用户名: 密码: 验证码:
非线性系统的可积性分析及孤子的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤子是非线性科学的一个重要分支,在数学、物理等领域有广泛应用,并且在金融领域可作为研究市场演化特征的理论基础。因此,孤子理论的研究具有重要意义。
     本文主要解析研究非线性系统的可积性及孤子的相互作用机制。通过对变系数、耦合非线性发展方程及方程族的研究,获得一系列研究结果,如非线性系统的可积性、解析孤子解、Hamilton结构及Liouville可积性等。本文共分为六个方面:
     (1) Darboux变换的构造及其在耦合非线性发展方程中的应用。(a)分别以Hirota-Maxwell-Bloch (H-MB)方程及广义非均匀H-MB方程、非均匀耦合非线性Schrodinger(NLS)方程为例,构造等谱和非等谱可积系统的Darboux变换;(b)利用Darboux变换构造H-MB方程的单孤子和双孤子解,由此研究孤子的产生机制、传播特性及相互作用;绘图分析广义非均匀H-MB方程的非均匀因素对孤子的发展特性及相互作用的影响;通过控制群速度色散、自相位调制、交叉相位调制及增益/损耗对应的参数,讨论非均匀耦合NLS方程孤子的相互作用机制及在非均匀光纤系统中的潜在应用;(c)利用Painleve检测确定广义非均匀H-MB方程的可积条件;基于Ablowitz-Kaup-Newell-Segur (AKNS)系统,构造H-MB方程及广义非均匀H-MB方程的Lax对;将2×2等谱AKNS谱问题推广到3×3非等谱情形,求得非均匀耦合NLS方程的Lax对。
     (2)广义非均匀H-MB方程的N次Darboux变换构造及孤子解的渐近分析。(a)构造广义非均匀H-MB方程的N次Darboux变换,得到方程的单孤子、双孤子及三孤子解,并整理为行列式形式;(b)讨论取不同参数值时孤子的传播特性及相互作用,并发现双孤子碰撞存在能量交换的现象;(c)利用渐近分析研究孤子碰撞前后的物理量,如能量、振幅、脉冲宽度、传播速度和初始相位;(d)给出该方程的前三个守恒律。
     (3)非线性发展方程族与无穷守恒律。(a)以KdV和AKNS方程族为例,介绍Lax对为算子和矩阵形式所对应的非线性发展方程族的构造过程;(b)以KdV和AKNS系统为例,研究Lax对为算子和矩阵形式所对应的无穷守恒律的构造过程,并推出H-MB方程的无穷守恒律;(c)以推广的离散谱问题为基础,推导离散系统的方程族及无穷守恒律。
     (4) Jaulent-Miodek(JM)谱问题的Hamilton结构、Darboux变换及新的类孤子解。(a)基于JM谱问题,推出JM方程族,并构造该JM方程族两种形式的Darboux变换;(b)利用辛—逆辛分解法,得到JM方程族的Hamilton结构,并证明该方程族在Liouville意义下是完全可积的;(c)通过两种形式的Darboux变换,可以分别构造JM方程族新的类孤子解,这些类孤子都由冲击波和钟形孤子构成;(d)研究两种类孤子的传播特性及相互作用。
     (5)等谱和一阶非等谱Kaup-Newell(KN)方程族之间的规范变换。(a)简要介绍规范变换的基本概念,引入等谱和一阶非等谱AKNS系统,得到等谱和一阶非等谱KN谱问题之间的规范变换;(b)求得等谱和一阶非等谱KN方程族之间的转化关系,并给出两个方程族的前三个方程;(c)以等谱和一阶非等谱KN系统为例,研究同一系统对应的等谱和非等谱谱问题之间的直接规范变换。
     (6)双线性方法及多线性分离变量法在(2+1)维色散长水波方程中的应用。(a)介绍双线性化常用的三种因变量变换及其它形式的因变量变换,以及相应的非线性发展方程的类型;(b)利用多线性分离变量法研究非线性局域激发模式,并列举几种常见局域解的函数形式;(c)对(2+1)维色散长水波方程进行Painleve分析,可得Painleve展开存在单奇异流形和双奇异流形展开两种形式,进而得到两种不同形式的因变量变换;(d)利用两种因变量变换,分别将方程双线性化和线性化,进而求得方程的解析孤子解及非线性局域激发模式,并通过绘图探讨孤子的传播特性和相互作用。
Soliton is an important branch of nonlinear science. It is widely used in mathematics and physics, and is also the theoretical foundation in financial field for studying the characteristics of market evolution. Therefore, the study of soliton theory is of great significance.
     This dissertation analytically investigates the integrability and soliton interaction mechanism in nonlinear systems. Through the analysis on some coupled and variable-coefficient nonlinear evolution equations (NLEEs) or nonlinear hierarchies, a series of results are derived, such as the integrable properties, analytical soliton solutions, Hamil-tonian structure and Liouville integrability. This dissertation mainly includes the fol-lowing six parts:
     (1) The construction of Darboux transformation (DT) and its applications in the cou-pled NLEEs.(a) The construction of DT for isospectral and nonisospectral integrable systems is investigated, taking the Hirota-Maxwell-Bloch (H-MB) equation, generalized inhomogeneous H-MB equation and inhomogeneous coupled NLS equation for example;(b) Based on the obtained one-and two-soliton solutions of the H-MB equation via the DT, the production mechanism, propagation characteristics and soliton interactions are investigated. The analysis is made to probe the influence of inhomogeneities in the generalized inhomogeneous H-MB equation on the soliton propagation and interac-tions via some figures. With the corresponding parameters of group velocity dispersion, self-phase modulation, cross-phase modulation and gain/loss under control, the soliton interaction mechanism and its potential applications of the inhomogeneous coupled NLS equations are discussed;(c) Via the Painleve analysis, the integrable conditions for the generalized inhomogeneous H-MB equation are obtained. Based on the Ablowitz-Kaup-Newell-Segur (AKNS) system, the Lax pairs associated with the H-MB equations and generalized inhomogeneous H-MB equations are constructed. With the2×2isospectral AKNS spectral problem generalized to the3×3nonisospectral case, the Lax pair for the inhomogeneous coupled NLS equations is derived.
     (2) The construction of N-fold DT and asymptotic analysis of the generalized in-homogeneous H-MB equation.(a) The N-fold DT for the generalized inhomogeneous H-MB equation is derived, as well as one-, two-and three-soliton solutions, which can be compiled into the determinant forms;(b) Soliton propagation characteristics and in-teractions with different parameters are discussed, and energy redistribution between the two solitons in their interactions is observed;(c) The asymptotic analysis is used to discuss some physical quantities before and after soliton interactions, such as the energy, amplitude, width, velocity and initial phase;(d) The first three conservation laws of the equation are obtained.
     (3) Nonlinear hierarchies and infinite conservation laws.(a) By taking KdV and AKNS hierarchies for example, the processes of constructing the nonlinear hierarchies with the Lax pair in operator or matrix forms are introduced;(b) By taking KdV and AKNS systems for example, the construction processes of the infinite conservation laws with the Lax pair in operator or matrix forms are investigated, and the infinite conservation laws for H-MB equation are also obtained;(c) Based on the generalized discrete spectral problem, the nonlinear hierarchy and infinite conservation laws of the discrete system are derived.
     (4) Hamiltonian structure, Darboux transformation and new soliton-like solutions of the Jaulent-Miodek (JM) hierarchy;(a) Based on the JM spectral problem, the integrable JM hierarchy is obtained, and two types of DTs of the hierarchy are constructed;(b) Via the symplectic-cosymplectic factorization, the Hamiltonian structure of JM hierarchy is obtained, and the hierarchy is proved to be completely integrable in the Liouville sense;(c) Through the two type of DTs, new soliton-like solutions are derived, which are all composed of the shock wave and bell-shaped soliton;(d) Propagation characteristics and interactions of the obtained solitons are graphically discussed.
     (5) Gauge transformation between the isospectral and first-order nonisospectral Kaup-Newell (KN) hierarchies.(a) The basic concept of gauge transformation is briefly intro-duced. The gauge transformation between the isospectral and first-order nonisospectral KN spectral problems is derived by introducing the isospectral and first-order non-isospectral AKNS spectral problems;(b) The equivalence between the isospectral and first-order nonisospectral KN hierarchies, as well as the first three representative equa-tions, is given;(c) By taking the isospectral and first-order nonisospectral KN systems for example, the direct gauge transformation between the corresponding isospectral and nonisospectral problems of the same system is investigated.
     (6) The applications of the bilinear method and multi-linear variable separation ap-proach in (2+1) dimensional dispersive long wave (DLW) equation.(a) Three types of the dependent variable transformations used in the bilinearization, as well as other de-pendent variable transformations, are introduced, and the corresponding types of NLEEs are also presented;(b) The multi-linear variable separation approach is used to investi-gate nonlinear localized excitations, and several common functions for localized solutions are briefly introduced;(c) The Painleve analysis is performed on the (2+1) dimensional DLW equation, and two types of expansion, i.e., one and two singular manifolds, are found. Correspondingly, two different forms of the dependent variable transformation are derived;(d) Via the two types of the dependent variable transformations, the DLW equation is respectively bilinearized and linearized, and further the analytic soliton solu-tions and nonlinear localized excitations are obtained correspondingly. Besides, figures are made to probe the soliton propagation characteristics and interactions.
引文
[1]刘式达,刘式适.物理学中的非线性方程.北京大学出版社,北京,2002.
    [2]王明亮.非线性发展方程与孤立子.兰州大学出版社,兰州,1990.
    [3]郝柏林.混沌与分形.上海科学技术出版社,上海,2004.
    [4]Ablowitz M J, Clarkson P A. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge,1992.
    [5]陈登远.孤子引论.科学出版社,北京,2006.
    [6]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用.高等教育出版社,北京,2004.
    [7]Remoissenet M. Waves Called Solitons. Springer Press, Berlin,1996.
    [8]吴文俊.数学机械化.科学出版社,北京,1999.
    [9]马金龙,马非特.金融市场价格波动数值预测的思考.管理科学19(1),2006,78-84.
    [10]史数中.金融经济学十讲.上海人民出版社,上海,2004:1-11.
    [11]马非特,马金龙.基于鞅与不动点的投机原理.西南财经大学出版社,成都,2006.
    [12]郭柏灵,庞小峰.孤立子.科学出版社,北京,1987.
    [13]楼森岳,唐晓艳.非线性数学物理方法.科学出版社,北京,2006.
    [14]Rubinstein J. Sine-Gordon equation. J. Math. Phys.11,1970,258-266.
    [15]Hasegawa A. Theory and computer experiment on self-trapping instability of plasma cyclotron waves. Phys. Fluids 15,1972,870-881.
    [16]王德焴,吴德金,黄光力.空间等离子体中的孤波.上海科技教育出版社,上海,2000.
    [17]Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl.15,1970,539-541.
    [18]Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34,1972, 62-69.
    [19]谷超豪,郭柏灵,李翊神等.孤立子理论与应用.浙江科学出版社,杭州,1990.
    [20]范恩贵.可积系统与计算机代数.科学出版社,北京,2004.
    [21]闫振亚.复杂非线性波的构造性理论及其应用.科学出版社,北京,2007.
    [22]Steeb W H, Euler N. Nonlinear evolution equations and Painleve test. World Sci-entific Press, Singapore,1989.
    [23]Dickey L A. Soliton equations and Hamiltonian systems. World Scientific Press, Singapore,2003.
    [24]Ablowitz M J. Remarks on nonlinear evolution equations and ordinary differential equations of Painleve type. Physica D 3,1981,129-141.
    [25]McLeod J B, Olver P J. The connection between partial differential equations solu-ble by inverse scattering and ordinary differential equations of Painleve type. SIAM J. Math. Anal.14,1983,488-506.
    [26]Ince E L. Ordinary differential equations. Dover Publications, New York,1956.
    [27]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.24,1983,522-526.
    [28]Jimbo M, Kruskal M D, Miwa T. Painleve test for the self-dual Yang-Mills equation. Phys. Lett. A 92,1982,59-60.
    [29]Clarkson P A. The Painleve property and a partial differential equation with an essential singularity. Phys. Lett. A 109,1985,205-208.
    [30]潘祖梁.非线性问题的数学方法及其应用.浙江大学出版社,杭州,2002.
    [31]Weiss J. The sine-Gordon equations:Complete and partial integrability. J. Math. Phys.25,1984,2226-2235.
    [32]Weiss J. The Painleve property for partial differential equations. II:Backlund trans-formation, Lax pairs, and the Schwarzian derivative. J. Math. Phys.24,1983,1405-1413.
    [33]Hu H C, Liu Q P. New Darboux transformation for Hirota-Satsuma coupled KdV system. Chaos, Solitons and Fractals 17,2003,921-928.
    [34]Estevez P G, Gordoa P R. Darboux transformations via Painleve analysis. Inverse Problems 13,1997,939-957.
    [35]Estevez P G. Darboux transformation and solutions for an equation in 2+1 dimen-sions. J. Math. Phys.40,1999,1406-1419.
    [36]Steeb W H, Kloke M, Spieker B M. Nonlinear Schrodinger equation, Painleve test, Backlund transformation and solutions. J. Phys. A 17,1984, L825-L829.
    [37]Li J, Tian B, Zhang H Q, et al. Darboux transformation and Grammian solutions for nonisospectral modified Kadomtsev-Petviashvili equation with symbolic compu-tation. Comrrmn. Theor. Phys.50,2008,411-416.
    [38]Gibbon J D, Radmore P, Tabor M, et al. The Painleve property and Hirota's method. Stud. Appl. Math.72,1985,39-63.
    [39]Gibbon J D, Tabor M. On the one- and two-dimensional Toda lattices and the Painleve property. J. Math. Phys.26,1985,1956-1960.
    [40]Gordoa P R, Estevez P G. Double singular manifold method for the mKdV equation. Theor. Math. Phys.99,1994,370-376.
    [41]杨伯君,赵玉芳.高等数学物理方法.北京邮电大学出版社,北京,2003.
    [42]Ablowitz M J, Kaup D J, Newell A C, et al. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [43]Lax P D. Integrals of nonlinear equations of evolution and solitray waves. Commun. Pure Appl. Math.21,1968,467-490.
    [44]Miura R M. Korteweg-de Vries equation and generalizations. I. A remarkable ex-plicit nonlinear transformation. J. Math. Phys.9,1968,1202-1204.
    [45]Jaulent M, Miodek I. Nonlinear evolution equations associated with energy depen-dent Schrodinger potentials. Lett. Math. Phys.1,1976,243-250.
    [46]Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys.19,1978,798-801.
    [47]Wadati M, Konno K, Ichikawa Y. New integrable nonlinear evolution equations. J. Phys. Soc. Jpn.47,1979,1698-1700.
    [48]B.H.阿诺尔德著,齐民友译.经典力学的数学方法.高等教育出版社,北京,2006.
    [49]冯康,秦孟兆.哈密尔顿系统的辛几何算法.浙江科学技术出版社,杭州,2003.
    [50]Arnold V I. Mathematical method of classical mechanics. Springer Press, Berlin, 1978.
    [51]程崇庆,孙义隧.哈密顿系统中的有序与无序运动.上海科技教育出版社,上海,1996.
    [52]李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用.科学出版社,北京,1994.
    [53]屠规彰.一族新的可积系及其Hamilton结构.中国科学12,1988,1243-1252.
    [54]Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian struc-ture of integrable systems. J. Math. Phys.30,1989,330-338.
    [55]Ma W X. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys. Lett. A 31,2003,72-76.
    [56]Ma W X. Integrable couplings of vector AKNS soliton equations. J. Math. Phys. 46,2005,033507:1-19
    [57]Hu X B. A powerful approach to generate new integrable systems. J. Phys. A 27, 1994,2497-2514.
    [58]Santini P M, Fokas A S. Recursion operators and bi-Hamiltonian structures in multi-dimensions (I). Commun. Math. Phys.115,1988,375-419.
    [59]Fokas A S, Santini P M. Recursion operators and bi-Hamiltonian structures in multi-dimensions (Ⅱ). Commun. Math. Phys.116,1988,449-474.
    [60]Zhang D J, Chen D Y. Hamiltonian structure of discrete soliton systems. J. Phys. A 35(33),2002,7225-7241.
    [61]Hydon P E. Conservation laws of partial difference equations with two independent variables. J. Phys. A 34,2001,10347-10355.
    [62]Fokas A S. Symmetries and integrability[J]. Astu. Appl. Math.77,1987,253-299.
    [63]Hanc J, Tuleja S, Hancova M. Symmetries and conservation laws:Consequences of Noether's theorem. Am. J. Phys.72,2004,428-435.
    [64]Whitham G B. Nonlinear dispersive waves. Proc. Roy. Soc.283A,1965,238-261.
    [65]季杰.若干离散可积系统的对称与反向AKNS方程的精确解[学位论文].上海大学,2007.
    [66]Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys.53, 1975,419-436.
    [67]Konno K, Sanuki H, Ichikawa Y H. Conservation laws of nonlinear evolution equa-tions. Prog. Theor. Phys.53,1974,886-889.
    [68]Tsuchida T, Wadati M. The coupled modified Korteweg-de Vries equations. J. Phys. Soc. Japan 67,1998,1175-1187.
    [69]Wadati M. Transformation theories for nonlinear discrete systems. Prog. Theor. Phys. Supp.59,1976,36-63.
    [70]Tsuchida T, Ujino H, Wadati M. Integrable semi-discretization of the coupled mod-ified KdV equations. J. Math. Phys.39,1998,4785-4813.
    [71]Hirota R. The direct method in soliton theory. Cambridge University Press, Cam-bridge,2004.
    [72]Webb G M, Zank G P. Painleve analysis of the two-dimensional Burgers equation. J. Phys. A 23,1990,5465-5477.
    [73]Webb G M, Zank G P. Painleve analysis of the three-dimensional Burgers equation. Phys. Lett. A 150,1990,14-22.
    [74]Hietarinta J. One-Dromion Solutions for Generic Classes of Equations. Phys. Lett. A 149,1990,113-118.
    [75]Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys.14,1973,805-809.
    [76]Liu S L, Wang W Z. Exact N-soliton solution of the modified nonlinear Schrodinger equation. Phys. Rev. E 48,1993,3054-3059.
    [77]Nakkeeran K. Optical solitons in erbium-doped fibers with higher-order effects and pumping. J. Phys. A 33,2000,4377-4381.
    [78]Freeman N C, Nimmo J J C. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations:The Wronskian technique. Phys. Lett. A 95, 1983,1-3.
    [79]Nimmo J J C, Freeman N C. Rational solutions of the Korteweg-de Vries equation in Wronskian form. Phys. Lett. A 96,1983,443-446.
    [80]Freeman N C. Soliton solutions of nonlinear evolution equations. IMA J. Appl. Math.32,1984,125-145.
    [81]Hirota R, Satsuma J. A variety of nonlinear network equations generated from the Backlund transformation for the Toda lattice. Prog. Theor. Phys. Suppl. 59,1976, 64-100.
    [82]Nimmo J J C. A bilinear Backlund transformation for the nonlinear Schrodinger equation. Phys. Lett. A 99,1983,279-280.
    [83]Darboux G. Sur une proposition relative aux equations lineaires. C. R. Acad. Sci. Paris 94,1882,1456-1459.
    [84]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海科学技术出版社,上海,2005.
    [85]Matveev V B, Salle M A. Darboux transformations and solitons. Springer Press, Berlin,1991.
    [86]Konno K, Wadati M. Simple derivation of Backlund transformation from Riccati form of a inverse method. Prog. Theor. Phys.53,1975,1652-1656.
    [87]Matveev V B. Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations Ⅰ. Lett. Math. Phys.3,1979, 217-222.
    [88]Matveev V B. Darboux transformation and explicit solutions of the Kadomtsev-Petviashvili equation, depending on functional parameters. Lett. Math. Phys.3,1979, 213-216.
    [89]Fan E G. A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys.42,2001,4327-4344.
    [90]Salle M A. Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type. Teoret. Mat. Fiz.53,1982,227-237.
    [91]Gu C H, Hu H S. A unified explicit form of Backlund transformations for generalized hierarchies of KdV equations. Lett. Math. Phys.11,1986,325-335.
    [92]Gu C H. On the Backlund transformations for the generalized hierarchies of com-pound MKdV-SG equations. Lett. Math. Phys.12,1986,31-41.
    [93]Babich V M, Matveev V B, Salle M A. A binary Darboux transformation for the Toda lattice. Zap. Nauch. Sem. LOMI145,1985,34-45.
    [94]Yu D L, Liu Q P, Wang S K. Darboux transformation for the modified Veselov-Novikov equation. J. Phys. A 35,2002,3779-3785.
    [95]Imai K. Dromion and lump solutions of the Ishimori-Ⅰ equation. Prog. Theor. Phys. 98,1997,1013-1023.
    [1]Wadati M, Sogo K. Gauge transformations in soliton theory. J. Phys. Soc. Jpn.52, 1983,394-398.
    [2]Fukuyama T, Kamimura K, Kresic-Juric S, Meljanac S. Gauge transformations and symmetries of integrable systems. J. Phys. A 40,2007,12227-12241.
    [3]Agrawal G P. Nonlinear fiber optics. Academic Press, New York,2003.
    [4]Lamb G L. Elements of Soliton Theory. Wiley Press, New York,1980.
    [5]McCall S L, Hahn E L. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett.18,1967,908-911.
    [6]Doktorov E V, Vlasov R A. Optical solitons in media with resonant and non-resonant self-focusing nonlinearities. Opt. Acta 30,1983,223-232.
    [7]Porsezian K, Mahalingam A, Sundaram P S. Solitons in the system of coupled Hirota-Maxwell-Bloch equations. Chaos, Solitons and Fractals 11,2000,1261-1264.
    [8]Nakkeeran K, Porsezian K. Solitons in an erbium doped nonlinear fiber with stimu-lated inelastic scattering. J. Phys. A 28,1995,3817-3823.
    [9]Porsezian K, Seenuvasakumaran P, Ganapathy R. Optical solitons in some deformed MB and NLS-MB equations. Phys. Lett. A 348,2006,233-243.
    [10]Porsezian K, Nakkeeran K. Optical soliton propagation in an erbium doped nonlin-ear lightguides with higher order dispersion. Phys. Rev. Lett.74,1995,2941-2944.
    [11]Nakkeeran K, Porsezian K. Coexistence of a self-induced transparency soliton and a higher order nonlinear Schrodinger soliton in an erbium doped fiber. Opt. Commun. 123,1996,169-174.
    [12]Ganapathy R, Kuriakose V C, Porsezian K. Soliton propagation in an erbium-doped fiber with and without a continuous wave background. Phys. Rev. E 68,2003, 066615:1-7.
    [13]Chau L L, Shaw J C, Yen H C. An alternative explicit construction of N-soliton solutions in 1+1 dimensions. J. Math. Phys.32,1991,1737-1743.
    [14]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海科学技术出版社,上海,2005.
    [15]Ablowitz M J, Kaup D J, Newell A C, Segur H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [16]Hasegawa A, Kodama Y. Solitons in Optical Communications. Oxford University Press, Oxford,1995.
    [17]Hizanidis K, Frantzeskakis D, Polymilis C. Exact travelling wave solutions for a generalized nonlinear Schrodinger equation. J. Phys. A 29 1996,7687-7703.
    [18]Shanmugha Sundaram P, Mahalingam A, Alagesan T. Solitary wave solution for inhomogeneous nonlinear Schrodinger system with loss/gain. Chaos, Solitons and Fractals 36,2008,1412-1418.
    [19]Porsezian K. Soliton models in resonant and nonresonant optical fibers. Pramana-J. Phys.57,2001,1003-1039.
    [20]Steeb W H, Euler N. Nonlinear evolution equations and Painleve test. World Sci-entific Press, Singapore,1989.
    [21]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.24,1983,522-526.
    [22]Dai C Q, Zhang J F. New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients.J. Phys. A 39,2006, 723-737.
    [23]Mahalingam A, Porsezian K, Mani Rajan M S, Uthayakumar A. Propagation of dispersion-nonlinearity-managed solitons in an inhomogeneous erbium-doped fiber system. J. Phys. A 42,2009,165101:1-12
    [24]Medvedev Sergei B, Shtyrina Olga V, Musher Semen L, Fedoruk Michail P. Path-averaged optical soliton in double-periodic dispersion-managed systems. Phys. Rev. E 66,2002,066607:1-6.
    [25]Nakkeeran K. Exact dark soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media. Phys. Rev. E 64,2001,046611:1-7.
    [26]陈登远.孤子引论.科学出版社,北京,2006.
    [27]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. Ⅱ. Normal dispersion. Appl. Phys. Lett.23,1973,171-172.
    [28]Abdullaev F K, Garnier J. Dynamical stabilization of solitons in cubic-quintic non-linear Schrodinger model. Phys. Rev. E 72,2005,035603(R):1-4.
    [29]Zakharov V E, Wabnitz S. Optical solitons-theoretical challenges and industrial perspectives. Springer Press, Berlin,1998.
    [30]Desyatnikov A S, Maimistoy A I. Conservation of the angular momentum for mul-tidimensional optical solitons. Quantum Electron.30,2000,1009-1013.
    [31]Adamatzky A. Collision Based Computing. Springer Press, Berlin,2002.
    [32]Lakshmanan M, Kanna T, Radhakrishnan R. Shape-changing collisions of coupled bright solitons in birefringent optical fibers. Rep. Math. Phys.46,2000,143-156.
    [33]Dinda P T, Moubissi A B, Nakkeeran K. A collective variable approach for dispersion-managed solitons. J. Phys. A 34,2001, L103-L110.
    [34]Rajendran S, Muruganandam P, Lakshmanan M. Nonstationary excitations in Bose-Einstein condensates under the action of periodically varying scattering length with time dependent frequencies. Physica D 227,2007,1-7.
    [35]Rothos V M, Bountis T C. The dynamics of coupled perturbed discretized NLS equations. Physica D 113,1998,326-330.
    [1]Nakkeeran K. Optical solitons in erbium-doped fibers with higher-order effects and pumping. J. Phys. A 33,2000,4377-4381.
    [2]Porsezian K. Soliton models in resonant and nonresonant optical fibers. Pramana-J. Phys.57,2001,1003-1039.
    [3]Porsezian K, Seenuvasakumaran P, Ganapathy R. Optical solitons in some deformed MB and NLS-MB equations. Phys. Lett. A 348,2006,233-243.
    [4]Porsezian K, Nakkeeran K. Optical soliton propagation in an erbium doped nonlinear lightguides with higher order dispersion. Phys. Rev. Lett.74,1995,2941-2944.
    [5]Nakkeeran K, Porsezian K. Coexistence of a self-induced transparency soliton and a higher order nonlinear Schrodinger soliton in an erbium doped fiber. Opt. Commun. 123,1996,169-174.
    [6]Ablowitz M J, Kaup D J, Newell A C, Segur H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [7]Dai C Q, Zhang J F. New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients. J. Phys. A 39,2006, 723-737.
    吲谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海科学技术出版社,上海,2005.
    [9]Wadati M, Sogo K. Gauge transformations in soliton theory. J. Phys. Soc. Jpn.52, 1983,394-398.
    [10]Porsezian K, Mahalingam A, Sundaram P S. Integrability aspects of NLS-MB sys-tem with variable dispersion and nonlinear effects. Chaos, Solitons and Fractals 12, 2001,1137-1143.
    [11]Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrodinger equations:Shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E 67,2003,046617:1-25.
    [12]Hisakado M, Iizuka T, Wadati M. Coupled hybrid nonlinear Schrodinger equation and optical solitons. J. Phys. Soc. Jpn.63,1994,2887-2894.
    [13]陈登远.孤子引论.科学出版社,北京,2006.
    [14]Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys.53, 1975,419-436.
    [15]Agrawal G P. Nonlinear fiber optics. Academic Press, New York,2003.
    [16]Nakkeeran K, Porsezian K. Solitons in an erbium doped nonlinear fiber with stim-ulated inelastic scattering. J. Phys. A 28,1995,3817-3823.
    [17]Lamb G L. Elements of Soliton Theory. Wiley Press, New York,1980.
    [18]McCall S L, Hahn E L. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett.18,1967,908-911.
    [19]Porsezian K, Mahalingam A, Sundaram P S. Solitons in the system of coupled Hirota-Maxwell-Bloch equations. Chaos, Solitons and Fractals 11,2000,1261-1264.
    [20]Doktorov E V, Vlasov R A. Optical solitons in media with resonant and Nnon-resonant self-focusing nonlinearities. Opt. Acta 30,1983,223-232.
    [1]王明亮.非线性发展方程与孤立子.兰州大学出版社,兰州,1990.
    [2]Dong H H, Gong X B. A (2+1)-dimensional multi-component AKNS integrable hi-erarchy and its expanding model. Chaos, Solitons and Fractals 33,2007,945-950.
    [3]Luo L. Darboux transformation and exact solutions for a hierarchy of nonlinear evolution equations. J. Phys. A 40,2007,4169-4179.
    [4]Liu X J, Zeng Y B, Lin R L. A new extended KP hierarchy. Phys. Lett. A 372,2008, 3819-3823.
    [5]Hone A N W, Novikov V, Verhoeven C. An integrable hierarchy with a perturbed Henon-Heiles system. Inverse Problems 22,2006,2001-2020.
    [6]陈登远.孤子引论.科学出版社,北京,2006.
    [7]Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation. J. Phys. A 36,2003,1931-1946.
    [8]Yuan W, Zhang Y F, Chao Y. A multi-component matrix loop algebra and the multi-component Kaup-Newell (KN) hierarchy, as well as its integrable coupling system. Chaos, Solitons and Fractals 31,2007,473-479.
    [9]Lamb G L. Elements of Soliton Theory. Wiley Press, New York,1980.
    [10]Bullough R K, Caudrey P J (Eds.)-Solitons. Springer Press, Berlin,1980.
    [11]Matveev V B, Salle M A. Darboux Transformations and Solitons. Springer Press, Berlin,1991.
    [12]Ma W X. An approach for constructing nonisospectral hierarchies of evolution equa-tions. J. Phys. A 25,1992, L719-L726.
    [13]Chen H H, Liu C S. Solitons in nonuniform media. Phys. Rev. Lett.37,1976, 693-697.
    [14]Gordoa P R, Pickering A, Zhu Z N. A 2+1 non-isospectral integrable lattice hierar-chy related to a generalized discrete second Painleve hierarchy. Chaos, Solitons and Fractals 29,2006,862-870.
    [15]Sun Y P, Tam H W. A hierarchy of non-isospectral multi-component AKNS equa-tions and its integrable couplings. Phys. Lett. A 370,2007,139-144.
    [16]Sun Y P, Tam H W. On the non-isospectral Kadomtsev-Petviashvili equation with self-consistent sources. Nonl. Anal.70,2009,1610-1619.
    [17]Zhou L J. The non-isospectral AKNS hierarchy with reality conditions restriction. J. Phys. A 41,2008,425201:1-7.
    [18]Ablowitz M J, Kaup D J, Newell A C, et al. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [19]Ablowitz M J, Kaup D J, Newell A C. et al. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.53,1974,249-315.
    [20]Matveev V B, Salle M A. Differential-difference evolution equations.Ⅱ (Darboux transformation for the Toda lattice). Lett. Math. Phys.3,1979,425-429.
    [21]Qin Z Y. A generalized Ablowitz-Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation. J. Math. Phys.49,2008,063505:1-14.
    [22]Oevel W, Zhang H, Fuchssteiner B. Master symmetries and multi-Hamiltonian for-mulations for some integrable lattice systems. Prog. Theor. Phys.81,1989,294-308.
    [23]Ragnisco O, Santini P M. A unified algebraic approach to integral and discrete evolution equations. Inverse Problems 6,1990,441-452.
    [24]Ma W X, Xu X X, Zhang Y F. Semi-direct sums of Lie algebras and discrete integrable couplings. J. Math. Phys.47,2006,053501:1-16.
    [25]Ablowitz M J, Biondini G, Prinari B. Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions. In-verse Problems 23,2007,1711-1758.
    [26]Blaszak M, Marciniak K. r-matrix approach to lattice integrable systems. J. Math. Phys.35,1994,4661-4682.
    [27]Suris Y B. New integrable systems related to the relativistic Toda lattice. J. Phys. A 30,1997,1745-1761.
    [28]Ohta Y, Hirota R. A discrete KdV equation and its Casorati determinant solution. J. Phys. Soc. Jpn.60,1991,2095-2095.
    [29]Mukherjee S, Choudhury A G, Chowdhury A R. Analytical Bethe ansatz, canonical Backlund transformation and Q-operator for a new discrete integrable heirarchy. Int. J. Theor. Phys.46,2007,1389-1402.
    [30]Gordoa P R, Pickering A, Zhu Z N. A nonisospectral extension of the Volterra hierarchy to 2+1 dimensions. J. Math. Phys.46,2005,103509:1-17.
    [31]Ablowitz M J, Ladikt J F. Nonlinear differential-difference equations. J. Math. Phys. 16,1975,598-603.
    [32]Tu G Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A 23,1990,3903-3922.
    [33]Toda M. Theory of Nonlinear Lattices. Springer, Berlin,1989.
    [34]Ruijsenaars S N. Relativistic Toda systems. Commun. Math. Phys.133,1990,217-247.
    [35]Li X Y, Xu X X, Zhao Q L. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem. Phys. Lett. A 372,2008,5417-5426.
    [36]Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to superinte-grable systems. J. Math. Phys.49,2008,033511:1-13.
    [37]Tamizhmani K M, Ma W X. Master symmetries from Lax operators for certain lattice soliton hierarchies. J. Phys. Soc. Jpn.69,2000,351-361.
    [38]Boiti M, Pempinelli F. Solution of the Cauchy problem for a generalized Sine-Gordon equation. Inverse Problems 13,1997,919-937.
    [39]Wu Y T, Geng X G. A new hierarchy integrable differential-difference equations and Darboux transformation. J. Phys. A 31,1998, L677-L684.
    [40]Merola I, Ragnisco O, Tu G Z. A novel hierarchy of integrable lattices. Inverse Problems 10,1994,1315-1334.
    [41]Levi D, Grundland A M. Discrete third order spectral problems and a new Toda type equation. J. Phys. A 35,2002, L67-L73.
    [42]Zhang D J, Chen D Y. Hamiltonian structure of discrete soliton systems. J. Phys. A 35(33),2002,7225-7241.
    [43]Villarroel J. On the solution to the inverse problem for the Toda chain. SIAM J. Appl. Math.59,1998,261-285.
    [44]Fan E G, Dai H H. A differential-difference hierarchy associated with relativistic Toda and Volterra hierarchies. Phys. Lett. A 372,2008,4578-4585.
    [45]Sun Y P, Chen D Y, Xu X X. A hierarchy of nonlinear differential-difference equa-tions and a new Bargmann type integrable system. Phys. Lett. A 359,2006,47-51.
    [46]Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys.53, 1975,419-436.
    [47]Sanuki H, Konno K. Conservation laws of Sine-Gordon equation. Phys. Lett. A 48. 1974,221-222.
    [1]Arnold V I. Mathematical method of classical mechanics. Springer Press, Berlin, 1978.
    [2]程崇庆,孙义隧.哈密顿系统中的有序与无序运动.上海科技教育出版社,上海,1996.
    [3]李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用.科学出版社,北京,1994.
    [4]陈登远.孤子引论.科学出版社,北京,2006.
    [5]Gardner C S. Korteweg-de Vries equation and generalizations. IV. the Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys.12(8),1971,1548-1551.
    [6]屠规彰.一族新的可积系及其Hamilton结构.中国科学12,1988,1243-1252.
    [7]Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys.30,1989,330-338.
    [8]Tu G Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys. A 23,1990,3903-3922.
    [9]Barnett M P, Gapitani J F, Gathen J, Gerhard J. Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem.100,2004,80-104.
    [10]Tian J, Zhou G. Exact bright soliton solution for a family of coupled higher-order nonlinear Schrodinger equation in inhomogeneous optical fiber media. Eur. Phys. J. D 41,2007,171-177.
    [11]Lin J, Ren B, Li H M, Li Y S. Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 77,2008, 036605:1-10.
    [12]Kim W S, Moon H T. Soliton-kink interactions in a generalized nonlinear Schrodinger system. Phys. Lett. A 266,2000,364-369.
    [13]Vasumathi V, Daniel M. Perturbed soliton-like molecular excitations in a deformed DNA chain. Phys. Lett. A 373,2008,76-82.
    [14]Yan Z Y, Zhang H Q. Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34,2001,1785-1792.
    [15]Yu F J. Integrable coupling system of fractional soliton equation hierarchy. Phys. Lett. A 373,2009,3730-3733.
    [16]Quispel G R W, Roberts J A G, Thompson C J. Integrable mappings and soliton equations. Phys. Lett. A 126,1988,419-421.
    [17]Tam H W, Hu X B. Two integrable differential-difference equations exhibiting soli-ton solutions of the Kaup-Kupershmidt equation type. Phys. Lett. A 272,2000, 174-183.
    [18]Nakazawa M. Kubota H, Suzuki K, Yamada E, Sahara A. Recent Progress in soliton transmission technology. Chaos 10.2002,486-514.
    [19]Abdullaev F K, Garnier J. Dynamical stabilization of solitons in cubic-quintic non-linear Schrodinger model. Phys. Rev. E 72,2005,035603(R):1-4.
    [20]Dai C Q, Zhang J F. New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients. J. Phys. A 39,2006, 723-737.
    [21]Kruglov V I, Peacock A C. Harvey J D. Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. Lett.90, 2003,113902:1-4.
    [22]McCall S L, Hahn E L. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett 18,1967,908-911.
    [23]Yang H X. Soliton solutions by Darboux transformation for a Hamiltonian lattice system. Phys. Lett. A 373,2009,741-748.
    [24]Porsezian K, Seenuvasakumaran P, Ganapathy R. Optical solitons in some deformed MB and NLS-MB equations. Phys. Lett. A 348,2006,233-243.
    [25]Gedalil M, Scott T C, Band Y B. Optical solitary waves in the higher order nonlinear schrodinger equation. Phys. Rev. Lett.78,1997,448-451.
    [26]Bullough R K, Caudrey P J (Eds.). Solitons. Springer, Berlin,1980.
    [27]Matveev V B, Salle M A. Darboux Transformations and Solitons. Springer, Berlin, 1991.
    [28]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.24,1983,522-526.
    [29]Porsezian K. Generalized x-dependent modified Korteweg-de Vries equation: Painleve analysis, Backlund transformation and soliton solutions. Phys. Lett. A 221, 1996,163-166.
    [30]Newell A C, Tabor M, Zeng Y B. A unified approach to Painleve expansions. Physica D 29,1987,1-68.
    [31]Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J. Phys. Soc. Jpn.47,1979,1698-1700.
    [32]Zenchuk A I, Santini P M. On the remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf-Cole transformation. J. Phys. A 41,2008,185209:1-28.
    [33]Steudel H, Kaup D J. Inverse scattering for an AKNS problem with rational reflec-tion coefficients. Inverse Problems 24,2008,025015:1-19.
    [34]Ablowitz M J, Kaup D J, Newell A C, Segur H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [35]Zhou L J. Darboux transformation for the non-isospectral AKNS hierarchy and its asymptotic property. Phys. Lett. A 372,2008,5523-5528.
    [36]Bi J B, Sun Y P, Chen D Y. Soliton solutions to the 3rd nonisospectral AKNS system. Physica A 364,2006,157-169.
    [37]Yuan W, Zhang Y F, Chao Y. A multi-component matrix loop algebra and the multi-component Kaup-Newell (KN) hierarchy, as well as its integrable coupling system. Chaos, Solitons and Fractals 31,2007,473-479.
    [38]Ji J, Zhou R G. Two types of new integrable decompositions of the Kaup-Newell equation. Chaos, Solitons and Fractals 30,2006,993-1003.
    [39]Zhu F B, Ji J, Zhang J B. Two hierarchies of multi-component Kaup-Newell equa-tions and theirs integrable couplings. Phys. Lett. A 372,2008,1244-1249.
    [40]Zeng Y B. Separability and dynamical r-matrix for the constrained flows of the Jaulent-Miodek hierarchy. Phys. Lett. A 216,1996,26-32.
    [41]Wazwaz A M. Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy. Phys. Lett. A 373,2009,1844-1846.
    [42]Geng X G, Cao C W, Dai H H. Quasi-periodic solutions for some (2+1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy. J. Phys. A 34,2001, 989-1004.
    [43]Bracken P. Integrable systems of partial differential equations determined by struc-ture equations and Lax pair. Phys. Lett. A 374,2010,501-503.
    [44]Xu X X. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family. Phys. Lett. A 374,2010,401-410.
    [45]Ma W X, Strampp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A 185,1994,277-286.
    [46]Nakayama K, Segur H, Wadati M. Integrability and the motion of curves. Phys. Rev. Lett.69,1992,2603-2606.
    [47]Abraham R, Marsden J E. Foundations of Mechanics. Benjamin/Cummings, New York,1980.
    [48]Tu G Z. On Liouville integrability of zero-curvature equations and the Yang hier-archy. J. Phys. A 22,1989,2375-2392.
    [49]Magri F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19,1978,1156-1162.
    [50]Chen D Y, Zhang D J. Lie algebraic structures of (1+1)-dimensional Lax integrable systems. J. Math. Phys.37,1996,5524-5538.
    [51]Fokas A S, Santini P M. Recursion operators and bi-Hamiltonian structures in multidimensions I. Commun. Math. Phys.115,1988,375-419.
    [52]Levi D, Neugebauer G, Meinel R. A new nonlinear Schrodinger equation, its hier-archy and N-soliton solutions. Phys. Lett. A 102,1984,1-6.
    [53]Zhu Z N, Huang H C, Xue W M, Wu X N. The bi-Hamiltonian structures of some new Lax integrable hierarchies associated with 3×3 matrix spectral problems. Phys. Lett. A 235,1997,227-232.
    [54]Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys.19,1978,798-801.
    [55]Konopelchenko B G. On the adjoint representation for spectral problems and its relation with the AKNS-method, gauge transformations and Riemann problem. Phys. Lett. A 93,1983,379-382.
    [56]Neugebauer G, Meinel R. General N-soliton solution of the AKNS class on arbitrary background. Phys. Lett. A 100,1984,467-470.
    [57]Chen D Y. Soliton Introduction. Science Press, Beijing,2006.
    [58]Fuchssteiner B, Fokas A S. Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D 4,1981,47-66.
    [59]Cantrijn F, Cortes J. Cosymplectic reduction of constrained systems with symmetry. Rep. Math. Phys.49,2002,167-182.
    [60]Fukuyama T, Kamimura K, Kresic-Juric S, Meljanac S. Gauge transformations and symmetries of integrable systems. J. Phys. A 40,2007,12227-12241.
    [61]Wadati M, Sogo K. Gauge transformations in soliton theory. J. Phys. Soc. Jpn.52, 1983,394-398.
    [62]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用.上海科学技术出版社,上海,2005.
    [63]Fan E G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys.41,2000,7769-7778.
    [64]Wang J. Darboux transformation and soliton solutions for the Boiti-Pempinelli-Tu (BPT) hierarchy. J. Phys. A 38,2005,8367-8377.
    [1]Wadati M, Sogo K. Gauge transformations in soliton theory. J. Phys. Soc. Jpn.52, 1983,394-398.
    [2]Fukuyama T, Kamimura K, Kresic-Juric S, Meljanac S. Gauge transformations and symmetries of integrable systems. J. Phys. A 40,2007,12227-12241.
    [3]Zakharov V E, Takhtadzhyan L A. Equivalence of the nonlinear Schrodinger equation and Heisenberg's ferromagnetic equation. Teor. Mat. Fiz,38,1979,26-35.
    [4]陈登远.孤子引论.科学出版社,北京,2006.
    [5]Ishimori Y. A relationship between the Ablowitz-Kaup-Newell-Segur and Wadati-Konno-Ichikawa schemes of the inverse scattering method. J. Phys. Soc. Jpn.51, 1982,3036-3041.
    [6]Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.53,1974,249-315.
    [7]Ablowitz M J, Kaup D J, Newell A C, Segur H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.31,1973,125-127.
    [8]Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys.19,1978,798-801.
    [9]Yuan W, Zhang Y F, Chao Y. A multi-component matrix loop algebra and the multi-component Kaup-Newell (KN) hierarchy, as well as its integrable coupling system. Chaos, Solitons and Fractals 31,2007,473-479.
    [10]Ji J, Zhou R G. Two types of new integrable decompositions of the Kaup-Newell equation. Chaos, Solitons and Fractals 30,2006,993-1003.
    [11]Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J. Phys. Soc. Jpn.47,1979,1698-1700.
    [12]Zeng Y B, Chen D Y, Li Y S. On the transformation of the potentials, integrable evolution equations and Backlund transformations. Chin. Ann. Math.B 6(4),1985, 385-393.
    [13]Chen D Y, Li Y S, Zeng Y B. Transformation operator between recursion operators of Backlund transformations (I). Sci. Sin. A 9(1),1985,907-922.
    [14]Nakazawa M, Kubota H, Suzuki K, Yamada E, Sahara A. Recent progress in soliton transmission technology. Chaos 10,2000,486-514.
    [15]Yang R C, Hao R Y, Li L, Li Z H, Zhou G S. Dark soliton solution for higher-order nonlinear Schrodinger equation with variable coefficients. Opt. Commun.242,2004, 285-293.
    [16]Abdullaev F K, Garnier J. Dynamical stabilization of solitons in cubic-quintic non-linear Schrodinger model. Phys. Rev. E 72,2005,035603(R):1-4.
    [17]Dai C Q, Zhang J F. New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients. J. Phys. A 39,2006, 723-737.
    [18]Kruglov V I, Peacock A C, Harvey J D. Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. Lett.90, 2003,113902:1-4.
    [19]McCall S L, Hahn E L. Self-induced transparency by pulsed coherent light. Phys. Rev. Lett.18,1967,908-911.
    [20]Lamb G L. Elements of Soliton Theory. Wiley Press, New York,1980.
    [21]Porsezian K, Seenuvasakumaran P, Ganapathy R. Optical solitons in some deformed MB and NLS-MB equations. Phys. Lett. A 348,2006,233-243.
    [22]Gedalil M, Scott T C, Band Y B. Optical solitary waves in the higher order nonlinear Schrodinger equation. Phys. Rev. Lett.78,1997,448-451.
    [23]Rogers C, Shadwick W F. Backlund transformation and their applications. Aca-demic Press, New York,1982.
    [24]Bullough R K, Caudrey P J (Eds.). Solitons. Springer Press, Berlin,1980.
    [25]Matveev V B, Salle M A. Darboux Transformations and Solitons. Springer Press, Berlin,1991.
    [26]Barnett M P. Capitani J F. Von Zur Gathen J, Gerhard J. Symbolic calculation in chemistry:Selected examples. Int. J. Quant. Chem.100,2004,80-104.
    [27]Yan Z Y, Zhang H Q. Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34,2001,1785-1792.
    [28]Zenchuk A I, Santini P M. The remarkable relations among PDEs integrable by the inverse spectral transform method, by the method of characteristics and by the Hopf-Cole transformation. J. Phys. A 41,2008,185209:1-28.
    [29]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.24,1983,522-526.
    [30]Newell A C, Tabor M, Zeng Y B. A unified approach to Painleve expansions. Physica D 29,1987,1-68.
    [31]Lax P, Phillips R S. Scattering Theory for Automorphic Functions. Princeton Uni-versity Press, Princeton,1976.
    [32]Zakharov V E. What is integrability. Springer Press, Berlin,1991.
    [33]Segal G, Wilson G. Loop groups and equations of KdV type. Publ. Math. IHES 61, 1985,5-65.
    [34]Schlegel M, Knoth O, Arnold M, Wolke R. Multirate Runge-Kutta schemes for advection equations. J. Comput. Appl. Math.226,2009,345-357.
    [35]Fan T H, Xie B, Tuinier R. Asymptotic analysis of tracer diffusivity in nonadsorbing polymer solutions. Phys. Rev. E 76,2007,051405:1-13.
    [36]Whitham G B. Linear and Nonlinear Waves. Wiley Press, New York,1974.
    [37]Fomichev S V, Zaretsky D F, Becker W. Laser absorption and third-harmonic gen-eration in free-electron nanofilms. Phys. Rev. B 79,2009,085431:1-21.
    [38]Clancy L J. Aerodynamics. Pitman Publishing Limited Press, London,1975.
    [39]Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation. J. Phys. A 36,2003,1931-1946.
    [40]Mjolhus E, Hada T. Nonlinear Waves and Chaos in Space Plasma. Terra Science Press, Tokyo,1997.
    [41]Ruderman M S. DNLS equation for large-amplitude solitons propagating in an arbitrary direction in a high-β Hall plasma. J. Plasma Phys.67,2002,271-276.
    [42]Ma W X, Zhou R G. On inverse recursion operator and tri-Hamiltonian formulation for a Kaup-Newell system of DNLS equations. J. Phys. A 32,1999, L239-L242.
    [43]Vekslerchik V E. The Davey-Stewartson equation and the Ablowitz-Ladik hierarchy. Inverse Problems 12,1996,1057-1074.
    [44]Dong H H, Gong X B. A (2+1)-dimensional multi-component AKNS integrable hierarchy and its expanding model. Chaos, Solitons and Fractals 33,2007,945-950.
    [45]Luo L. Darboux transformation and exact solutions for a hierarchy of nonlinear evolution equations.J. Phys. A 40,2007,4169-4179.
    [46]Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys.53, 1975,419-436.
    [47]Liu X J, Zeng Y B, Lin R L. A new extended KP hierarchy. Phys. Lett. A 372, 2008,3819-3823.
    [48]Hone A N W, Novikov V. Verhoeven C. An integrable hierarchy with a perturbed Henon-Heiles system. Inverse Problems 22,2006,2001-2020.
    [49]Ma W X. An approach for constructing nonisospectral hierarchies of evolution equa-tions. J. Phys. A 25,1992, L719-L726.
    [50]Chen H H, Liu C S. Solitons in nonuniform media. Phys. Rev. Lett.37,1976, 693-697.
    [51]Gordoa P R, Pickering A, Zhu Z N. A 2+1 non-isospectral integrable lattice hierar-chy related to a generalized discrete second Painleve hierarchy. Chaos, Solitons and Fractals 29,2006,862-870.
    [52]Sun Y P, Tam H W. A hierarchy of non-isospectral multi-component AKNS equa-tions and its integrable couplings. Phys. Lett. A 370,2007,139-144.
    [53]Yu F J. Non-isospectral integrable couplings of Ablowitz-Ladik hierarchy with self-consistent sources. Phys. Lett. A 372,2008,6909-6915.
    [54]Gordoa P R, Pickering A, Prada J. Non-isospectral scattering problems and trun-cation for hierarchies:Burgers and dispersive water waves. Physica A 345,2005, 35-47.
    [55]Sun Y P, Tam H W. On the non-isospectral Kadomtsev-Petviashvili equation with self-consistent sources. Nonl. Anal.70,2009,1610-1619.
    [56]Zhou L J. The non-isospectral AKNS hierarchy with reality conditions restriction. J. Phys. A 41,2008,425201:1-7.
    [57]Vinoj M N, Kuriakose V C, Porsezian K. Optical soliton with damping and fre-quency chirping in fibre media. Chaos, Solitons and Fractals 12,2001,2569-2575.
    [58]Uthayakumar A, Han Y G, Lee S B. Soliton solutions of coupled inhomogeneous nonlinear Schrodinger equation in plasma. Chaos, Solitons and Fractals 29,2006, 916-919.
    [59]Ning T K, Chen D Y, Zhang D J. The exact solutions for the nonisospectral AKNS hierarchy through the inverse scattering transform. Physica A 339,2004,248-266.
    [60]Kundu A. Integrable nonautonomous nonlinear Schrodinger equations are equiva-lent to the standard autonomous equation. Phys. Rev. E 79,2009,015601 (R):1-4.
    [61]Ning T K, Zhang W G, Chen D Y. Gauge transform between the first order non-isospectral AKNS hierarchy and AKNS hierarchy. Chaos, Solitons and Fractals 34, 2007,704-708.
    [1]Hirota R. The Direct Method in Soliton Theory. Cambridge University Press, Cam-bridge,2004.
    [2]Hirota R, Satsuma J. A simple structure of superposition formula of the Backlund transformation. J. Phys. Soc. Jpn.45,1978,1741-1750.
    [3]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons. Phys. Rev. Lett.27,1971,1192-1994.
    [4]Iwao M, Hirota R. Soliton solution of a coupled modified KdV equations. J. Phys. Soc. Jpn.,66,1997,577-588.
    [5]陈登远.孤子引论.科学出版社,北京,2006.
    [6]楼森岳,唐晓艳.非线性数学物理方法.科学出版社,北京,2006.
    [7]刘式达,刘式适.物理学中的非线性方程.北京大学出版社,北京,2002.
    [8]Nozaki K and Bekki N. Exact solutions of the Generalized Ginzburg-Landau Equa-tion. J. Phys. Soc. Jpn.53,1984,1581-1582.
    [9]Boiti M, Leon J J P, Martina L, Pempinelli F. Scattering of localized solitons in the plane. Phys. Lett. A 132,1988,432-439.
    [10]Boiti M, Martina L, Pashaev O K, Pempinelli F. Dynamics of multidimensional solitons. Phys. Lett. A 160,1991,55-63.
    [11]Radha R, Lakshmanan M. Dromion like structures in the (2+1)-dimensional break-ing soliton equation. Phys. Lett. A 197,1995,7-12.
    [12]Maruno K, Biondini G. Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogues. J. Phys. A 37,2004,11819-11839.
    [13]Soomere T. Fast ferry traffic as a qualitatively new forcing factor of environmental processes in non-tidal sea areas:A case study in Tallinn Bay, Baltic Sea. Environ. Fluid. Mech.5,2005,293-323.
    [14]Boiti M, Leon J, Pempinelli F. Spectral transform for a two spatial dimension extension of the dispersive long wave equation. Inverse Problems 3,1987,371-387.
    [15]Jaulent M, Miodek J. Nonlinear evolution equations associated with energy-dependent Schrodinger potentials. Lett. Math. Phys.1,1976,243-250.
    [16]Kaup D J. A higher-order water wave equation and its method of solution. Prog. Theor. Phys.54,1975,396-408.
    [17]Whitham G B. Linear and Nonlinear Waves. Wiley Press, New York,1974.
    [18]Lou S Y. Painleve test for the integrable dispersive long wave equation. Phys. Lett. A 176,1993,96-100.
    [19]Estevez P G, Gordoa P R. Darboux transformations via Painleve analysis. Inverse Problems 13,1997,939-957.
    [20]Tang X Y, Chen C L, Lou S Y. Localized solutions with chaotic and fractal be-haviours in a (2+1)-dimensional dispersive long-wave system. J. Phys. A 35,2002, L293-L301.
    [21]Tang X Y, Lou S Y. Abundant coherent structures of the dispersive long-wave equation in (2+1)-dimensional spaces. Chaos, Solitons and Fractals 14,2002,1451-1456.
    [22]Jimbo M, and Miwa T. Solitons and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ.19,1983,943-1001.
    [23]Elgarayhi A. New solitons and periodic wave solutions for the dispersive long wave equations. Physica A 361,2006,416-428.
    [24]Gibbon J D, Tabor M. On the one- and two-dimensional Toda lattices and the Painleve property. J. Math. Phys.26,1985,1956-1960.
    [25]Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys.14,1973,805-809.
    [26]Hirota R, Satsuma J. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn 40,1980,611-612.
    [27]Ma W X. Diversity of exact solutions to a restricted Boiti-Leon-Pempinelli disper-sive long-wave system. Phys. Lett. A 319,2003,325-333.
    [28]Dai C Q, Zong F D, Zhang J F. Nonpropagating solitary waves in (2+1)-dimensional generalized dispersive long wave systems. Int. J. Theor. Phys.45,2006,790-801.
    [29]Tang X Y, Lou S Y. Extended multilinear variable separation approach and multi-valued localized excitations for some (2+1)-dimensional integrable systems. J. Math. Phys.44,2003,4000-4025.
    [30]Tang X Y, Lou S Y, Zhang Y. Localized exicitations in (2+1)-dimensional systems. Phys. Rev. E 66,2002,046601:1-17.
    [31]Zhang J F, Han P. Localized coherent structures of the (2+1)-dimensional Broer-Kaup equations. Acta Phys. Sin.51,2002,705-711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700