用户名: 密码: 验证码:
磁悬浮轴承功率放大器及低功耗控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮轴承是利用可控电磁力使转子稳定悬浮的一种新型轴承,它消除了传统机械轴承存在的机械摩擦和磨损,具有转速高、寿命长、无需润滑、工况可监测等优点,自出现伊始,就受到了工业界、学术界的普遍关注和广泛研究。本文针对主动磁悬浮轴承中的开关功率放大器和低功耗控制器进行了研究。
     本文首先针对一种长转子磁悬浮轴承给出了节省轴向空间的轴向位移检测新方法。利用电涡流传感器对被测转子的台阶表面敏感的特性,通过将双电涡流传感器径向对称安装,达到测量轴向位移的目的。将两个传感器的输出进行数学运算处理消除了传感器线圈与导体间径向距离的变化对检测结果的影响。针对位移传感器工作时输出电压信号中存在的高斯噪声进行了时域和频域分析,结果表明,影响转子的噪声主要集中在低频段,采用卡尔曼滤波的方法对转子位移信号进行估计,降低了噪声对位移输出信号的影响,提高了信噪比。该检测方法应用在磁悬浮鼓风机中,结果表明传感器的输出电压之和与转子轴向位移之间具有良好的线性关系和灵敏度,实现了精确测量并达到了节省空间的目标。
     针对基于FPGA(Field Programmable Gate Array)控制的三电平脉冲宽度调制型开关功率放大器进行研究,建立了基于Simulink的数学模型,并利用Embedded MATLAB Function模块模拟了FPGA的工作流程,结果表明建立的系统模型能有效的反映开关功率放大器闭环控制系统的实际工作特性。提出了构造干扰观测器的方法对数字控制式开关功率放大器中存在的时间延时问题进行补偿,将前向通路中的时间延时作为扰动项等效到输入端,并构造干扰观测器对扰动项进行估计,在此基础上分析了负载参数扰动对时间延时补偿效果的影响。
     在以往两电平开关功率放大器非线性现象分析的基础上,研究了三电平开关功率放大器的非线性现象,针对磁悬浮轴承开关功率放大器全桥拓扑结构,研究了全桥变换器在工作过程中存在的混沌行为。首先采用频闪映射的方法,建立了全桥变换器的非线性模型,分析了其分岔稳定性和混沌特性,利用数值计算确定了电流控制比例系数、载波频率和功率电源电压的稳定区域,计算了李雅普诺夫指数验证混沌现象的存在,并确定了参数的稳定工作范围。
     为降低磁悬浮轴承静态电流损耗研究了零功率控制。针对零功率控制下控制系统刚度低的特点,采用位移反馈的方法提高控制系统的刚度,为了实现刚度和功耗的折中。本文研究的基于可变刚度的零功率控制在磁悬浮人工心脏泵中进行了实验验证,在满足磁悬浮人工心脏泵刚度和阻尼的情况下达到了降低功耗的结果。
Magnetic bearing is a new type of bearing that keep rotor suspended stably by controllable electromagnetic force. It eliminates friction and wear which exists in traditional mechanical bearings and has many advantages, such as high speed, long life, no lubrication, and which conditions can be monitored. Since it appeared at the beginning, it attractes the industry and academia's attention. This paper focuses on switching power amplifier and low power controller on magneitc bearing.
     First, in order to save axial space of long roter in magnetic bearing, a new method of axial displacement detection is described. The eddy current sensors are radial symmetrical installed and rotor axial displacement is measured by use of characteristic of eddy current sensor which sensitive to the stepped surface. According to mathematical arithmetic processing with two sensors output, it eliminates the influence on the detection result of the variation of the radial distance between the sensor coil and object. Gaussian noise which existes in the output voltage of sensors are analysed in time domain and frequency domain. The result shows that noise is main existed in low frequency domain. Kalman filter method is used to estimate the signal of rotor displacement, it reduces the influence of noise and improved the signal-to-noise ratio. This detection method used in maglev blower, the results show that it has a good linear relationship and sensitivity between the sum of two sensor output voltage and the rotor axial displacement, which realize accureate measurement and space-saving target.
     Three-level pulse width modulation switching power amplifier based on FPGA(Field Programmable Gate Array) is studied, Simulink-based mathematical model is established to simulate the FPGA in Embedded MATLAB Function module workflow. A method of construction disturbance observer is presented to compensate time delay in digital switching power amplifier, The time delay in the forward passage are equivalent to the input as a disturbance to compensate the time delay, and the disturbance is estimated by constructing a disturbance observer and switching power amplifier time delay compensation is realized and then the impact of the load parameter perturbation to the delay compensation effect is analysed.
     On the basis of the nonlinear phenomena analysis of two-level switching power amplifier, nonlinear phenomena in three-level switching power amplifier is studied. For the Full-bridge topology in the magnetic bearing three-level switching power amplifier, the existing chaotic behavior of full-bridge converter are studied. First, the a non-linear model of the full-bridge converter is established by using the stroboscopic map method, bifurcation stability and chaos characteristics are analyzed and the current control proportional coefficient, the carrier frequency and the stable region of the power supply voltage are calculated and determined by numerical computation, and Lyapunov exponent is calculated to verify the existence of chaos, which reveals the stable operating range of the parameter.
     In order to reduce the quiescent current loss of the magnetic levitation bearings, zero power control is studied. Displacement feedback method is used to improve the stiffness of control system to ovecome the characteristics of low stiffness in zero power control. In order to achieve compromise of stiffness and low power, switching function is designed. Zero power control based on variable stiffness is varified in maglev artificial heart pump, which reduces power consumption and has enough stiffness and damp.
引文
[1]虞烈,袁祟军译,谢友柏校.主动磁轴承基础、性能及应用[M].北京:新时代出版社,1997.
    [2]Gerhard Schweitzer, Eric H. Maslen等著,徐旸,张剀,赵雷译.磁悬浮轴承——理论、设计及旋转机械应用[M].北京:机械工业出版社,2012.
    [3]王军.磁悬浮轴承功率放大器建模及其软开关技术研究[D].南京航空航天大学,2010.
    [4]周丹.电磁轴承功率放大器关键技术研究[D].浙江大学,2011.
    [5]Maurice Brunet, Bruno Wagner. Innovation:Self-sensing technology, simplified mechanical design. In S2M news.2005.
    [6]Mizuno T, Nimiki H, Araki K. Counter-interfaced digital control of self-sensing magnetic suspension systems with hysteresis amplifiers [J]. JSME International Journal,1999,42(1):71-78.
    [7]熊剑.电磁轴承转子轴向位移的径向测量研究[D].清华大学,2004.
    [8]Yang S M, Lin C C. Performance of a single-axis controlled magnetic bearing for axial blood pump[C].42nd IAS Annual Meeting.2007:963-968.
    [9]Keith F J, Maslen E H, Humphris R R, et al. Switching amplifier design for magnetic bearings[C]. Proceedings of the Second International Symposium on Magnetic Bearings.1990:211-218.
    [10]李祥生.多桥臂磁轴承开关功率放大器调制技术研究[D].南京航空航天大学,2010.
    [11]臧晓敏,王晓琳,仇志坚,邓智泉.磁轴承开关功放中电流三态调制技术的研究[J].中国电机工程学报,2004,24(9):167-172.
    [12]臧晓敏,王晓琳,仇志坚,邓智泉.一种改进的基于采样-保持策略磁轴承用电流三态调制开关功放[J].电工技术学报,2004,10(19):85-90.
    [13]黄晓蔚,唐钟麟.一种用于有源磁悬浮轴承的基于采样—保持策略的开关型功率放大器[J].北京工业大学学报,1998,24(4):13-16.
    [14]薛斌.主动磁力轴承的嵌入式控制系统设计与研究[D].武汉理工大学,2007.
    [15]许峰.电磁轴承功率放大器的研究[D].山东科技大学,2003.
    [16]曾学明,徐龙祥,刘正埙.电磁轴承三电平PWM功率放大器研究[J].电力电子技术,2002,36(3):13-15.
    [17]张亮,房建成.电磁轴承脉宽调制型开关功放的实现及电流纹波分析[J].电工技术学报,2007,22(3):13-20.
    [18]苏义鑫,周祖德,胡业发等.磁悬浮轴承功率放大器的研究[J].武汉理工大学学报,2003,25(6):43-45.
    [19]杨作兴,赵雷,赵鸿宾.磁轴承MPW开关功率放大器的研究[J].电力电子技术,2000,34(5):23-25.
    [20]祝长生,蔡晓峰,蔡晓清.主动磁轴承开关功率放大器的设计[J].机电工程,2004,21(11):29-33.
    [21]周丹,祝长生.主动电磁轴承电流型开关功率放大器的调制技术[J].机械工程学报,2010,46(20):1-8.
    [22]Zhang J, Schulze J O, Barletta N. Synchronous three-level PWM power amplifier for active magnetic bearings[C]. Proceedings of the 5th International Symposium on Magnetic Bearing, Kanazawa, Japan.1996:277-282.
    [23]江征风,李承红,胡业发等.磁力轴承移相式PWM功率放大器的研究[J].武汉理工大学学报(信息与管理工程版),2004,26(3):28-31.
    [24]王军,徐龙祥.软开关技术在磁悬浮轴承功率放大器中的应用[J].电工技术学报,2009,24(6):85-90.
    [25]王军,徐龙祥.磁悬浮轴承并联谐振直流环节开关功率放大器[J].中国电机工程学报,2009(12):87-92.
    [26]周丹,祝长生.采用磁通观测器的主动电磁轴承用功率放大器[J].中国电机工程学报,2009(30):90-97.
    [27]周丹,王萌,祝长生.电磁轴承中磁通观测器的研究[J].中国电机工程学报,2011,31(36):153-161.
    [28]周丹,祝长生,王玎.电磁轴承用磁通控制型功率放大器力增益的研究[J]. 电工技术学报,2012,27(1):188-195.
    [29]Liu S, Mi C. Coupled electro-thermal modeling of magnetic bearing systems[C]. Tenth International Symposium on Magnetic Bearings.2006,21:23.
    [30]Tsiotras P, Wilson B C. Zero-and low-bias control designs for active magnetic bearings[J]. Control Systems Technology, IEEE Transactions on,2003,11(6): 889-904.
    [31]Tsiotras P, Arcak M. Low-bias control of AMB subject to voltage saturation: State-feedback and observer designs[J]. Control Systems Technology, IEEE Transactions on,2005,13(2):262-273.
    [32]Simpson P A. Virtually zero power linear magnetic bearing:U.S. Patent 3,937,148[P].1976-2-10.
    [33]龙志强,王水泉.磁悬浮系统中的零功率,大刚度控制研究[J].机电工程,1998,15(2):45-46.
    [34]Mizuno T, Takemori Y. A transfer-function approach to the analysis and design of zero-power controllers for magnetic suspension systems[J]. Electrical Engineering in Japan,2002,141(2):67-75.
    [35]Mizuno T. Vibration isolation system using zero-power magnetic suspension[C]. Preprints of 15th world congress IFAC.2002,955.
    [36]Hoque M E, Mizuno T, Ishino Y, et al. A three-axis vibration isolation system using modified zero-power controller with parallel mechanism technique[J]. Mechatronics,2011,21(6):1055-1062.
    [37]Hoque E, Mizuno T, Ishino Y, et al. A six-axis hybrid vibration isolation system using active zero-power control supported by passive weight support mechanism[J]. Journal of Sound and Vibration,2010,329(17):3417-3430.
    [38]Kim Y H, Kim K M, Lee J. Zero power control with load observer in controlled-PM levitation[J]. Magnetics, IEEE Transactions on,2001,37(4): 2851-2854.
    [39]Samiappan C, Mimateghi N, Paden B E, et al. Maglev apparatus for power minimization and control of artificial hearts[C]. CDC-ECC'05.2005: 5564-5569.
    [40]王春麟,陈维,胡业发.磁悬浮转子位移测量传感器的研究[J].武汉理工大学学报(信息与管理工程版),2007,29(7):63-66.
    [41]常健生.检测与转换技术[M].北京:机械工业出版社,1983.
    [42]王晓丽,段春霞,周阳.光电稳定跟踪装置框架间非线性解耦[J].电子测量与仪器学报,2010,24(11):999-1002.
    [43]葛研军,王刚军,蒋成勇,等.动力磁悬浮轴承转子位移检测系统[J].机械科学与技术,2009,28(2):149-153.
    [44]陈喆,韩丰田.转子悬浮式微静电电机的检测电路设计[J].电子测量与仪器学报,2009,23(7):73-77.
    [45]李德广,刘淑琴.基于谐波小波包算法的电磁轴承转子振动分析[C].全国第四届磁悬浮轴承学术会议论文集,上海,中国,2011:149-153.
    [46]Ji J C. Stability and Hopf bifurcation of a magnetic bearing system with time delays[J]. Journal of sound and vibration,2003,259(4):845-856.
    [47]Ji J C, Hansen C H. Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation[J]. Chaos, Solitons & Fractals,2005,25(2): 461-473.
    [48]Su W, Zheng K, Liu H, et al. Time delay effects on AMB systems[C]. Mechatronics and Automation,2009. ICMA 2009. International Conference on. IEEE,2009:4682-4686.
    [49]李德广,刘淑琴.磁悬浮轴承数字控制的稳定性分析及预补偿算法[J].电工技术学报,2011,26(6):108-112.
    [50]陶化成,卜建成,陆明,等.采样周期T和时间延迟T对系统稳定性的影响以及对延迟环节的校正方法[J].火力与指挥控制,1983,12(4):17-24.
    [51]俞文伯,栾胜,房建成.主动磁悬浮控制力矩陀螺的系统仿真[J].中国惯性技术学报,2003,11(4):27-31.
    [52]Ren Y, Fang J. Current-sensing resistor design to include current derivative in PWM H-bridge unipolar switching power amplifiers for magnetic bearings [J]. Industrial Electronics, IEEE Transactions on,2012,59(12):4590-4600.
    [53]Natori K, Ohnishi K. A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account[J]. Industrial Electronics, IEEE Transactions on,2008, 55(5):2152-2168.
    [54]Natori K, Tsuji T, Ohnishi K, et al. Time-delay compensation by communication disturbance observer for bilateral teleoperation under time-varying delay[J]. Industrial Electronics, IEEE Transactions on,2010,57(3):1050-1062.
    [55]刘淑琴,虞烈.电磁轴承驱动级电压与电流对转速和控制精度影响的研究[J].机械工程学报,1999,35(3):101-104.
    [56]Brockett R W, Wood J R. Understanding power converter chaotic behavior mechanisms in protective and abnormal modes[C]. Proc. Powercon.1984,11(4): 1-15.
    [57]Hamill D C, Jeffries D J. Subharmonics and chaos in a controlled switched-mode power converter[J]. Circuits and Systems, IEEE Transactions on,1988,35(8): 1059-1061.
    [58]Wood J R. Chaos:a real phenomenon in power electronics[C]. Applied Power Electronics Conference and Exposition,1989:115-124.
    [59]Deane J H B, Hamill D C. Instability, subharmonics, and chaos in power electronic systems[J]. Power Electronics, IEEE Transactions on,1990,5(3): 260-268.
    [60]Hamill D C, Deane J H B, Jefferies D J. Modeling of chaotic DC-DC converters by iterated nonlinear mappings[J]. Power Electronics, IEEE Transactions on, 1992,7(1):25-36.
    [61]Dranga O, Tse C K, Iu H H C, et al. Bifurcation behavior of a power-factor-correction boost converter [J]. International Journal of Bifurcation and Chaos, 2003,13(10):3107-3114.
    [62]Tse C K, Di Bernardo M. Complex behavior in switching power converters [J]. Proceedings of the IEEE,2002,90(5):768-781.
    [63]Basak B, Parui S. Exploration of bifurcation and chaos in buck converter supplied from a rectifier[J]. Power Electronics, IEEE Transactions on,2010, 25(6):1556-1564.
    [64]Iu H H C, Robert B. Control of chaos in a PWM current-mode H-bridge inverter using time-delayed feedback[J]. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,2003,50(8):1125-1129.
    [65]Robert B, Robert C. Border collision bifurcations in a one-dimensional piecewise smooth map for a PWM current-programmed H-bridge inverter[J]. International Journal of Control,2002,75(16-17):1356-1367.
    [66]Robert B, Iu H H C, Feki M. Adaptive time-delayed feedback for chaos control in a PWM single phase inverter[J]. J. Circuits Syst. Comput,2004,13(3): 519-534.
    [67]Feki M, Robert B, Iu H H C. A proportional plus extended time-delayed feed-back controller for a PWM inverter[C]. Power Electronics Specialists Conference,2004,5:3317-3320.
    [68]Robert B, Feki M, Iu H H C. Control of a pwm inverter using proportional plus extended time-delayed feedback[J]. International Journal of Bifurcation and Chaos,2006,16(1):113-128.
    [69]Asahara H, Kousaka T. Bifurcation analysis in a PWM current-controlled H-Bridge inverter[J]. International Journal of Bifurcation and Chaos,2011, 21(3):985-996.
    [70]Akatsu S, Torikai H, Saito T. Zero-cross instantaneous state setting for control of a bifurcating H-bridge inverter[J]. International Journal of Bifurcation and Chaos,2007,17(10):3571-3575.
    [71]王学梅,张波.H桥直流斩波变换器边界碰撞分岔和混沌研究[J].中国电机工程学报,2009(9):22-27.
    [72]王庆斌,刘萍,尤利文,等.电磁干扰与电磁兼容技术[M].机械工业出版社,1999.
    [73]胡寿松.自动控制原理(第三版)[M].北京:国防工业出版社,2001.
    [74]张立,赵永健.现代电力电子技术[M].北京:科学出版社,1992.
    [75]阮新波,严仰光.直流开关电源的软开关技术[M].北京:科学出版社,2006.
    [76]虞烈.可控磁悬浮转子系统[M].北京:科学出版社,2003.
    [77]王培清,李迪译.电子系统中噪声的抑制与衰减技术[M].北京:电子工业出 版社,2003.
    [78]王英剑,常敏慧,何希才.新型开关电源实用技术[M].北京:电子工业出版社,1999.
    [79]张建生.磁悬浮支承系统中数控技术及功率放大器的应用研究[D].上海大学,2006.
    [80]蔡晓峰.电磁轴承开关功率放大器的设计与研究[D].浙江大学,2004.
    [81]杨鹏辉.电磁轴承系统控制器和功率放大器的研究与设计[D].西安交通大学,1996.
    [82]刘迎澍,黄田.磁悬浮轴承研究综述[J].机械工程学报,2000,36(11):5-9.
    [83]刘淑琴.磁悬浮轴承技术在电主轴中的应用[J].机械工人:冷加工,2005(8):21-22.
    [84]张钢,虞烈,谢友柏.电磁轴承的发展与研究[J].轴承,1997,10(10):13-17.
    [85]郭树涛.主动磁悬浮轴承的工作原理及发展趋势[J].重庆科技学院学报(自然科学版),2006,8(4):47-48.
    [86]吕常智,范迪.电磁轴承中PWM开关功率放大器的实现[J].轴承,2006,18(6):1-5.
    [87]田希晖,房建成,刘刚.基于空间电压矢量PWM控制的磁轴承开关功放[J].系统工程与电子技术,2008,30(8):1598-1602.
    [88]陈世杰,王武斌,吕征宇.开关功率放大器拓扑及控制方案选择[J].电源世界,2007(6):5-8.
    [89]苏杭,陈东华,孙仲兵,等.一种无扇区判断SVPWM算法及其仿真研究[J].华电技术,2008,30(10):27-30.
    [90]陈国呈,孙承波,张凌岚.一种新颖的零电压开关谐振直流环节逆变器的电路分析[J].电工技术学报,2001,16(4):50-55.
    [91]张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响[J].清华大学学报(自然科学版),2001,41(6):23-26.
    [92]陈立群,谢友柏.电磁轴承开关功放设计[J].机电工程,1998,15(2):50-52.
    [93]李国栋,张庆春,梁迎春.电磁轴承的PWM功率放大器的研究[J].机电—体化,2005,2:33-36.
    [94]李旗.电磁轴承功放结构对系统性能的影响[J].西安理工大学学报,2004,20(2):215-218.
    [95]张亮,房建成.电磁轴承开关功放的谐波模型仿真与实验研究[J].中国电机工程学报,2007,27(21):95-100.
    [96]孙铁成,王高林,汤平华等.基于数字信号处理器控制的新型全桥移相式零电压零电流开关PWM DC-DC变换器[J].中国电机工程学报,2005,25(18):46-50.
    [97]Kim E S, Joe K Y, Kye M H, et al. An improved soft-switching PWM FB DC/DC converter for reducing conduction losses[J]. Power Electronics, IEEE Transactions on,1999,14(2):258-264.
    [98]Cho J G, Jeong C Y, Lee F C Y. Zero-voltage and zero-current-switching full-bridge PWM converter using secondary active clamp[J]. Power Electronics, IEEE Transactions on,1998,13(4):601-607.
    [99]王汝锡,李锦,刘进军.一种零电流转换软开关逆变器的损耗分析及其与硬开关逆变器的效率比较[J].电源技术应用,2007,1(10):7-13.
    [100]徐杰,董德智,洪乃刚.具有低开关损耗的电压空间矢量PWM算法研究[J].安徽工业大学学报(自然科学版),2008,25(1):58-62.
    [101]陈特放,刘雪春,孙海华.新型零电压全桥DC—DC变换器的仿真建模[J].计算机仿真,2007,24(9):237-240.
    [102]伊林林,郑晓兰,宁媛.零电压转换PWM直流变换器的研究[J].通信电源技术,2007,5(24):19-21.
    [103]李升,姜久春,张维戈.新型ZVZCS全桥变换器的研究及其改进[J].电力电子技术,2008,42(2):21-23.
    [104]张雷.新型ZVS软开关直流变换器的研究[J].电气开关,2007,10(5):21-23.
    [105]Shukla J, Fernandes B G. Quasi-resonant DC-link soft-switching PWM inverter with active feedback clamp circuit for motor drive application[J]. IEEE Proceedings of Electric Power Applications,2006,153(1):75-82.
    [106]Behera S, Das S P, Doradla S R. Quasi-resonant soft-switching inverter for low and high power factor loads[J]. IEE Proceedings-Electric Power Applications, 2004,151(4):451-459.
    [107]K. Zhang, L. Zhao,H. B. Zhao. Research on Control of Flywheel Suspended by AMBs with Significant Gyroscopic Effects[J]. Chinese Journal of Mechanical Engineering,2004,17(1):63-66.
    [108]蒋启龙,张昆,连级三.磁浮轴承系统的数学模型与控制分析[J].西南交通大学学报,1999,34(4):413-418.
    [109]丁祝顺,王养丽,彭震中.磁悬浮轴承的研究进展[J].电力情报,1999(4)13-16.
    [110]王军,徐龙祥.磁悬浮轴承开关功率放大器等效数学模型[J].电工技术学报,2010,25(4):53-58.
    [111]张波,曲颖BUCK DC/DC变换器分岔和混沌的精确离散模型及实验研究[J].中国电机工程学报,2003,23(12):99-103.
    [112]卢伟国,周雒维,罗全明,等.电压模式Buck变换器的分岔控制[J].电工技术学报,2009,24(4):133-138.
    [113]马西奎,李明,戴栋等.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报,2006,21(12):1-11.
    [114]胡文静,刘志珍,厉志辉.用于微弱信号检测的改进Duffing混沌电路性能分析[J].电机与控制学报,2011,15(9):80-85.
    [115]张波.电力电子变换器非线性混沌现象及其应用研究[J].电工技术学报,2005,20(012):1-6.
    [116]Chen J, He Z F, Qi X. A new control method for MIMO first order time delay non-square systems[J]. Journal of Process Control,2011,21(4):538-546.
    [117]孙鹏菊,周雒维,杜雄.具有延时补偿的占空比预测数字控制算法[J].电工技术学报,2010(005):123-128.
    [118]Bibian S, Jin H. Time delay compensation of digital control for DC switchmode power supplies using prediction techniques [J]. Power Electronics, IEEE Transactions on,2000,15(5):835-842.
    [119]王军,徐龙祥.磁悬浮轴承开关功率放大器等效数学模型[J].电工技术学报,2010,25(4):53-58.
    [120]Nussbaumer T, Heldwein M L, Gong G, et al. Comparison of prediction techniques to compensate time delays caused by digital control of a three-phase buck-type PWM rectifier system[J], Industrial Electronics, IEEE Transactions on,2008,55(2):791-799.
    [121]葛琼璇,李耀华,孔力.位置信号延时对牵引力控制性能的影响分析[J].电机与控制学报,2008,12(5):534-538.
    [122]张立,刘昆.基于FPGA的飞轮磁轴承一体化控制系统设计[J].电机与控制学报,2012,16(4):84-90.
    [123]Bozorg M, Davison E J. Control of time delay processes with uncertain delays: Time delay stability margins[J]. Journal of Process Control,2006,16(4): 403-408.
    [124]Xu J, Chung K W. Effects of time delayed position feedback on a van der Pol-Duffing oscillator [J]. Physica D:Nonlinear Phenomena,2003,180(1): 17-39.
    [125]Massimiliano V. Performance improvement of Smith predictor through automatic computation of dead time[J]. Yokogawa Technial Report,2003: 26-30.
    [126]Knospe C R. Active magnetic bearings for machining applications[J]. Control Engineering Practice,2007,15(3):307-313.
    [127]Kasarda M E, Marshall J, Prins R. Active magnetic bearing based force measurement using the multi-point technique[J]. Mechanics Research Communications,2007,34(1):44-53.
    [128]Changsheng Z, Zhiwei M. A PWM based switching power amplifier for active magnetic bearings[C]. Electrical Machines and Systems,2005,2:1563-1568.
    [129]Hosseini S H, Sabahi M, Goharrizi A Y. An improved topology of electronic ballast with wide dimming range, PFC and low switching losses using PWM-controlled soft-switching inverter[J]. Electric Power Systems Research, 2008,78(6):975-984.
    [130]Ming Z, Li B, Fengxiang W. Study on Novel Hybrid Type Power Amplifier for Magnetic Bearing[C]. Power System Technology and IEEE Power India Conference,2008:1-4.
    [131]Changsheng Z, Yang C, Dan Z, et al. A current-control mode three-level PWM switching power amplifier for active magnetic bearings[C]. Electrical Machines and Systems,2008:2217-2220.
    [132]Brkovic M, Pietkiewicz A, Cuk S. Novel soft-switching converter with magnetic amplifiers[C]. Industrial Electronics, Control, and Instrumentation,1993: 830-835.
    [133]LI Huiguang, LIU Heng, YU Lie. Effect of Time Delay in Velocity Feedback Loop on the Dynamics Behaviors of Magnetic Bearings system [C]. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, August 5-8,2007, Harbin, China,2007:2911-2916.
    [134]Yoneyama J. Robust stability and stabilization for uncertain discrete-time fuzzy systems with time-varying delay[C]. Asian Control Conference,2009: 1022-1027.
    [135]Grochmal T R, Lynch A F. Nonlinear control of an active magnetic bearing with bias currents:experimental study[C]. American Control Conference,2006: 4558-4563.
    [136]Schulz A, Schneeberger M, Wassermann J. A reliable switching amplifier for active magnetic bearings error detection strategies and measurement results [C]. Industrial Technology,2004,2:701-707.
    [137]Vuillemin R, Aeschlimann B, Kuemmerle M, et al. Low cost active magnetic bearings for hard disk drive spindle motors[C]. Proceedings of the Sixth International Symposium on Magnetic Bearings, Lancaster, USA,1998:3-9.
    [138]Zhao L, Zhang K, Zhu R, Zhao H. Experimental Research on a Momentum wheel Suspended by Active Magnetic Bearings[C]. Proceedings of the 8th International Symposium on Magnetic Bearings, Mito, Japan.2002:605-609.
    [139]Yim J S, Kim J H, Sul S K, et al. A Novel Cost-effective Scheme of Power Amplifier for AMB Using Space Vector Technology [C]. Proceedings of the 8th International Symposium on Magnetic Bearings, Mito, Japan,2002:101-105.
    [140]Mezaroba M, Martins D C, Barbi I. A ZVS PWM three-phase inverter with active clamping technique using only a single auxiliary switch[C].2003 IEEE International Symposium on Industrial Electronics,2003,1:521-526.
    [141]Choi H S, Lee J H, Cho B H, et al. Analysis and design conside-rations of zero-voltage and zero-current-switching (ZVZCS) full bridge PWM converters[C]. IEEEAPEC, Texas, USA,2002.1835-1840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700