用户名: 密码: 验证码:
石墨烯、碳纳米管可饱和吸收体的制备及其用于被动调Q/锁模激光器的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短脉冲激光在科学研究中有着广泛的应用。采用可饱和吸收体对激光进行被动调Q、锁模实现ns、ps甚至fs的超短脉冲激光的方法简单易行,但目前常用的可饱和吸收体存在着稳定性差、工作波长范围窄以及制备工艺复杂等诸多缺陷。单壁碳纳米管(SWCNT)和石墨烯由于其独特的非线性光学特性可制作宽范围调制可饱和吸收体。本论文通过多种方法及功能化操作技术制备SWCNT和石墨烯,并将其制作为激光调Q、锁模的可饱和吸收体,以实现超短脉冲激光输出;理论研究SWCNT和石墨烯可饱和吸收机理、激光器被动调Q、锁模的动力学过程;实验研究SWCNT、石墨烯可饱和吸收体被动调Q、锁模及激光器的运转规律和影响脉冲输出特性的相关因素,并对可饱和吸收体的制备工艺及激光器相关参数进行优化。这一研究对拓展碳纳米材料的应用领域,推进超短脉冲激光技术的发展具有重要意义。具体工作内容和创新点如下:
     1)石墨烯的制备和表征
     对于石墨烯的合成,我们在实验室主要采用两种方法,分别是还原石墨氧化物法和化学气相沉积法。还原石墨氧化物法是经过改进的Hummers方法用强酸对石墨粉末进行氧化,获得氧化石墨,然后对氧化石墨再进行高温还原,所得到的的产物即为石墨烯,这种方法获得的石墨烯一般称之为RGO。化学气相沉积法(CVD法)是我们常用的另一种制备石墨烯的方法,这种方法制备过程更加简洁,并且获得的石墨烯纯度高。
     2)单壁碳纳米管/石墨烯可饱和吸收体的制备和表征
     这两种碳纳米材料的形态和性质不同,因此,我们在制备可饱和吸收体时对其进行的处理略有不同;并且不同腔型结构的激光器需要不同形式的可饱和吸收体,固体激光器中一般需要可饱和吸收镜,全光纤激光器中采用可饱和吸收薄膜更加方便,因此,我们将这两种碳纳米材料制备为可饱和吸收液、可饱和吸收镜以及可饱和吸收薄膜,以满足不同的需求,并对制备的可饱和吸收体的性质进行了表征。
     3)单壁碳纳米管/石墨烯被动调Q激光器
     从实验上研究了单壁碳纳米管被动调Q侧泵Nd:YAG固体激光器的输出特性,获得了630ns的脉宽,并且对调Q激光器中需要考虑的关键问题进行了分析。
     将石墨烯作为宽带被动调Q器件用于1μmNd:YAG固体激光器,2μm掺铥光纤激光器以及2μmTm:YAP固体激光器中,研究激光器的输出特性,从而证实了石墨烯的宽带可饱和吸收特性。
     4)被动锁模掺铒光纤激光器
     在掺铒光纤激光器中采用非线性偏振旋转和石墨烯两种方式实现了锁模脉冲的输出,对掺铒光纤的荧光和光谱边带进行了数值模拟,根据模拟结果提出了抑制两者产生的方案:对于提高泵浦效率、脉冲稳定性和缩短锁模脉冲有指导意义。
     5)基于石墨烯锁模的固体激光器谐振腔设计
     采用ABCD矩阵设计了采用石墨烯作为锁模元件的固体激光器谐振腔,腔型结构设计中考虑了像散、激光增益介质热效应以及色散补偿,根据模拟结果可以对腔内各元件的参数以及位置进行选取,为石墨烯锁模固体激光器建立了理论基础。
     本文的创新点:
     (1)可饱和吸收体的创新
     文中我们采用了新型可饱和吸收体——单壁碳纳米管和石墨烯两种碳纳米材料,对其经过一些处理可以制备为适合各种激光器的可饱和吸收体,在激光器中成功实现了调Q、锁模脉冲的输出。
     (2)研究内容的创新
     a)根据原材料形态和性质的不同,以及激光器腔型需求的不同,制备了多种形式的基于单壁碳纳米管、石墨烯的可饱和吸收体,使可饱和吸收体在激光器中的应用更加方便简洁,并且可以降低腔内的插入损耗以及保证光纤激光器的全光纤化。
     b)文章中把材料的制备工艺与激光器参数结合在一起,根据激光器的输出特性对材料的制备工艺进行研究和改进,确定最适合产生短脉冲的材料参数;在材料参数确定的情况下,不断优化激光器腔型,最终实现稳定的脉冲输出。
     c)从非线性光学、能带结构的角度出发,分析了单壁碳纳米管和石墨烯的可饱和吸收机理,并从实验上实现了被动调Q、被动锁模脉冲的输出,分析了泵浦光功率、腔型、腔长和输出镜透过率等对脉冲稳定性的影响。
     d)采用石墨烯可饱和吸收体不仅实现了宽带被动调Q,在1μmNd:YAG固体激光器中获得249ns调Q脉冲;2μmTm:YAP固体激光器中获得1.4μs脉冲,并且在2μm掺铥光纤激光器中获得760ns被动调Q脉冲,这是目前所知最短的基于石墨烯的2μm被动调Q脉冲宽度。采用SWCNT可饱和吸收体实现了脉冲宽度630ns的1.06μm被动调Q。
     e)在未进行腔内色散补偿的条件下,成功采用石墨烯在1550nm掺铒全光纤激光器中实现了ps被动锁模。根据色散理论,后续若对腔内色散进行补偿,可以实现飞秒脉冲。
     (3)理论与实验相结合
     文中从理论和实验两方面出发,一方面从非线性光学,能带结构,泡利不相容原理等出发,分析和探索SWCNT、石墨烯的可饱和吸收机理;另一方面,从非线性薛定谔方程和Haus主方程出发,研究SWCNT、石墨烯可饱和吸收体调Q、锁模的动力学过程;实验上,采用这两种碳纳米材料进行了一些调Q、锁模实验。理论和实验结合,有利于问题的及时发现和解决,可以推动整个课题的顺利进行。
Ultrafast pulse laser has wide applications in scientific research. It is simple to achieve nanosecond, picosecond and femtosecond ultralpulse through passively Q-switched, mode-locked technology by saturable absorber. But the common saturable absorber has several defects such as instable, narrow wavelength and complicate fabrication process. SWCNT (Single Wall Carbon Nanotubes) and graphene have become a wide wavelength modulation saturable absorber due to their unique nonlinear optics characteristics. This article demonstrates the fabrication of SWCNT and graphene that were used for saturable absorber of Q-switched and mode-locked laser by a couple of methods and functional operation technique. In order to obtain ultrafast pulse output. In theory,focus on saturable absorbing principle of SWCNT and graphene, passively Q-switched and mode-locked of laser, and dynamics process of active or passive Q-switched and mode-locked laser. Experimental research is in major of passively Q-switched and mode-locked by saturable absorber as SWCNT and graphene, operation rules of laser and relevant factors that affect output pulses. As well as, optimizing the preparation technology of saturable absorber and relevant parameters of laser. This project would be of great significant for the application of carbon nanometer materials and the development of ultrafast pulse laser. The special projects and innovations is as follows:
     1) Fabrication and characterization of grapheme
     At present, the preparation of graphene in laboratory basis on the reduction of graphite oxide and chemical vapor deposition (CVD). The former method needs to immerse graphite powder into strong acid (mixture of concentrated sulfuric acid and concentrated nitric acid). Then graphite oxide was obtained through oxidation progress of low, middle and high trmperature respectively. Finally, the graphite oxide was dioxide in high temperature tube furnace to receive graphene. Another method for preparation of graphene is CVD. Acetylene was induced in experiment for providing carbon atoms. Copper foil was used for growth substrate and catalyst. Hydrogen and argon were income to act as carrier gas and auxiliary gas. Graphene membrane was acquired in the temperature domain between850centigrade and1000centigrade.
     2) The preparation and characterization of SWCNT/graphene saturable absorber
     Considering the requires of different preparation methods and lasers, the two types of carbon nanometer materials can be manufactured into saturable absorption liquid, saturable absorption mirrors and saturable absorption membranes. SWCNT and graphene prepared by reduction-oxide method could be made into saturable absorption liquid or sarurable absorption mirror by spinning. The graphene prepared by CVD could be attached on the surface of mirror or manufactured to saturable absorption membrane. In addition, we also had the testing of raman spectrum, TEM and transmittance to the saturable absorber of graphene.
     3) SWCNT passively Q-switched Nd:YAG laser
     The mechnism of passively Q-switched pulses by SWCNT was analysised. The output characteristics of Q-switched side-pumped Nd:YAG solid state laser by SWCNT was obtained; in experiment. Acquiring the minimum pulse width of630ns with single pulse energy of28.3μJ. At last, the factors on the designing of Q-switched laser was analysised.
     4) Graphene-based passively Q-switched laser
     In the experiment, graphene was used in1μmNd:YAG solid state laser,2μm Tm-doped fiber laser and2μmTm:YAP laser due to its wide band passively Q-switched characteristic Finally,we confirmed the wide band characteristic of graphene and analysise d the output characteristics of different lasers.
     5) Er-doped passively mode-locked fiber laser
     The Er-doped fiber laser passively mode-locking operation was realized by nonlinear polarization rotation and graphene respectively. Numerical modeling was made in theory to fluorescence and spectrum sideband and a scheme of restraining their appearance was put forward which will be benefit for enhancing pump efficiency, shortening mode-locked pulse and improving the stability of pulses in the following experiment projects.
     6) The design of solid state laser cavity based on graphene mode-locking.
     After considering astigmatism, heat effect of laser gain medium and dispersion compensation, we calculated the stable region of the whole cavity and spot size in different position by using ABCD matrix. As a result, suitable component parameters, length, the position of saturable absorber and a special cavity based on graphene mode-locking was easy to be decided.
     The innovation of this article:
     (1) The innovation of saturable absorber
     By using two kinds of new type saturable absorber such as S WCNT and graphene, we invent two types of methods to prepare saturable absorbor that is simple and practicable, costless and easily to be appropriate for any wavelength. The SWCNT and graphene saturable absorbor we acquired by these methods could preserve complete chemical structure and uniform distribution.
     (2) The innovation of research contents
     a) Variety types of saturable absorber based on SWCNT and graphene was prepared. Choosing saturable absorber mirrors in solid state laser could decrease insertion loss Adopting saturable absorber membrane in fiber laser ensured all fiber cavity which would be more convenient;
     b) SWCNT, graphene saturable absorber for laser passively Q-switched Q, locking, and according to the pump power, cavity, the cavity length and output mirror transmittance and absorption saturation of the preparation technology was used to optimize the parameters of its stability;
     c) using the SWCNT saturable absorber pulse width630ns1.06μm passively Q-switched Q; using graphene saturable absorber to realize broadband passive Q, respectively,249ns Q switched pulse at1μ mNd:YAG in solid state lasers;1.4μs and2μm Tm:YAP solid laser pulse in760ns passively; Q pulse of2μm thulium doped fiber laser, which is now known as the shortest based on2μm passively Q-switched Q pulse width of the graphene;
     d) using graphene saturable absorber in the1550nm erbium-doped fiber laser is realized in passively mode-locked PS, because there was no compensation for the cavity dispersion, so the pulse width is bigger, join the dispersion compensation fiber can compress the pulse;
     e) mechanism of SWCNT, graphene saturable absorber is analyzed theoretically, the passive Q, mode-locking experiment, and gives the design scheme of solid-state mode-locked resonator; the material preparation and laser research linking, according to Q, a mode-locked laser with a saturable absorber to prepare the corresponding materials demand.
     (3) combining theory with experiment
     According to the energy band structure of SWCNT/graphene, the Pauli blocking principle and relativistic quantum theory, analysis and exploration of the saturable absorption mechanism, the selection and preparation of raw materials more suitable as a saturable absorber; starting from the nonlinear Schrodinger equation and Haus equation, SWCNT, dynamic process of graphene can be saturated Q switched laser, mode-locked, on and saturated absorption preparation technology parameters were optimized and the parameters of the laser.
引文
[1]Schmidt W, Schafer F P. Self-mode-locking of dye-lasers with saturated absorbers[J]. Physics Letters A,1968,26(11):558-559.
    [2]Haus H A. Theory of mode locking with a fast saturable absorber[J]. Journal of Applied Physics,1975, 46(7):3049-3058.
    [3]蓝信钜.激光技术[M].科学出版社,2005.
    [4]J.赫尔曼,B.威廉,陈秀娥译.超短光脉冲激光器原理及应用[M].科学出版社,1991.
    [5]Smith P W, Duguay M A, Ippen E. Mode-locking of Lasers[M]. Pergamon Press LTD,1974.
    [6]Kuizenga D, Siegman A. FM and AM mode locking of the homogeneous laser-Part I:Theory[J]. Quantum Electronics, IEEE Journal of,1970,6(11):694-708.
    [7]Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics letters,1992, 17(7):505-507.
    [8]Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. Selected Topics in Quantum Electronics, IEEE Journal of,1996,2(3):435-453.
    [9]Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010,4(9):611-622.
    [10]张山彪王文军毕军李丽华.超短激光脉冲技术及其研究发展[J].激光杂质,2003,8(24):11-12.
    [11]Zhou J, Peatross J, Murnane M M, etal.利用25fs光脉冲产生高次谐波[J].物理评论快报,1996,76(5):7522755.
    [12]Sutter D H, Steinmeyer G, Gallmann L, et al. Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime[J]. Optics letters, 1999,24(9):631-633.
    [13]Fetterman M, Goswami D, Keusters D, et al. Ultrafast pulse shaping:amplification and characterization[J]. Optics Express,1998,3(10):366-375.
    [14]O.Svelto, "Principles of Lasers," 4th ed,Springer,1998.
    [15]O. Okhotnikov et al.,"Ultra-fast fibre laser systems based on SESAM technology:new horizons and applications," New J. Phys.6,177 (2004).
    [16]U. Keller, "Recent developments in compact ultrafast lasers," Nature 424,831-838 (2003).
    [17]F. Bonaccorso et al.," Graphene Photonics and Optoelectronics", Arxiv 1006.4854vl (2010).
    [18]F. Wang et al., "Wideband-tuneable, nanotube mode-locked, fibre laser," Nat. Nanotechnol.3, 738-742 (2008).
    [19]S. Kivisto et al., "Carbon nanotube films for ultrafast broadband technology," Opt. Express 17, 2358-2363 (2009).
    [20]S. Y. Set et al., in Optical Fiber Communication Conference (OFC), Vol.87 of OSA Trends in Optics and Photonics (Optical Society America,2003), postdeadline paper PD44.
    [21]F. Wang et al., "Wideband-tuneable, nanotube mode-locked, fibre laser," Nat. Nanotechnol.3, 738-742 (2008).
    [22]V. Scardaci et al., "Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers." Adv. Mater.20, 4040-4043 (2008).
    [23]E. J. R. Kelleher et al., "Generation and direct measurement of giant chirp in a passively mode-locked laser," Opt. Lett.34,3526-352 (2009).
    [24]E. J. R. Kelleher et al., "Nanosecond-pulse fiber lasers mode-locked with nanotubes," Appl. Phys. Lett. 95,111108(2009).
    [25]Z. Sun et al., "L-band ultrafast fiber laser mode locked by carbon nanotubes." Appl. Phys. Lett.93, 061114(2008).
    [26]T. Hasan et al., "Nanotube-Polymer Composites for Ultrafast Photonics," Adv. Mater.21,3874-3899 (2009).
    [27]Bao Q, Zhang H, Wang Y, et al. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers[J]. Advanced Functional Materials,2009,19(19):3077-3083.
    [28]K. Kieu et al., "All-fiber normal-dispersion femtosecond laser," Opt. Express 16,11453-11458 (2008).
    [29]A. Schmidt et al., "Sub-100 fs single-walled carbon nanotube saturable absorber mode-locked Yb-laser operation near 1 μm," Opt. Express 17,20109-20116 (2009).
    [30]A. K. Geim et al., "The rise of graphene," Nat. Mater.6,183-191 (2007).
    [31]Samuli Kivisto et al. " Carbon nanotube films for ultrafast broadband technology", Opt. Express 17,4 (2009).
    [32]Z. Sun et al.,"Graphene Mode-Locked Ultrafast Laser", Arxiv 0909.0457vl(2009).
    [33]Han Zhang et al., "Graphene mode locked,wavelength-tunable,dissipative soliton fiber laser", Arxiv 1003.0154vl(2010).
    [34]Qiaoliang Bao et al., "Graphene-Polymer Nanofiber Membrane for Ultrafast Photonics", Adv. Funct. Mater.20,782-791 (2010).
    [35]Tan,W.D.et al., "Mode Locking of Ceramic Nd:Yttrium Aluminum Garnet with Graphene as a Saturable Absorber". Appl. Phys. Lett.,96,031106 (2010).
    [36]Zhengqian Luo et al., " Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser", Optics Letters,35(21):3709-3711 (2010).
    [37]Haohai Yu et al., " Large Energy Pulse Generation Modulated by Graphene Epitaxially Grown on Silicon Carbide", ACSNano.,4(12),7582-7586 (2010).
    [38]X. H. Li, Y. S. Wang, W. Zhao, W. Zhang, Z. Yang, X. H. Hu, H. S. Wang, X. L. Wang, Y. N. Zhang, Y. K. Gong, C. Li, D.Y.Shen, "All-normal dispersion, figure-eight, tunable passively mode-locked fiber laser with an invisible and changeable intracavity bandpass filter, " Laser Phys.21(5),940,2011.
    [39]X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, W. Zhao, "Long cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime," Opt. Lett.35(19),3249,2010.
    [40]R. Paschotta, R. Haring, E. Gini, H. Melchior, U. Keller, H. L. Oerhaus, D. J. Richardson, "Passively Q-switched 0.1mJ fiber laser system at 1.53μm," Opt. Lett.24,388,1999.
    [41]M. Siniaeva, M. Siniavsky, V. Pashinin, A. Mamedov,V. Konov, V. Kononenko, "Laser ablation of dental materials using amicrosecond Nd:YAG laser," Laser Phys.19,1056,2009.
    [42]M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd,W. A. Clarkson, S. Girard, R. Moncorge, "Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser, "Opt. Lett.27(1980),2002.
    [43]Oleg Okhotnikov,Anatoly Grudinin and Markus Pessa, "Ultra-fast fibre laser systems based on SESAM technology:new horizons and applications," New J. Phys.6,177,2004.
    [44]U. Keller, "Recent developments in compact ultrafast lasers," Nature 424,831,2003.
    [45]Bo Dong, Jianzhong Hao, Junhao Hu, Chin-Yi Liaw, "Wide pulse-repetition-rate range tunable nanotube Q-switched low threshold erbium doped fiber laser," IEEE Photonics Tech. Lett.22(24), 1853,2010.
    [46]B. Dong, C. Y. Liaw, J. Z. Hao, J. H. Hu, "Nanotube Q-switched low-threshold linear cavity tunable erbium-doped fiber laser,"Appl. Opt.49,5989,2010.
    [47]B. Dong, J. H. Hu, C. Y. Liaw, J. Z. Hao, C. Y. Yu,"Wideband-tunable nanotube Q-switched low threshold erbium doped fiber laser," Appl. Opt.50,1442,2011.
    [48]F. Wang, A. G Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I.Milne and A. C. Ferrari, "Wideband-tuneable, nanotube mode-locked, fibre laser," Nat. Nanotechnol.3,738,2008.
    [49]S. Kivisto, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G Nasibulin, E. I. Kauppinen, A. Harrkonen, and O. G. Okhotnikov, "Carbon nanotube films for ultrafast broadband technology," Opt. Express 17,2358,2009.
    [50]F.Bonaccors, Z.sun, T.Hasan and A.C.ferrai, "Graphene Photonics and Optoelectronics," Nat. Photonics 4,611,2010.
    [51]T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G Rozhin. and A. C. Ferrari, "Nanotube-Polymer Composites for Ultrafast Photonics," Adv. Mater.21,3874,2009.
    [52]A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater.6,183,2007.
    [53]Z. Sun, T.Hasant, F. Torrisit, D.Popat, GPriviterat, F.Wang, RBonaccorsot, D.M.Basko and A.C. Ferrari,"Graphene Mode-Locked Ultrafast Laser", ASC Nano.4(2),803,2010.,
    [54]H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao and K. P. Loh, "Graphene mode locked,wavelength-tunable,dissipative soliton fiber laser," Appl.Phys.Lett.96(11),1112,2009.
    [55]D.popa, Z.Sun, T.Hasan, F.Torrisi, F.Wang and A.C. Ferrari, "Graphene Q-switched, tunable fiber laser," Appl.Phys.Lett.98(07),3106,2011.
    [56]H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Z. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, "Large Energy Pulse Generation Modulated by Graphene Epitaxially Grown on Silicon Carbide," ACSNano.4(12),7582,2010.
    [57]L. J. Wan, Z. Y. Ren, H. Wang, G. Wang, X. Tong, S. H. Gao and J. T. Bai, "Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery,"Diam. Relat.Mater.20(5-6),756,2011.
    [58]A. B. Kuzmenko, E. van Heumen, F. carbone and D. van der Marel, "Universal optical conductance of graphite," Phys.Rev.Lett.100,117401,2008.
    [59]R. R. Nair, P.Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.Peres and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science,320,1308,2008,
    [60]A.S. Kurkov, Ya.E. Sadovnikova, A.V. Marakulin, E.M. Sholokhov, "All fiber Er-Tm Q-switched laser", Laser Phys. Lett. Vol.7, Issue 11, pp.795-797,2010.
    [61]J. Li, S.H. Yang, H.Y. Zhang, W. Xie, C.M. Zhao, "2μm single-frequency master-oscillator fiber power amplifier", Laser Phys., Vol.20, No.9, pp.1806-1809,2010.
    [62]E.M. Sholokhov, A.V. Marakulin, A.S. Kurkov, V.B. Tsvetkov, "All-fiber Q-switched holmium laser", Laser Phys. Lett., Vol.8, Issue 5, pp.382-385,2011.
    [63]E. Kato, H. Noguchi, M. Nagai, H. Okuyama, S. Kijima, and A. Ishibashi, "Significant progress in II-VI blue-green laser diode lifetime", Electron. Lett., Vol.34 Issue 3, pp.282-284,1998.
    [64]G J. Koch, A. N. Dharamsi, C.M. Fitzgerald, J. C. McCarthy, "Frequency Stabilization of a Ho:Tm:YLF Laser to Absorption Lines of Carbon Dioxide", Appl. Opt., Vol.39, Issue 21, pp. 3664-3669,2000.
    [65]G. J. Koch, M. Petros, J. Yu, U. N. Singh, "Precise Wavelength Control of a Single-Frequency Pulsed Ho:Tm:YLF Laser", Appl. Opt., Vol.41, Issue 9, pp.1718-1721,2002.
    [66]P. A. Budni, L. A. Pomeranz, C. A. Miller, B. K. Dygan, M. L. Lemmons, E. P. Chicklis, "CW and Q-switched Ho:YAG pumped by Tmr YALO", Advanced Solid State Lasers, Vol.19, pp.90-92,1998.
    [67]X. H. Li, Y. S. Wang, W. Zhao, X. Liu, Y. Wang, Y. H. Tsang, W. Zhang, X. Hu, Z. Yang, C. Gao, C. Li, D. Shen, "All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser", J. Lightwave Tech., Vol.30, Issue 15, pp.2502-2507,2012.
    [68]Z. Sun, T. Hasant, F. Torrisit, D. Popat, G. Priviterat, F. Wang, F. Bonaccorsot, D. M. Basko and A.C Ferrari, "Graphene Mode-Locked Ultrafast Laser", ASC Nano., Vol.4, No.2, pp.803-810,2010.
    [69]D.popa, Z.Sun, T.Hasan, F.Torrisi, F.Wang and A.C. Ferrari, "Graphene Q-switched, tunable fiber laser", Appl. Phys. Lett., Vol.98, No.7, pp.073106 (1-3),2011
    [70]H. Zhang, D. Y. Tang, R. J. Knize, L. M. Zhao, Q. L. Bao and K. P. Loh, "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser", Appl. Phys. Lett., Vol.96, No.11, pp.111112(1-3), 2009
    [71]F.-Q. Li, K. Liu, L. Han, N. Zong, Y. Bo, J.-Y. Zhang, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, "High-power 880-nm diode-directly-pumped passively mode-locked Nd;YV04 laser at 1342 nm with a semiconductor saturable absorber mirror, " Opt.Lett.,36,1485-1487(2011).
    [72]H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K.P. Loh, B. Lin, S. C. Tjin, "Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers:from all anomalous dispersion to all normal dispersion", Laser Phys. Lett., Vol.7, Issue 8, pp.591-596,2010.
    [73]X. H. Li, Y. G. Wang, Y. S. Wang, X. H. Hu, W. Zhao, X. L. Liu, J. Yu, C. X. Gao, W. Zhang, Z. Yang, C. Li, D. Y. Shen, "Wavelength switchable and tunable all-normal-dispersion Yb-doped mode-locked fiber laser based on single-wall carbon nanotubes wall paper", IEEE photonics journal, Vol.4, Issue 1, pp.234-241,2012.
    [74]S. C. Huang, H. L, Cheng, Yi-Fan Chen, K. W. Su, Y. F. Chen, and K. F. Huang, "Diode-pumped passively mode-locked 1342 μm Nd:YV04 laser with an AlGalnAs quantum-well saturable absorber," Opt, Lett.,34,2348-2350(2009)
    [75]J. C. Travers, J. Morgenweg, E. D. Obraztsova, A. I. Chemov, E. J. R. Klleher, S. V. Popov, "Using the E22 transition of carbon nanotubes for fiber laser mode-locking", Laser Phys. Lett., Vol.8, Issue 2, pp. 144-149,2011.
    [76]P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G R. Lin, L. J. Li, C. Y. Su, W. H. Cheng, "Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber", Opt. Express, Vol.20, Issue 3, pp.2460-2465,2012.
    [77]J. Liu, S. Wu, Q. H. Yang, P. Wang, "Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser", Opt. Lett., Vol.36, Issue 20, pp.4008-4010,2011.
    [78]J. L. Xu, X. L. Li, Y. Z. Wu, X. P. Hao, J. L. He, K. J. Yang, "Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser", Opt. Lett., Vol.36, Issue 10, pp.1948-1950,2011.
    [79]X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, X. P. Hao, "Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser", Opt. Express, Vol.19, Issue 10, pp.9950-9955,2011
    [80]A. Yoshida, A. Schmidt, V. Petrov, C. Fiebig, G. Erbert, J. Liu, H. Zhang, J. Wang, and U. Griebner, "Diode-pumped mode-locked Yb:YCOB laser generating 35 fs pulses, " Opt. Lett.,36,4425-4427 (2011).
    [81]Z. Q. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, Z. P. Cai, "Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser", Opt. Lett., Vol.35, Issue 21, pp.3709-3711, 2010.
    [82]W. J. Cao, H. Y. Wang, A. P. Luo, A. C. Luo, W.C. Xu, "Graphene-based,50 nm wide-band tunable passively Q-switched fiber laser", Laser Phys. Lett., Vol.9, Issue 1, pp.54-58,2012.
    [83]F. Wang, F. Torrisi, Z. Jiang, D. Popa, T. Hasan, Z. Sun, W. B. Cho, A. C. Ferrari, "Graphene passively Q-switched two-micron fiber lasers", Quantum Electronics and Laser Science Conference (QELS), JW2A, pp. JW2A.72,2012.
    [84]M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor, "Tm-doped fiber laser mode-locked by graphene-polymer composite", Opt. Express, Vol.20, pp.25077-25080,2012.
    [85]张志刚,飞秒激光技术[M],科学出版社,2011
    [86]A. E. H. Oehler, M. C. Stumpf, S. Pekarek, T. Siidmeyer, K. J. Weingarten, and U. Keller, "Picosecond diode-pumped 1.5 ixm Er, Yb:glass lasers operating at 10-100 GHz repetition rate,,, Appl. Phys. B, 99,53-62(2010).
    [87]G J. Spiihler, L. Krainer, V. Liverini, R. G, M. Haiml, S. Pawlik, B. Schmidt, S. Schon, and U. Keller, "Passively Mode-Locked 1.3μm Multi-GHz Nd:YVO4 Lasers With Low Timing Jitter, " IEEE Photonics Technol. Lett.,17,1319-1321(2005).
    [88]A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, A.C. Ferrari, "2μm Solid-State Laser Mode-locked By Single-Layer Graphene", arXiv:1210.7042vl,2012.
    [89]Q. Wang, H. Teng, Y. Zou, Z. Zhang, D. Li, R. Wang, C. Gao, J. Lin, L. Guo, Z. Wei, "Graphene on SiC as a Q-switcher for a 2 μm laser", Opt. Lett., Vol.37, Issue 3, pp.395-397,2012.
    [90]D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, "Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene ", Nano Lett., Vol.7, Issue 2, pp.238-242, 2007.
    [91]Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S. Dresselhaus, Jing Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition", Nano Lett., Vol.9, Issue 1, pp.30-35,2009.
    [92]D. C. Li, S. Z. Zhao, G. Q. Li, K. J. Yang, "Optimization of pulse-width of passively Q-switched lasers by taking into account intracavity laser spatial distribution", Optik, Vol.119, pp.230-235,2008.
    [93]X. Y. Jiang, J. G. Zheng, W. T. Duan, M. Z. Li, M. Z. Wang, X. W. Yan, D. B. Jiang, H. W. Yu, "Theoretical andexperimental researchonoutput characteristics of Cr4+:YAG passively Q-switched laser", High Power Laser and Particle Beams, Vol.23, Issue 3, pp.586-588,2011.
    [94]A. H. C. Neto, "Graphene:Phonons behaving badly," Nat. Mater.,6,176-177(2007).
    [95]Keller. U, "Recent Developments in Compact Ultrafast Lasers", Nature (London), Vol.424, pp. 831-838,2003.
    [96]Y. F. Li, Y. Z. Wang, Y. L. Ju, "Comparative study of LD-pumped Tm:YAG and Tim:LuAG lasers", Laser Physics, Vol.18, No.6, pp.722-724,2008.
    [97]F. Wang, D.Y. Shen, D.Y. Fan, Q.S. Lu, "High power widely tunable Tm:fiber laser with spectral linewidth of 10 pm", Laser Phys. Lett., Vol.7, Issue 6, pp.450-453,2010.
    [98]Quimby R S, Miniscalco W J, Thompson B. Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption[J]. Journal of applied physics,1994,76(8):4472-4478.
    [99]Honninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. JOSA B,1999,16(1):46-56.
    [100]Zhang J, Wang S, An L, et al. Infrared to visible upconversion luminescence in·Er3+:Y2O3 transparent ceramics[J]. Journal of luminescence,2007,122:8-10.
    [101]Dawlaty J M, Shivaraman S, Chandrashekhar M, et al. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters,2008,92:042116.
    [102]赵羽,刘永智,赵德双,黄琳,代志勇,被动锁模光纤激光器光谱边带的研究[J],光学学报,2009,4,991-995.
    [103]赵羽,赵德双,刘永智,黄琳,环形腔被动锁模光纤激光器光耦合输出比的研究[J],中国激光,2009,4,794-798.
    [104]Wagener J L, Wysocki P F, Digonnet M J F, et al. Effects of concentration and clusters in erbium-doped fiber lasers[J]. Optics letters,1993,18(23):2014-2016.
    [105]Charlier J C, Eklund P C, Zhu J, et al. Electron and phonon properties of graphene:their relationship with carbon nanotubes[M]//Carbon nanotubes. Springer Berlin Heidelberg,2008:673-709.
    [106]Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single-and bi-layer graphene membranes[J]. Solid State Communications,2007,143(1):101-109.
    [107]Gao C, Wang R, Zhu L, et al. Resonantly pumped 1.645 μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber[J]. Optics letters,2012,37(4):632-634.
    [108]Fasolino A, Los J H, Katsnelson M I. Intrinsic ripples in graphene[J]. Nature Materials,2007,6(11): 858-861.
    [109]Wallace P R. The band theory of graphite[J]. Physical Review,1947,71(9):622.
    [110]Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. nature,2005,438(7065):197-200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700