lett.200328(1):22-24.
    [67] El-Sherif A F, King T A. High-energy, high-brightness Q-switched Tm3+-doped fiber laser using an electro-optic modulator[J].Opt. Comm.2003,218(46):337-344.
    [68] Eichhorn M. Development of a high-pulse-energy Q-switched Tm-dopeddouble-clad fluoride fiber laser and its application to the pumping of mid-IRlasers[J]. Opt. Lett.2007,32(9):1056-1058.
    [69] Eichhorn M and Jackson S D. High-pulse-energy actively Q-switched Tm3+-doped silica2μm fiber laser pumped at792nm[J]. Opt. Lett.2007,32(19):2780-2782.
    [70] Eichhorn M, and Jackson S D. High-pulse-energy actively Q-switchedTm3+,Ho3+-doped silica2μm fiber laser[J]. Opt. Lett.2008,33(10):1044-1046.
    [71] Golding P S, Jackson S D, Tsai P K and Dickson B C. Efficient high poweroperation of a Tm-doped silica fiber laser pumped at1.319μm[J]. Opt.Comm.2000,175(13):179-183.
    [72] Geng J H, Wang Q, Smith J, Luo T,Amzajerdian F and Jiang S B. All-fiberQ-switched single-frequency Tm-doped laser near2μm. Opt. Lett.2009,34(23):3713-3715.
    [73] Tordella L, Djellout H, Dussardier B, Sa ssy A and Monnom G. Highrepetition rate passively Q-switched Nd3+:Cr4+all-fibre laser[J]. Electron.Lett.2003,39(18):1307-1308.
    [74] Dvoyrin V V, Dianov E M, Mashinskii V M, Neustruev V B, Guryanov A N,Laptev A Y, Umnikov A A, Yashkov M V and Vorobev N S. Absorption andluminescence properties of Cr4+-doped silica fibres[J]. Quantum Electron.2001,31(4):996-998.
    [75] Wu B and Chu P L. Fast optical switching in Sm3+-doped fibers[J]. IEEEPhoton.Technol. Lett.1996,8(2):230-232.
    [76] Okhrimchuk A G, Mezentsev V K, Dvoyrin V V, Kurkov A S, Sholokhov EM, Turitsyn S K, Shestakov A V. andBennion I. Waveguide-saturableabsorber fabricated by femtosecond pulses in YAG:Cr4+crystal for Q-switched operation of Yb-fiber laser[J]. Opt. Lett.2009,34(24):3881-3883.
    [77] Fotiadi A A, Kurkov A S and Razdobreev I M. All fiber passively Q-switchedytterbium laser[C]. CLEOE-IQEC European Conference.2005,515-516.
    [78] Dvoyrin V V, Mashinsky V M and Dianov E M. Yb-Bi pulsed fiber lasers[J].Opt. Lett.2007,32(5):451-453.
    [79] Yusupov A S, Goncharov S E, Zalevskii I D, Paramonov V M and Kurkov AS. Raman fiber laser for the drug-free photodynamic therapy[J]. Laser. Phys.2010,20(2):357-359.
    [80] Anquez F, Courtade E, Sivery A, Suret P. and Randoux S. A high-powertunable Raman fiber ring laser for the investigation of singlet oxygenproduction from direct laser excitation around1270nm[J]. Opt. Exp.2010,18(22):22928-22936.
    [81] Tsai T Y, Fang Y C, Lee Z C and Tsao H X. All-fiber passively Q-switchederbium laser using mismatch of mode field areas and a saturable-amplifierpump switch[J]. Opt. Lett.2009,34(19):2891-2893.
    [82] Qamar F Z and King T A. Passive Q-switching of the Tm-silica fibre lasernear2μm by Cr2+:ZnSe saturable absorber crystal[J]. Opt. Commun.2005,248(46):501-508.
    [83] Qamar F Z and King T A. Short-pulse, high-peak-power Q-switched Tm-silica fibre laser at1.9μm[J]. Optics&Laser Technology.2006,38(3):1-7.
    [84] Jackson S D. Passively Q-switched Tm3+-doped silica fiber lasers[J]. Appl.Opt.1996,46(16):3311-3317.
    [85] Jackson S D and King T A. Efficient gain-switched operation of a Tm-dopedsilica fiber laser[J]. IEEE J. Quantum Electron.1998,34(5):779-789.
    [86] Dickinson B C, Jackson S D and King T A.10mJ total output from a gain-switched Tm-doped fiber laser[J]. Opt. Comm.2000,182(13):199-203.
    [87] Zhang Y J, Yao B Q, Ju Y L and Wang Y Z. Gain-switched Tm3+-dopeddouble-clad silica fiber laser[J]. Opt. Exp.2005,13(4):1085-1089.
    [88] Jiang M and Parviz T. Stable10ns, kilowatt peak-power pulse generationfrom a gain-switched Tm-doped fiber laser[J]. Opt. Lett.2007,32(13):1797-1799.
    [89] Wu K S, Ottaway D, Munch J, David G. Lancaster, Shayne Bennetts, andStuart D J. Gain-switched holmium doped fiber laser[J]. Opt. Exp.2009,17(23):20872-20877.
    [90] Nakagami H, Araki S and Sakata H. Gain-switching pulse generation of Tm-doped ring laser pumped with1.6μm laser diodes fiber[J]. Laser Phys. Lett.,2011,8(4):301-304.
    [91] Simakov N, Hemming A, Bennetts S, Haub J. Efficient, polarised, gain-switched operation of a Tm-doped fibre laser[J]. Opt. Exp.2011,19(16):14949-14954.
    [92] Neison L E, Ippen E P, Haus H A. Broadly tunable sub-500fs pulses from anadditive pulse mode-locked thulium-doped fiber ring laser[J]. Appl. Phys.Lett.,1995,67(1):19-21.
    [93] Solodyankin M A, Obraztsova E D, Lobach A S, Chernov A I, Tausenev A V,Konov V I and Dianov E M. Mode-locked1.93μm thulium fiber laser with acarbon nanotube absorber[J]. Opt. Lett.,2008,33(12):1336-1338.
    [94] Wang Q, Geng J and Jiang S. Mode-locked Thulium-doped Silicate FiberLaser with Saturable Absorber Mirror[C]. International Conference onOptoelectronics and Microelectronics.2010,172-174.
    [95] Sobon G, Sotor J, Paternak I, Krajewska A and Abramski K M. Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturableabsorber[J]. Opt. Exp.2012,21(10):12797-12802.
    [96] Wang Q Q, Chen T, Zhang B T, Li M S. All-fiber passively mode-lockedthulium-doped fiber ring laser using optically deposited graphene saturableabsorbers[J]. Appl. Phys. Lett.,2013,102(13):131117-131117-4.
    [97] Zhou W, Shen D Y, Wang Y S, Long J Y, An Y. Mode-locked thulium-dopedfiber laser with a narrow bandwidth and pulse energy[J]. Laser. Phys. Lett.2013,9(8):587-590.
    [98] Gaupontsev D, Platonov N, Meleshkevich M, Mishechkin O and ShkurikhinO.20W single-frequency fiber laser operating at1.93μm[C]. CLEOE-IQECEuropean Conference.2007, CFI5Page1-2.
    [99] Zhang Z, Boyland A J, Sahu J K, Ibsen M and Clarkson W A. Single-frequency Tm-doped fiber master-oscillator power amplifier with10Wlinearly-polarized output at1943nm[C]. CLEOE-IQEC EuropeanConference.2008, CFD5Page1-2.
    [100]Gregory D G, Lewis D B and Joshua E R. Low-phase-noise, single-frequency,single-mode608W thulium fiber amplifier[J]. Opt. Lett.2009,34(18):1204-1206.
    [101]Pearson L, Kim J W, Zhang Z, Ibsen M, Sahu J K and Clarkson W A. High-power linearly-polarized single-frequency thulium-doped fiber masteroscillator power amplifier [J]. Opt. Exp.2010,18(2):1607-1612.
    [102]Thomas E, Ryan L, Imtiaz M and Kanishka T.1-kW, all glass Tm:fiberlaser[C] Proc. SPIE,2010,2072(3045):16-27
    [103]Eichhorn M. High-gain Tm-doped fluoride fiber amplifier[J]. Opt. Lett.2005,30(5):456-458.
    [104]Eichhorn M. High-peak-power Tm-doped double-clad fluoride fiberamplifier[J]. Opt. Lett.,2005,30(24):3329-3331
    [105]Imeshev G and Fermanm M E.230kW peak power femtosecond pulsed froma high power tunable source based on amplification in Tm-doped fiber[J].Opt. Exp.2005,13(19):7424-7431.
    [106]Wei S, Petersen E B, Qiang F, Khanh K, Arturo C P.220μJ monolithicsingle-frequency Q-switched fiber laser at2μm by using highly Tm-dopedgermanate fibers[J]. Opt. Lett.,2011,36(18):3575-3577.
    [107]Wei S, Petersen E B, Qiang F, Kieu K, Pirson A C, Nasser P and Yu J R. mJ-level2μm Transform-limited Nanosecond Pulses Based on highly Tm-dopedGermanate Fibers[C]. Lasers, Sources, and Related Photonic Devices, OSATechnical Digest.2012, FTH4A.1-3.
    [108]蓝信钜.激光技术[M].北京:科学出版社,2004:86-87.
    [109]Wang F, Shen D Y, Chen H, Fan D Y and Lu Q S. Modeling andOptimization of Stable Gain-Switched Tm-Doped Fiber Lasers[J]. Opt. Rev.,2011,18(4):360-364.
    [110]杨扬,刘宏发,张国威.掺钛蓝宝石激光器的增益开关特性研究[J].激光技术,1995,19(4):204-208.
    [111]张国威.增益开关型固体可调谐激光器的时间特性-理论[J].激光技术,1995,19(3):129-135.
    [112]吴秋阳,徐冰,张正泉,徐至展.增益开关型四能级激光器的时间特性分析[J].中国激光,1998,25(8):673-676.
    [113]张国威.可调谐激光技术[M].北京:国防工业出版社,2002:286-295.
    [114]Mccumner D E. Theory of Phonon-Terminated Optical Masers[J]. Physicalreview,1964,134(2A): A299-A306.
    [115]Eggleston J M, DeShazer L G, Kangas K W. Characteristics and kineticsof laser-pumped Ti:sapphire oscillators[J]. IEEE J. Quantum Electron.,1988,24(6):1009-1015.
    [116]Agger S D and Povlsen J H. Emission and absorption cross section ofthulium doped silica fibers[J]. Opt. Exp.2006,14(1):50-57.
    [117]Rigrod W W. Saturation effects in high-gain lasers[J]. J. Appl. Phys.,1965,36(8):2487-2490.
    [118]Rigrod W W. Homogeneously broadened CW lasers with uniform distributedloss[J]. IEEE J. Quantum Electron.,1978,14(5):377-381.
    [119]Philippe R and Dominique P. Analysis and Optimization of a Q-SwitchedErbium Doped Fiber Laser Working with a Short Rise Time Modulator[J].Optical fiber technology,1996,2(12):235-240.
    [120]David H S. Effects of Axial Nonuniformity in Modeling Q-SwitchedLasers[J]. IEEE J. Quantum Electron.,1992,28(10):1970-1973.
    [121]Cheng X P, Zhang J, Shum P, Tang M and Wu R F. Influence of Sidelobes onFiber-Bragg-Grating-Based Q-switched Fiber Laser[J].2007IEEE J. LightTech. let.,2007,19(20):1646-1648.
    [122]Huo Y M, Cheo P K and King G G. Modeling and experiments of actively Q-switched Er3+-Yb3+codoped clad-pumped fiber lasers[J]. IEEE J. QuantumElectron.,2005,41(4):573-580.
    [123]Cheng X P, Shuma P, Tang M, Wu R B. Numerical analysis andcharacterization of fiber Bragg grating-based Q-switched ytterbium-dopeddouble-clad fiber lasers[J]. Optics and Lasers in Engineering,2009,47(12):148-155.
    [124]Duchowicz R, Russo N A, Sicre E and Andres M V. Q-switching of anerbium-doped fibre laser modulated by a Bragg grating fixed to apiezoelectric[J] J. Opt. A: Pure Appl. Opt.,2003,5(11):S216-S220.
    [125]Shampine L F. Solving hyperbolic PDEs in matlab[J]. Applied NumbericalAnalesis&Computational Mathmatics,2005,2(3):346-358.
    [126]Renaud C C, Offerhaus H L, Alvarez J A, Nilsson J, Clarkson W A, Turner PW, Richardson D J and Grudinin A B. Characteristics of Q-SwitchedCladding-Pumped Ytterbium-Doped Fiber Lasers with Different High-Energy Fiber Designs[J]. IEEE J. Quantum Electron.,2001,37(2):199-207.
    [127]Sebastien D and Teodoro F D. High gain Er doped fiber amplifier generatingeye-safe MW peak-power, mJ-energy pulses[J]. Opt. Exp.2008,16(4):2431-2437.
    [128]Teodoro F D, Matthias S L and Norsen M.300-μJ pulse-energy,2-ns pulsefiber amplifier at1567nm[C]. OSA/ASSP,2005, TUC4-1-TUC4-3.
    [129]Philippov V, Sahua J K, Codemarda C A, Nilssona J and Pearsonb G N. All-fiber0.4mJ high-coherence eye-safe optical source[C]. Proc. of SPIE,2004,5620:5620-1-5620-5.
    [130]Fouad E D, Heaney A and Erdogan T. Analysis of fiber Bragg gratings by aside-diffraction interference technique[J]. Appl. Opt.,2001,40(6):890-896.
    [131]Durr F, Limberger H G, Salathe F R, Douay P M and Przygodzki C.Tomographic measurement of femtosecond-laser induced stress changesinoptical fibers[J]. Appl. Phys. Lett.,2004,84(24):1983-4985.
    [132]Jackson S D and King T A. Theoretical modeling of Tm-doped silica fiberlasers[J]. IEEE J. Lightwave Techol.,1999,17(5):945-953.
    [133]Michel J F, Rare Earth Doped Fiber Lasers and Amplifiers[M], StanfordUniversity,1993:215-216
    [134]Jackson S D and King T A. Theoretical modeling of Tm-doped silica fiberlasers[J]. IEEE J. Light Tech.,1999,17(5):948-956.
    [135]Pavel P, Kasik I, Anirban D, Dussardier B and Wilfried B. Theoreticalmodeling of fiber laser at810nm based on thulium-doped silica fiberswithenhanced3H4level lifetime[J]. Opt. Exp.2011,19(3):2773-2781.
    [136]Paschotta R, Nilsson J, Tropper A C and Hanna D C. Ytterbium-Doped FiberAmplifiers[J]. IEEE J. Quantum Electron.,1997,33(7):1049-1056.
    [137]Allain J Y, Monerie M, Poignant H. Tunable CW lasing around0.82,1.48,1.88and2.35μm in thulium-doped fluorozirconate fibre[J]. Electron. Lett.,1989,25(24):1660-1662.
    [138]Jackson S D. Cross relaxation and energy transfer upconversion processesrelevant to the functioning of2μm Tm3+-doped silica fibre lasers[J]. Opt.Commun.2003,230(25):197-203.
    [139]Huang Q J, Ting Y, Zu J F and Tao M M. Theoretical Modeling andSimulation of Tm-Doped Double-Clad Fiber Amplifier[C]. InternationalConference on Optoelectronics and Microelectronics.2012,172-176.
    [140]Qiang F, Wei S, Kieu K, Petersen E, Arturo C P and Nasser P. High powerand high energy monolithic single frequency2μm nanosecond pulsed fiberlaser by using large core Tm-doped germanate fibers experiment and theory[J]. Opt. Exp.2012,20(15):16410-16420.
    [141]Peterka P, Faure B, Blanc W, Kara M and D ussardier B. Theoreticalmodelling of S-band thulium-doped silica fibre amplifiers[J]. Optical andQuantum Electronics.2004,36(12):201-212.
    [142]Eichhorn M. Numerical modeling of Tm-doped double-clad fluoride fiberamplifiers[J]. IEEE J. Quantum Electron.2005,41(12):1574-1581.
    [143]Walsh B M and Barnes N P. Comparison of Tm:ZBLAN and Tm silica fiberlasers; Spectroscopy and tunable pulsed laser operation around1.9μm[J].Appl. Phys. B,2004,78(15):325-333.
    [144]蓝信钜.激光技术[M].北京:科学出版社,2004:181-182.
    [145]Khosrofian J M, and Garetz J. Measurement of a Gaussian laser beamdiameter through thedirect inversion of knife-edge data[J]. Appl. Opt.,1983,22(21):3406-3410.
    [146]Marcos A C, Silva R, Emersonde L, Daniel P. Measurement of Gaussianlaser beam radius using the knife-edge technique: improvement on dataanalysis[J]. Appl. Opt.,2009,48(2):393-396.
    [147]Marciante J R and Zuegel J D. High-gain, polarization-preserving, Yb-dopedfiber amplifier for low-duty-cycle pulse amplification, Appl. Opt.,2006,45(26):6798-6804

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700