用户名: 密码: 验证码:
中子灵敏涂硼材料组合探测器及n/γ辐射场实验测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际辐射场中往往存在多种粒子,因此需要研发混合场测量装置和混合场测量技术。针对n/γ辐射场,本工作研制了一套宽量程、高灵敏度组合探测器,它由圆柱形硼衬正比计数管和平板型涂硼电离室组成。硼衬正比计数管用于工作在脉冲模式下监测小通量中子辐射场;涂硼电离室具有高灵敏度,用于工作在累积电流模式下测量大通量中子辐射场。
     本工作首先突破了涂硼中子探测器的瓶颈——实验室中子灵敏层硼膜制作技术,探测器经实验室调试和辐射场测试,获得了良好的中子测量特性、坪特性及灵敏度等参数。针对目前国内缺乏实验室浸脂涂硼中子灵敏层制作技术,本文以1,2-二氯乙烷为溶剂、Formvar树脂充当粘合剂,研发了两种简便、实用的硼膜涂抹工艺——浸涂和刷涂,并优化得出了最佳制作方案。浸涂中树脂和硼粉质量比最小值为5.0,而刷涂时最佳值为0.2。文中还研究了混合溶液的配制、浸涂、刷涂、恒温烘干等详细工艺过程,最后总结了两种工艺的优劣。
     经仿真分析、材料性能测试、机械设计和加工、系统组装、真空系统搭建、工作气体调试、实验室单元测试和组合测试等多个环节后,研制的圆柱形硼衬正比计数管实现了较好的特征参数。在100mCi的Am-Be中子源辐射场中,正比计数管充入0.4atm的P10气体后测得其坪长为100V,坪斜为13.2%/100V,工作电压为800V。硼衬正比计数管的主放输出脉冲宽度为1.26μs,脉冲上升时间是370ns,当计数率为1.0×10~5cps时对应脉冲堆积概率约3.6%。
     在100mCi的Am-Be中子源辐射场中,本工作研制的平板型涂硼电离室充入0.4atm的P10气体后在200V时已完全收集,电离室坪长为500V,坪斜为3.72%/100V。电离室在200V处的漏电流为0.2pA,中子灵敏度达1.0×10~(-15)A/(cm~(-2)·s~(-1))。在10mCi的γ源~(137)Cs辐射场中,电离室坪区的平均信号电流为1.23pA,而在活度均为10mCi的~(137)Cs和~(90)Sr的共同辐射场中为1.63pA。电离室γ灵敏度达9.0×10~(-16)A/(MeV cm~(-2)·s~(-1)),也可写为实用单位1.42×10~(-12)A/(R h~(-1))。
     本工作开发了简便、实用的实验室浸脂涂硼技术,无需大型实验平台便实现了中子灵敏层制作。目前国内涂硼电离室的漏电流通常在50~100pA量级,中子灵敏度在10-~(14)~10~(-13)A/(cm~(-2)·s~(-1))量级,γ灵敏度在10~(-12)~10-11A/(R h~(-1))量级,可知本工作电离室性能已达国内先进水平。此外本文还结合Bonner球测量技术,使组合探测器实现了中子能谱的测量。
There are always many kinds of particles in actual radiation field, which make it necessary todevelop the measuring devices and technology of mixed fields. Aiming at n/γ radiation field, acombined detector with wide measuring range and high sensitivity is developed in this work, which iscomposed of a cylindrical boron-lined proportional counter(BLPC) and a flat boron-lined ionizationchamber(BLIC). The BLPC is used to monitor the small flux neutron field when working in pulsemode; while the BLIC directs at the large flux neutron field when working in accumulative currentmode due to its high sensitivity.
     Above all, the laboratorial manufacturing technology of the neutron sensitive layer has beenbroken through in this work, which is a bottleneck of boron-lined neutron detectors. After debuggedin labs and tested in radiation fields, the detectors show good parameters of neutron measurement,plateau characteristics and sensitivities etc.. Considering the lack of domestic laboratorialresin-dipped boron coating technics currently, two simple and practical boron film coated technics aredeveloped, as well as the production programs are optimized. The technics are named as dip-coatedboron deposition(DCBD) and hand-painted boron deposition (HPBD), where Formvar resin is used asbinder and1,2-dichloroethane acts as solution. Experiments show that the smallest mass ratio ofFormvar resin and boron powder in DCBD is5.0, while the optimal value of that in HPBD is0.2. Inaddition, the preparation of the mixed solution, the dip-coated and hand-painted process, and thedrying by the thermostat are also detailed in this work. Finally the two technics have beensummarized and evaluated.
     After undergoing many segments, such as simulation, material performance test, machine designand process, system assembly, testing of vacuum system and working gas, unit test and combined testetc., the cylindrical BLPC showes good characteristics. In the neutron field of a100mCi Am-Besource, after0.4atm P10gas had been filled, the BLPC shows a plateau with the length is100V andthe slope is13.2%/100V, the operating voltage is800V. The width of the output pulse from theBLPC’s amplifier is1.26μs and the rise time is370ns. Working at the count rate of1.0×10~5count/s,the pulse pile-up probability of the BLPC is found to be about3.6%.
     In the neutron field of a100mCi Am-Be source, after0.4atm P10gas had been filled, the BLICshows a complete charge collection until200V, which results a500V plateau length with a slope of3.72%/100V. Leakage current of the BLIC at200V is0.2pA, which results a neutron sensitivity of1.0×10~(-15)A/(cm~(-2)·s~(-1)). In the gamma field of a10mCi~(137)Cs source, the average signal current at the plateau region is1.23pA, and it turns into1.63pA when a10mCi~(90)Sr source is subjoined. The gammasensitivity of the BLIC is9.0×10~(-16)A/(MeV cm~(-2)·s~(-1)), it can also be converted into conventional unit1.42×10~(-12)A/(R h~(-1)).
     A simple and practical laboratorial resin-dipped boron coating technics developed in this workrealize the coating of neutron sensitive layer without any large experimental platforms. Now theleakage current of domestic BLICs usually range from50to100pA, their neutron sensitivities are ofthe order of10~(-14)~10~(-13)A/(cm~(-2)·s~(-1)) and gamma sensitivities are10~(-12)~10-11A/(R h~(-1)). By comparisonwe can conclude that the BLIC made in this work reaches the advanced domestic level. Furthermore,the combined detector realizes the measurements of neutron energy spectrum by using Bonner Spheretechnique.
引文
[1] J. B cklin, F. Dittus, R. Ferreira Marques, et al. A large-area xenon gas scintillationproportional counter (GSPC) with timing information for the detection of low energy muonicX-rays. Nucl. Instrum. Methods,1980,176(1-2):105~109.
    [2] H. P. Von Arb, J. B cklin, F. Dittus, et al. A large-area xenon gas scintillation proportionalcounter (GSPC) with timing information for the detection of low energy X-rays. Nucl. Instrum.Methods,1983,207(3):429~435.
    [3] A. Policarpo. The gas proportional scintillation counter. Space Sci. Instrum.,1977,3:77~107
    [4] H. N. Ngoc, J. Jeanjean, H. Itoh, et al. A xenon high-pressure proportional scintillationcamera for X and γ-ray imaging. Nucl. Instrum. Methods,1980,172:603~608.
    [5] A. Peacock, B. G. Taylor, N. White, et al. The in-orbit performance of the EXOSAT gasscintillation proportional counter. IEEE T. Nucl. Sci.,1985,32:108~111.
    [6] V. P. Varvaritsa, I. V. Vikulov, V. V. Ivashov, et al. Proportional scintillation detectors. Instrum.Exp. Tech.,1992,35(5):745~764.
    [7]岳清宇,江有玲.高压电离室环境辐射剂量率仪.辐射防护,1986,6(1):29~33.
    [8]岳清宇.环境辐射照射量率的测量比对.原子能科学技术,1982,2:184~186.
    [9]胡正国,徐治国,肖国青,等.一台用于IMP重离子治癌线上的电离室.核技术,2007,30(2):139~142.
    [10] S. L. Li, Q. Wang, Y. C. Dong, et al. A set of ionization chamber telescope used indissipative heavy ion reaction measurement. High Energ. Phys. Nucl.,2004,28(4):1090~1093.
    [11]王金川,詹文龙,郭忠言,等.用于重离子核反应实验测量的纵向电场气体电离室.核电子学与探测技术,1994,14(3):135~139.
    [12]沈文庆,诸永泰,陈巨声,等.一台用于重离子核反应研究的大面积位置灵敏电离室.高能物理与核物理,1983,7(4):500~509.
    [13]魏志勇.辐射剂量学.哈尔滨:哈尔滨工程大学出版社,2010:37~86.
    [14]丁大钊,叶春堂,赵志祥,等.中子物理学(上).北京:原子能出版社,2005:41~95.
    [15] Dauphin, J. Duchene. Compteurs proportionnels à dép t de bore, à réponse rapide et longuedurée de vie, pour les ensembles de démarrage des réacteurs, CEA Report,1983:2299~2305.
    [16]陈国云,魏志勇,辛勇,等.涂硼电离室中子探测效率和灵敏度.原子能科学技术,2011,45(2):244~249.
    [17] F. K. Glenn. Radiation detection and measurement. Quebec:Quebec Printing,2000:521~530
    [18]杨佳音.反应堆中子分布与屏蔽设计研究,哈尔滨:哈尔滨工程大学,2010.
    [19]窦海峰,代君龙. SPRR-300反应堆大热柱内中子注量率及能谱分布.原子能科学技术,2006,40(5):559~562.
    [20]袁履正,刘嗣沛,张鹏飞.研究性重水堆中子通量测量.核动力工程,1981,2(4):19~22.
    [21]刘炯,张帆,张瑞.秦山核电二期工程反应堆控制系统设计.核动力工程,2003,24(2):231~234.
    [22]张建民.秦山三期CANDU核电厂的控制系统.核动力工程,1999,20(6):507~513.
    [23]王治国,岳升.西安脉冲堆控制棒控制监视系统.核动力工程,2002,23(6):24~26.
    [24]胡仁宇.用小电离室测量镭所放出的γ射线的剂量率.物理学报,1962,18(10):527~539.
    [25]李德平.测量气体放射性的电离室的灵敏度的估针.原子能科学技术,1963,1:53~55.
    [26]刘尊海. KAKTYC型微伦仪用电离室不饱和特性.原子能科学技术.1965,6:565~567.
    [27]郭川,常秀洪.改装微伦针KARTYC电离室作为测量高剂最率(700R/s)的仪器.原子能科学技术,1965,1:66~68.
    [28] S. A. Christer H gberg.测量222Rn用的电离室.国外放射性地质,1975,Z1:120~124.
    [29]丁健生.4π-γ高压电离室.辐射防护,1979,5:55~59.
    [30]安继刚,张静懿,谢长清,等. X射线电离室的研制.冶金自动化,1979,5:6~12.
    [31]春玉卿,刘乃荣.测量41Ar电离室的标定.原子能科学技术,1976,1:98~101.
    [32]李德平. γ电离室对不均匀辐射场的响应.辐射防护,1979,4:1~17.
    [33]安继刚.充气电离室的研制与应用.核电子学与探测技术,1981,2:50~52.
    [34]张廷华.充气(高压)电离室.核技术,1981,2:51~52.
    [35]李锦玉,李桂珍,刘天恩,等.用于环境辐射剂量测量的圆柱形高气压电离室对光子能量响应的测定.辐射防护,1983,3(6):430~434.
    [36]丁民德.测定环境天然本底辐射的高气压电离室.辐射防护,1980,1:11~16.
    [37]唐大申,缪庆文,薛世立.井型电离室的研制.核电子学与探测技术,1984,4(5):282~285.
    [38]金花,岳清宇.高压电离室灵敏度因子的刻度和估算.辐射防护,1984,4(6):412~417.
    [39]岳清宇,金花,江有玲.高压电离室环境辐射剂量率仪.辐射防护,1986,6(1):29~33.
    [40]丁建生,褚晨,杨留成.高气压井型电离室γ核素活度测量装置.核电子学与探测技术,1989,9(2):74~79.
    [41]李景云,毕全理,胡家成.用于防护级照射量实验寰标准的薄壁球形电离室.辐射防护,1989,9(6):431~437.
    [42]张仲纶,李风章. BPS型组织等效球形空腔电离室.辐射研究与辐射工艺学报,1984,2(2):52~58.
    [43]王明谦,管怀群,吴铁军.软X射线电离室的制作及性能测试.核技术,1987,3:16~18.
    [44]徐沟,刘乃贤,邹心才.一个用于中能X射线照射量基准的自由空气电离室.计量学报,1987,8(1):66~72.
    [45]唐掌雄.测量X和γ射线用的电离室的研究.核技术,1981,2:29~32.
    [46]谢程远,刘新民,张方圃, HD型核秤电离室物理性能检测.同位素,1990,1:20~21.
    [47]谢程远,刘新民,张方圃,等. HHD型核子秤电离室物理性能检测.核电子学与探测技术,1989,9(5):261~266.
    [48]陈宝林,周维妙,潭永康,等.4πγ电离室的直接测量方法.原子能科学技术,1989,23(3):51~54.
    [49]孟祥承,靳涛,黄建民,等.外推电离室及微机控制数据采集系统.核电子学与探测技术,1988,1:51~54.
    [50]方健伟,陈慧莉,袁良承等. β外推电离室的研制及性能测试.辐射防护,1988,1:458~462.
    [51] L. Robert.用于短射程粒子的外推电离室.辐射防护通讯,1987,2:51~58.
    [52]靳涛,周光文,张明健.电子和β射线两用外推电离室的研制.辐射研究与辐射工艺学报,1987,5(4):54~56.
    [53]孟香琴,林桂京.用于(n,γ)混合场吸收剂量测量的成对外推电离室.核技术,1983,2:10~13.
    [54]刘玉莲,杨大亭.用大面积平行板屏栅电离室谱仪测定水中α放射性核素.核电子学与探测技术,1988,2:115~117.
    [55]刘玉莲.300cm2平行板α屏栅电离室的研制.辐射防护,.1988,8(3):173~178.
    [56]夏益华,刘玉莲,杨大亭,等.大面积α屏栅电离室研制.辐射防护.1985,5(3):176~183.
    [57]蒋礼晋,温祝堂,钟炳南.用于中子剂量测量的电离室的光子灵敏度测定.核技术,1983,5:37~39.
    [58]孟香琴,张仲纶,李风章,等.成对电离室相对中子灵敏度的确定及在(n,γ)混合场中吸收剂量的测定.辐射防护,1983,8(8):161~167.
    [59]陈迪,郭勇,刘艳秋.用干中子吸收剂量测量的组织等效电离室.辐射防护,1983,8(6):401~410.
    [60]陈迪,骆亿生.组织等效电离室与国外几种同类电离室在中子场中的比对.计量学报,1986,7(3):223~225.
    [61]张有德,罗家治,朱崇全,等.测量(n,γ)混合场中子吸收剂量用的电离室的光子刻度.计量学报,1985,6(4):312~317.
    [62]安继刚,刘德绍.低活化堆用硼电离室结构材料的研究.原子能科学技术,1984,3:348~351.
    [63]陆双桐. BZD-4型中子电离室.核电子学与探测技术,1983,3(5):10~13.
    [64]李德平.球形电离室的一些特性.计量学报,1981,2(1):9~17.
    [65]师德周,陈勤.球形石墨电离室γ剂量仪.原子能科学技术,1982,6:719~721.
    [66]温祝堂,蒋礼晋.生物组织快中子吸收剂量的测定--双电离室方法的介绍.原子能农业应用,1982,3:61~64.
    [67]叶宗垣,刘宝星,陈进青.用带栅双电离室测量快中子引起235U裂变碎片动能分布.原子能科学技术,1982,2:129-137.
    [68]薛世立.测厚电离室的研制.核电子学与探测技术,1988,8(6):327~329.
    [69]柳卫平,周书华,白希祥,等.裂变电离室系统时间性能的改进.原子能科学技术,1988,22(5):603~605.
    [70]李松林,胡晓庆,诸永泰,等.一个新型的电离室望远镜.高能物理与核物理,1988,12(4):529~533.
    [71]鲁永杰,王月兴,马晓林,等.治疗级剂量仪在低剂量率测量中电离室的漏电流校正.核电子学与探测技术,1987,6:369~371.
    [72]金行星,李耀辉,孙国华.2π栅网电离室用于241Am溶液衰变率的绝对测量.原子能科学技术,1984,4:502~505.
    [73]张春舞.标准自由空气电离室的设计研究.暨南理医学报,1984,3:40~50.
    [74]刘仲清.核辐射工业仪表中β圆柱形电流电离室.核电子学与探测技术.1982,2(5):47~53.
    [75]沈文庆,诸永泰,陈巨声,等.一台用于重离子核反应研究的大面积位置灵敏电离室.高能物理与核物理,1983,7(4):500~509.
    [76]汪建清,姚艳玲.大面积屏栅电离室α谱仪的研制.中国原子能科学研究院年报,2000,0:76~77.
    [77]汪建清,佟伯庭,姚艳玲.大面积栅网电离室的研制.中国原子能科学研究院年报,1999,0:30~31.
    [78]韩洪银,包宗渝,陈锦华,等.一个适用于裂变关联实验的孪生屏栅电离室.原子能科学技术,1992,26(4):29~35.
    [79]唐国有,曲德成,仲文光,等.用双屏栅电离室测量快中子(n,α)反应的双微分截面.核技术,1994,17(3):129~135.
    [80]陈迎棠,齐卉荃,陈泽民,等.用于快中子引起带电粒子核反应研究的屏栅电离室及双参数测量系统.核电子学与探测技术,1995,15(2):72~78.
    [81]杨大亭,夏益华,刘玉莲,等.大面积α屏栅电离室的改进及应用.中国原子能科学研究院年报,1995,0:223~224.
    [82]张雪梅,陈泽民,梁伟.高气压屏栅电离室的调试和58Ni(n,p)反应双微分截面的试测.核技术,1999,22(1):11~16.
    [83]张国辉,唐国有.用屏栅电离室法和小立体角法测量样品中的238U核素数目.原子能科学技术,2000,34(6):487~492.
    [84]李忠英,张海黔.用外推电离室绝对测定电子束吸收剂量.核技术,1990,13(5):274~279.
    [85]靳涛,王密,吴进争,等. XW6012A型临床外推电离室剂量仪的研制.核技术,1994,15(4):239~244.
    [86]韩奎初.测量β射线和电子吸收剂量的外推电离室.核标准计量与质量,1995,3:27~29.
    [87]陈丽妹,刘新华.测量定向吸收剂量的外推电离室.辐射研究与辐射工艺学报,1996,14(1):17~23.
    [88]陈慧莉,姚小丽,杨俊武,等.用于测定β敷贴器表面剂量率的外推电离室.辐射防护,1996,16(6):423~429.
    [89]冯恩普,诸永泰,郭忠言,等.兰州重离子加速器的大面积电离室实验终端.高能物理与核物理,1991,15(5):442~449.
    [90]谭继廉,李惠林,张金霞.大体积多参数电离室.核电子学与探测技术,1994,14(4):204~211.
    [91]刘冠华,诸永泰,冯恩普,等.80cm大面积位置灵敏电离室探测器系统.核技术,1994,17(2):88~92.
    [92]于哀,柳卫平.具有高能量分辨大灵敏面积电离室的ΔE-E望远镜.原子能科学技术,1995,29(2):189~192.
    [93]林承键.紧凑的多路ΔE-E电离室望远镜系统.原子能科学技术,1997,31(2):106~113.
    [94]姜山,蒋落生,郭宏.一台锯齿形阳极位置灵敏电离室.核电子学与探测技术,1996,16(5):374~376.
    [95]祁中,郭忠言,詹文龙,等.放射性核次级束终端的大面积双叠层电离室.核电子学与探测技术,1998,18(2):136~138.
    [96]韩奎初.测量照射量(空气比释动能)的空腔电离室.核标准计量与质量,1995,1:33~35.
    [97]韩奎初.测量照射量(空气比释动能)的自由空气电离室.核标准计量与质量,1994,2:38~40.
    [98]张春舞,张葡青.空腔电离室的设计.暨南大学学报(自然科学版),1995,16(3):48~55.
    [99]李景云,侯金兵,郭文.10-100KeV自由空气电离室.中国核科技报告,1997:1~12.
    [100]贾文懿,许必文,苗放.便携式常压空气脉冲电离室α辐射仪的研制.地球物理学报,1990,33(3):356~361.
    [101]黄才进,郑汉麟,朱建芳,等.薄窗充气电离室的密封技术.工艺与设备,2000,10:11~13.
    [102]王明谦,施启存,孙金华.高气压大型电离室的制作和性能测试.核技术,1993,16(1):19~23.
    [103]王明谦,孙金华,施启存,等.高气压大型电离室灵敏度、探测效率和长期稳定性的测量.核电子学与探测技术,1993,13(6):369~372.
    [104]王明谦,孙金华,施启存.高气压电离室及其信号输出电路的温度效应的研究.核技术,1993,16(3):166~168.
    [105]王金川,詹文龙,郭忠言.用于重离子核反应实验测量的纵向电场气体电离室.核电子学与探测技术,1994,14(3):135~139.
    [106]苟全补,李松林,卢俊,等.纵向电场电离室望远镜.兰州大学学报(自然科学版),1998,34(2):48~51.
    [107]卫增泉,领红梅,李文建.采用电离室测定重离子束的Bragg峰位.核技术,1996,19(1):18~20.
    [108]陈宝林,周维奸,谭永康,等.4πγ电离室活度测量标准装置.原子能科学技术,1991,25(1):25-31.
    [109]汪建清.4πγ高气压电离室核素活度测量标准装置.原子能科学技术,1994,28(3):231-235.
    [110]陈志强,王猛,詹文龙,等. RIBLL粒子鉴别气体电离室.高能物理与核物理,2000,24(9):858~863.
    [111]郭文琪,因长有,黄石,等. THDD-90型中子电离室的标定与考验.原子能科学技术,1994,28(2):129~132.
    [112]肖文明,沈水琴,李惠君.测厚电离室研制.原子能科学技术,1991,25(6):74~76.
    [113]杨国山,薛永库,蔡反攻.防护水平低能X射线次级标准电离室的研制.原子能科学技术,1994,28(5):460~463.
    [114]张方圃,田中青,谢程远,等.核子秤电离室的性能测试.计量技术,1990,5:12~14.
    [115]叶治国.剂量笔验电器-电离室组件研究.核电子学与探测技术,1998,18(3):221~223.
    [116]陈波,马玲,李福田,等.软X射线电离室绝对探测器的研制.自然科学进展-国家重点实验室通讯,1992,4:373~375.
    [117]薛永库,蔡反攻,杨国山,等.新型碳纤维透射电离室.辐射防护.1994,14(6):463~466.
    [118]卫增泉,领红梅,李文建.采用电离室测定重离子束的Bragg峰位.核技术,1996,19(1):18~20.
    [119]薛洪兴.改善圆筒形射线电流电离室饱和特性的方法.物理学报,1997,26(10):624~626.
    [120]姜山,蒋私生,王询,等.一台用于AMS的鉴别同量异位素的气体电离室.原子能科学技术,1991,25(3):40~44.
    [121]张怀钦,邢雨敬,凡兰,等.内充气电离室相对测氡标准装置.原子能科学技术,1998,32(4):317~322.
    [122]张绍刚,于世平,刘原照,等.平行板电离室对全身皮肤电子束治疗的吸收剂量测量.中华放射医学与防护杂志,2000,20(1):60~63.
    [123]金花.球形电离室型周围剂量当量计的实验研究.辐射防护,1994,14(6):423~428.
    [124]李忠英,毛本将,张路.用电离室测定高水平60Coγ射线吸收剂量的实验研究.计量技术,1994,2:22~24.
    [125]于青玉,刘书焕,仲云红,等.235U裂变电离室法及金箔活化法测量热中子注量率的不确定度分析.原子能科学技术,2008,42(3):233~238.
    [126]刘毅娜,陈军,李春娟,等.238U裂变电离室测量25.5MeV中子注量率.原子能科学技术,2009,43(2):124~127.
    [127]李春娟,陈军,吴海成,等.238U裂变电离室修正因子及探测响应的蒙特卡罗模拟计算.原子能科学技术,2009,43(3):208~214.
    [128]周浩军,宋凌莉,李建胜,等.252Cf快电离室在核物理参数测量研究中的应用.核动力工程,2007,28(5):23~26.
    [129]顾先宝,黎光武,张文慧,等.薄壁快脉冲252Cf裂变电离室的研制及性能测试.原子核物理评论,2009,26(1):37~40.
    [130]李建胜,张翼.利用252Cf快电离室裂变射线测量NaI(Tl)定时精度.核电子学与探测技术,2010,30(6):768~770.
    [131]张国辉,唐国有,陈金象.用屏栅电离室测量6Li(n,t)4He反应微分截面.核技术,2001,24(4):241~245.
    [132]袁镜,陈泽民,唐国有,等.用充Kr(CH4)的屏栅电离室测量64Zn(n,α)61Ni反应截面和角分布.核电子学与探测技术,2002,22(5):442~444.
    [133]倪建忠,代义华,李谋,等.基于屏栅电离室的双参数谱仪研制及其应用.原子能科学技术,2003,37(1):82~85.
    [134]张国辉,陈金象,唐国有,等.用屏栅电离室测量混合α放射性样品内多种同位素的原子数.同位素,2005,18(1-2):29~33.
    [135]杨璐金,余恒,陈玉华,等. α屏栅电离室谱仪系统的研制.核电子学与探测技术,2006,26(3):331~334.
    [136]王涛峰,朱丽萍,孟庆华,等.屏栅电离室+ΔE-E望远镜探测器系统.原子核物理评论,2007,24(3):204~207.
    [137]王红艳,肖雪夫.用蒙特卡罗方法模拟计算高气压电离室对60Co和137Cs源的空气吸收剂量率因子.原子能科学技术,2006,40(5):632~634.
    [138]王红艳,肖雪夫,马永福.用蒙特卡罗方法研究球形充气电离室的能量响应特性.原子能科学技术,2006,40(6):729~731.
    [139]刘春雨,韩伟实,李建平,等.高气压电离室的设计研究.核动力工程,2006,27(6):103~105.
    [140]王薇,王红艳.高气压充氙电离室电极结构的优化设计研究.核电子学与探测技术,2009,29(2):288~293.
    [141]刘怡.高气压电离室能量响应的模拟计算.辐射防护通讯,2009,29(1):34~36.
    [142]花正东,刘曙东,李建平.球型高压电离室壁厚对光子能量响应的蒙特卡罗优化设计.辐射防护通讯,2009,29(6):13~15.
    [143]程金生,李开宝,赵招罗,等. RT101型0.6cm3指型电离室的研制.中华放射医学与防护杂志,2004,24(3):275~277.
    [144]郑永明,龚岚,方方,等.一种新型指型电离室的研制.核电子学与探测技术,2009,29(5):1033~1035.
    [145]任秀艳,陈文奎,曾自强,等.6MeV探伤加速器大口径薄窗密封型穿透电离室.原子能科学技术,2004,38(6):544~546.
    [146]任秀艳,陈文奎.9MeV无损探伤电子直线加速器电离室研制.中国原子能科学研究院年报,2003,0:78~79.
    [147]王先运,刘世民,王鹏程,等.新型电离室的设计与应用研究.中华放射学杂志,2001,35(6):471~473.
    [148]李毅强,安继刚,邬海峰,等.一种新型小像素气体电离室阵列探测器.核电子学与探测技术,2002,22(3):237~239.
    [149]陈靖,张辉,杨元第.新型电离室剂量仪的研制.现代测量与实验室管理,2003,1:12~14.
    [150]王鹏程,毛建军. DAP电离室的研制及其特性研究.中国医学物理学杂志,2003,20(3):137~138.
    [151]张国华,方方,耿波,等. KZ-D02F型电离室α测氦仪的研制.核电子学与探测技术,2005,25(6):704~708.
    [152]赵为松,方方,张国华,等.低功耗电离室α测氨仪的设计.核电子学与探测技术,2005,25(6):761~763.
    [153]任晓娜,陈明,王国林,等.球形不锈钢电离室响应实验研究.辐射防护,2006,26(1):1~11.
    [154]任晓娜,陈明,王国林,等.电离室充不同气体的饱和特性实验研究.辐射防护,2005,25(6):362~368.
    [155]周洪军,王秋平,郑津津,等.小型气体电离室的设计和测试研究.光学精密工程,2006,14(3):351~355.
    [156]杨道广,宣肇祥. DL123型六节中子电离室研制.核电子学与探测技术,2008,28(3):456~461.
    [157]陈义珍,林敏,苏丹.平板电离室的研制及改进.原子能科学技术,2008,42(S1):380~384.
    [158]孟宪芳,林敏,叶宏生.一种新型多阳极电离室的研制.原子能科学技术,2008,42(S1):332~335.
    [159]朱静,陶世兴,汪启胜,等.小型位置灵敏电离室的设计.核电子学与探测技术,2010,30(4):490~494.
    [160]马国华.4πγ电离室放射性核素活度计.现代计量测试,2002,2:11~15.
    [161]曾勇,白立新,张一云. HPXe电离室和LaCl3(Ce)探测器在核材料鉴别中的应用.核电子学与探测技术,2007,27(2):331~334.
    [162]罗素明,李景云,何志坚,等.测量近距离治疗源活度的井型电离室研制.中华放射医学与防护杂志,2005,25(4):370~373.
    [163]方方,李丹,陈伟,等.常压空气网栅脉冲电离室测氡仪的研制.核电子学与探测技术,2010,30(1):121~123.
    [164]刘金汇,刘以思.充气电离室动态特性物理模型研究.原子能科学技术,2002,36(3):253~256.
    [165]周浩军,李建胜,郑春,等.电离室的多路输出方法.核动力工程,2007,28(5):40~42.
    [166]郭红霞,陈雨生,张义门.多层平板电离室测量不同材料界面剂量分布及其蒙特卡洛模拟.物理学报,2001,50(8):1545~1548.
    [167]章学恒,孙志宇,张宏斌.横向场电离室在RIBLL实验中的应用.高能物理与核物理,2007,31(4):384~387.
    [168]章学恒,孙志宇,李琛,等.横向场气体电离室信号模拟.原子能科学技术,2010,44(1):100~104.
    [169]王立强,安继刚,卿上玉.气体电离室时间响应函数的一种测量方法.核电子学与探测技术,2002,22(6):515~517.
    [170]陈义珍,林敏,陈克胜,等.透射电离室作为低能质子束流监测器的研究与应用.原子能科学技术,2011,45(4):495~499.
    [171]孟宪芳,曾心苗,林敏.一种多阳极电离室的性能测试及初步应用.原子能科学技术,2011,45(2):240~243.
    [172]孙文钊,陈立新,孙洪强,等.一种新型指形电离室工作特性的研究.中国医学物理学杂志,2009,26(2):1063~1066.
    [173]陈志强,詹文龙,郭忠言.一种用于RIBLL粒子鉴别的纵向场分条阳极双叠层电离室.核技术,2001,24(10):835~841.
    [174]金小海,白红升,樊红强,等.医用125I种子源表观活度的电离室测量.同位素,2004,17(1):43~46.
    [175]刘学,叶成钢,贾鹏.用于测量ICF靶丸内氚活度的电离室的设计.原子核物理评论,2010,27(3):304~308.
    [176]郭文,罗素明,魏可新,等.用于校准192Ir医用源的阱型电离室.原子能科学技术,2007,41(1):113~116.
    [177]程松,刘伯学,唐开勇,等.组织等效空腔电离室设计与饱和特性研究.核技术,2007,30(10):860~863.
    [178]孙吉兵,张玉敏.蒙特卡罗模拟计算电离室的能量响应特性.舰船防化,2008,1:28~32.
    [179]刘鉴常,孙吉宁,杨小元,等.球形石墨空腔电离室壁修正因子的Monte-Carlo模拟和实验测量.原子能科学技术,2006,40(6):723~728.
    [180]田建民,陈昌,徐美杭.用于CSNS和PA束流损失监控(BLM)系统的电离室设计参数的优化.核电子学与探测技术,2010,30(12):1569~1573.
    [181]李达,江新标,刘书焕,等.组织等效电离室性能模拟分析.原子能科学技术,2010,44(4):469~473.
    [182] R. K. Choudhury, S. S. Kapoor, D. M. Nadkarni, et al. Multi-parameter study of thelong-range α-particles emitted in the thermal neutron induced fission of235U. Nucl. Phys. A,1980,346(3):473~496.
    [183] S. G. Prussin, H. J. Harrell. Improved resolving time in n-γ coincidence measurements withhigh pressure3He ionization chambers. Nucl. Instrum. Methods,1980,173(3):505~509.
    [184] W. C. Sailor. Calculation of the energy dependent efficiency of gridded3He fast neutronionization chambers. Nucl. Instrum. Methods,1980,173(3):511~515.
    [185] V. I. Chepigin, S.V. Stepantsov, S. Nagy, et al. A double ionization chamber for fissionfragment detection. Nucl. Instrum. Methods,1981,220(2-3):419~424.
    [186] A. S. Barabash, A. A. Golubev, O.V. Kazachenko, et al. Investigation of somecharacteristics of a liquid methane pulsed ionization chamber. Nucl. Instrum. Methods,1981,186(3):525~531.
    [187] R. C. Extermann, G. F. Auchampaugh, J. D. Moses, et al. A cryogenic ionization chamberfor high-resolution fission cross-section measurements. Nucl. Instrum. Methods A,1981,189(2-3):477~484.
    [188] R. E. Howe, R. M. White, J. C. Browne, et al. Measurement of the prompt fission neutronmultiplicity from the245Cm(n,f) and242Am(n,f) reactions. Nucl. Phys. A,1983,407(1):193~207.
    [189] Rekha Govil, S. S. Kapoor, D. M. Nadkarni, et al. Measurements of fragment mass, chargeand kinetic energy distributions in thermal neutron fission of235U with a back-to-back ΔE-Edetector system. Nucl. Phys. A,1983,410(3):458~474.
    [190] A. Oed, P. Geltenbort, F. G nnenwein, et al. High resolution axial ionization chamber forfission products. Nucl. Instrum. Methods,1983,205(3):455~459.
    [191] J. H. Todd, G. J. Dixon. A parallel plate10B neutron detector. Nucl. Instrum. Methods,1984,219(3):575~581.
    [192] W. A. Fisher, S. H. Chen, D. Gwinn, et al. A fast neutron spectrometer for D-D fusionneutron measurements at the Alcator C tokamak. Nucl. Instrum. Methods,1984,219(1):179~191.
    [193] F. Hoenen. Spherical ionization chambers with improved energy resolution for neutronspectroscopy. Nucl. Instrum. Methods A,1984,223(1):150-154.
    [194] G. Pretzsch. Sensitivity of the electret ionization chamber to fast neutrons. Nucl. Instrum.Methods A,1984,223(1):155~157.
    [159] G. Pretzsch. Neutron sensitivity of a polyethylene-walled electret ionization chamber. Nucl.Instrum. Methods A,1985,234(1):183~190.
    [196] G. Pretzsch. Detection properties of the electret pulse chamber. Nucl. Instrum. Methods A,1986,251(2):386~389.
    [197] K. H. Beimer, O. Tengblad. Response function for3He neutron spectrometers. Nucl.Instrum. Methods A,1986,245(2-3):402~414.
    [198] F. Hoenen. Spherical pulse ionization chambers for determination of the ion temperature inDD fusion plasmas. Nucl. Instrum. Methods A,1987,259(3):529~537.
    [199] H. Ohm, S. G. Prussin. The analysis of delayed neutron energy spectra recorded with3Heionization chambers. Nucl. Instrum. Methods A,1987,256(1):76~90.
    [200] G. Makrigiorgos. Potential of gel walled high pressure ionization chambers for high energyneutron dosimetry. Nucl. Instrum. Methods A,1987,256(3):605~609.
    [201] W. C. Sailor, S. G. Prussin, M. S. Derzon. Monte Carlo calculation of the response functionfor a3He neutron spectrometer. Nucl. Instrum. Methods A,1988,270(2-3):527~536.
    [202] U. Quade, K. Rudolph, S. Skorka, et al. Nuclide yields of light fission products fromthermal-neutron induced fission of233U at different kinetic energies. Nucl. Phys. A,1988,487(1):1~36.
    [203] C. B. J rgensen. Simultaneous investigation of fission fragments and neutrons in252Cf(SF). Nucl. Phys. A,1988,490(2):307~328.
    [1204] M. Wagner, G. Winkler, H. Vonach, et al. Measurement of the cross section for thereaction93Nb(n, n′)93mNb at2.8MeV. Ann. Nucl. Energy,1988,15(7):363~373.
    [205] A. Oed, P. Convert, M. Berneron, et al. A new position sensitive proportional counter withmicrostrip anode for neutron detection. Nucl. Instrum. Methods A,1989,284(1):223~226.
    [206] J. E. Turner, S. R. Hunter, R. N. Hamm, et al. Digital characterization of recoilcharged-particle tracks for neutron measurements. Nucl. Instrum. Methods B,1989,40-41(2):1219~1223.
    [207] A. Lajtai, P. P. Dyachenko, V. N. Kononov, et al. Low-energy neutron spectrometer and itsapplication for252Cf neutron spectrum measurements. Nucl. Instrum. Methods A,1990,293(3):555~561.
    [208] J. T. Mihalczo, N. W. Hill, E. D. Blakeman, et al. Detection-system characteristics using252Cf ionization chambers. Nucl. Instrum. Methods A,1990,299(1-3):38~40.
    [209] G. Simon, J. Trochon, F. Brisard, et al. Pulse height defect in an ionization chamberinvestigated by cold fission measurements. Nucl. Instrum. Methods A,1990,286(1-2):220~229.
    [210] D. M. Gilliam, G. P. Lamaze, M. S. Dewey, et al. Mass assay and uniformity tests of borontargets by neutron beam methods. Nucl. Instrum. Methods A,1993,334(1):149~153.
    [211] M. S. Samant, R. P. Anand, R. K. Choudhury, et al. Back-to-back gridded ionizationdetector technique for the determination of fragment angle and its use for the measurement ofneutron angular distributions in235U (nth, f). Nucl. Instrum. Methods A,1993,332(1-2):239~244.
    [212] S. A. Wender, S. Balestrini, A. Brown, et al. A fission ionization detector for neutron fluxmeasurements at a spallation source. Nucl. Instrum. Methods A,1993,336(1-2):226~231.
    [213] T. Iguchi, N. Nakayamada, H. Takahashi, et al. Neutron spectrometry using a3He gasionization chamber. Nucl. Instrum. Methods A,1994,353(1-3):152~155.
    [214] H. W. Kugel, G. Ascione, S. Elwood et al. Measurements of tokamak fusion test reactorD-T radiation shielding efficiency. Fusion Eng. Des.,1995,28(0):534~544.
    [215] F. Casagrande, Xuan Li. The argon gas detectors for the fission measurement in the FEAT.Nucl. Instrum. Methods A,1996,372(1-2):307~310.
    [216] T. Sanami, M. Baba, I. Matsuyama, et al. Measurement of14N(n,p)14C cross section forkT=25.3keV Maxwellian neutrons using gridded ionization chamber. Nucl. Instrum. Methods A,1997,394(3):368~373.
    [217] M. K. Reed, M. C. Dobelbower, J. E. Woollard et al. Mixed-Teld dosimetry measurementof a target assembly for an accelerator-based neutron source for boron neutron capture therapy.Nucl. Instrum. Methods A,1998,419(1):160~166.
    [218] Y. M. Gledenov, R. Machrafi, V. I. Salatski et al. Testing an ionization chamber withgaseous samples and measurements of the (n,a) reaction cross sections. Nucl. Instrum. Methods A,1999,431(1-2):201~207.
    [219] O. Poujade. Modeling of the saturation current of a fission chamber taking into account thedistorsion of electric field due to space charge effects. Nucl. Instrum. Methods A,1999,433(3):673~682.
    [220] F. Vivès, F. J. Hambsch, H. Bax, et al. Investigation of the fission fragment properties ofthe reaction238U(n,f) at incident neutron energies up to5.8MeV. Nucl. Phys. A,2000,662(1):63~92.
    [221] T. Sanami, M. Baba, K. Saito, et al.(n, a) Cross-section measurement using a gaseoussample and a gridded ionization chamber. Nucl. Instrum. Methods A,2000,440(2):403~408.
    [222] P. Egelhof. Nuclear matter distributions of neutron-rich halo nuclei from intermediateenergy elastic proton scattering in inverse kinematics. Prog. Part. Nucl. Phys.,2001,46(1):307~316.
    [223] G. A. Tutin, V. P. Eismont. An ionization chamber with Frisch grids for studies ofhigh-energy neutron-induced fission. Nucl. Instrum. Methods A,2001,457(3):646~652.
    [224] S. D. Penn, E. G. Adelberger, B. R. Heckel, et al. A low-noise3He ionization chamber formeasuring the energy spectrum of a cold neutron beam. Nucl. Instrum. Methods A,2001,457(1-2):332~337.
    [225] S. Benck, F d’Errico, J. M. Denis, et al. In-phantom spectra and dose distributions from ahigh-energy neutron therapy beam. Nucl. Instrum. Methods A,2002,476(1-2):127~131.
    [226] S. R. Neumaier, G. D. Alkhazovc, M. N. Andronenko et al. Small-angle proton elasticscattering from the neutron-rich isotopes6He and8He, and from4He, at0.7GeV in inversekinematics. Nucl. Phys. A,2002,712(3-4):247~268.
    [227] F. Hoenena, G. Degenhardt, H. Klein, et al. Digital pulse processing with high-throughputand high-resolution neutron spectroscopy on D-D fusion plasmas with spherical ionizationchambers. Nucl. Instrum. Methods A,2003,498(1-3):470~481.
    [228] R. Kampmann, M. Marmotti, M. Haese-Seiller, et al. Design and performance of atwo-dimensional multi-wire neutron detector with a sensitive area of50×50cm2and a spatialresolution of~2×2mm2. Phys. B,2004,350:845~848.
    [229] A. Bolozdynya, A. Bolotnikov, J. Richards, et al. Detection of thermal neutrons incylindrical ionization chamber filled with high-pressure Xe+3He gas mixture. Nucl. Instrum.Methods A,2004,522(3):595~597.
    [230] R. Kampmann, M. Marmotti, M. H. Seiller, et al.2D-MWPC for the new reflectometerREFSANS/FRM-II performance of the prototype. Nucl. Instrum. Methods A,2004,529(1-3):342~347.
    [231] D. Indurthy, A. R. Erwin, D. A. Harris, et al. Study of neutron-induced ionization in heliumand argon chamber gases. Nucl. Instrum. Methods A,2004,528(3):731~740.
    [232] H. Tanaka, T. Ariyoshi, T. Uemura, et al. Study of the liquid-methane ionization chamber.Nucl. Instrum. Methods A,2005,539(3):613~621.
    [233] A. V. Dobrovolsky, G. D. Alkhazov, M. N. Andronenko, et al. Study of the nuclear matterdistribution in neutron-rich Li isotopes. Nucl. Phys. A,2006,766:1~24.
    [234] F. Gunsing, U. Abbondanno, G. Aerts et al. Status and outlook of the neutron time-of-flightfacility n_TOF at CERN. Nucl. Instrum. Methods B,2007,261(1-2):925~929.
    [235] S. Agosteo, S. Rollet, M. Silari et al. Dosimetry in radiation fields around high-energyproton accelerators. Radiat. Meas.,2008,43(2-6):1024~1032.
    [236] M. Calviani, P. Cennini, D. Karadimos, et al. A fast ionization chamber for fissioncross-section measurements at nTOF. Nucl. Instrum. Methods A,2008,594(2):220~227.
    [237] G. H. Zhang, H. Wu, J. G. Zhang, et al. Cross-section measurement for the10B(n, a)7Lireaction at4.0and5.0MeV. Appl. Radiat. Isotopes,2008,66(10):1427~1430.
    [238] J. Becker, E. Brunckhorst, R. Schmidt. Investigation of the neutron contamination in IMRTdeliveries with a paired magnesium and boron coated magnesium ionization chamber system.Radiother. Oncol.,2008,86(2):182~186.
    [239] W. Matysiak, W. V. Prestwich, S. H. Byun. Measurement of the thick target7Li(p,n)neutron source spectrum using a3He ionization chamber. Nucl. Instrum. Methods A,2008,592(3):316~324.
    [240] J. P. Santos. J. G. Marques, Photon dosimetry using Red4034Harwell dosemeters in apool-type research reactor. Radiat. Meas.,2008,43(2-6):1166~1169.
    [241] M. H. Tilehnoee, K. Hadad, Optimizing the performance of a neutron detector in the powermonitoring channel of Tehran research reactor(TRR). Nucl. Eng. Des.,2009,239(7):1260~1266.
    [242] M. Gadan, V. Crawley, S. Thorp, et al. Preliminary liver dose estimation in the new facilityfor biomedical applications at the RA-3reactor.Appl. Radiat. Isotopes,2009,67(7-8):S206~S209.
    [243] D. Rapisarda, A. García, ó. Cabello, et al. Feasibility of fission chambers as a neutrondiagnostic in the IFMIF-Test Cell. Fusion Eng. Des.,2009,84(7-11):1570~1574.
    [244] M. Miller, J. Quintana, J. Ojeda. New irradiation facility for biomedical applications at theRA-3reactor thermal column. Appl. Radiat. Isotopes,2009,67(7-8):S226~S229.
    [245] S. P. Chabod. Saturation current of miniaturized fission chambers. Nucl. Instrum. MethodsA,2009,598(2):578~590.
    [246] T. Otto. Response of the DIS-1personal dosimeter to neutrons, protons and other hadrons.Radiat. Meas.,2010,45(10):1564~1567.
    [247] K. Hirose, T. Ohtsuki, Y. Shibasaki, et al. Multi-layered parallel plate ionization chamberfor cross-section measurements of minor actinides. Nucl. Instrum. Methods A,2010,621(1-3):379~382.
    [248] A. Nohtomi, N. Sugiura, T. Itoh, et al. An alternative method of neutron-gamma mixed-field dosimetry by using paired ionization chambers. Nucl. Instrum. Methods A,2010,614(1):159~161.
    [249] G. H. Zhang, H. Wu, J. G. Zhang, et al. Cross section measurement fort he95Mo(n, a)92Zrreaction at4.0,5.0and6.0MeV. Appl. Radiat. Isotopes,2010,68(1):180~183.
    [250] G. Gambarini, G. Bartesaghi, J. Burian, et al. Fast-neutron dose evaluation in BNCT withFricke gel layer detectors. Radiat. Meas.,2010,45(10):1398~1401.
    [251] Y. H. Liu, Y. C. Lin, S. Nievaart, et al. The activation contamination in the metal-basedionization chambers as gamma dosimeters in the mixed filed dosimetry. Radiat. Meas.,2010,45(10):1427~1431.
    [252] G. H. Zhang, J. M. Liu, Z. H. Xue et al. Measurement of10B content in thin-film10Bsamples. Appl. Radiat. Isotopes,2011,69(6):858~861.
    [253] V. Kovaltchouk, R. Machrafi. Monte Carlo simulations of response functions for gas filledand scintillator detectors with MCNPX code. Ann. Nucl. Energy,2011,38(4):788~793.
    [254] W. Matysiak, D. R. Chettle, W. V. Prestwich, et al. Optimization of the proton chopper for7Li(p,n) neutron spectrometry using a3He ionization chamber. Nucl. Instrum. Methods A,2011,629(1):133~139.
    [255] D. A. Haas, M. Bliss, S. M. Bowyer, et al. Actinide-loaded glass scintillators for fastneutron detection. Nucl. Instrum. Methods A, Article in press.
    [256] Y. H. Liu, Y. C. Lin, Sander Nievaart, et al. Determination of the gamma-ray spectrum in astrong neutron/gamma-ray mixed field. Nucl. Instrum. Methods A, Article in press.
    [257] H. Koivunoro, H. Hyv nen, J. U. Simola, et al. Effect of the calibration in water and thebuild-up cap on the Mg(Ar) ionization chamber measurements. Appl. Radiat. Isotopes, Article inpress.
    [258] Z. H. Wang. C. L. Morris. Multi-layer boron thin-film detectors for neutrons. Nucl. Instrum.Methods A, Article in press.
    [259] Y. H. Liu, P. E. Tsai, Y. C. Lin, et al. Quality control and quality assurance procedures atthe THOR BNCT facility. Appl. Radiat. Isotopes, Article in press.
    [260] Y. C. Lin, Y. H. Liu, S. Nievaart, et al. Simulation of the Mg(Ar) ionization chambercurrents by different Monte Carlo codes in benchmark gamma fields. Nucl. Instrum. Methods A,Article in press.
    [261] A. L. Ziebell, B. Clasie, A. Wroe, et al. Solid state diode e Ionization chamber method formeasuring out-of-field neutron dose in proton therapy. Radiat. Meas., Article inpress.
    [262]金斗英,李文明,等.铍窗正比计数管的制造、性能及其应用.核技术,1979,4:76~78.
    [263]金斗英,李文明,姜仪锡,等.正比计数管的制造工艺.吉林大学自然科学学报,1981,4:104~106.
    [264]张玉江,杜兰存.用于天文卫星上的大面积铍窗正比计数管.核电子学与探测技术,1984,4(6):358~361.
    [265]徐君权,乐安全,韩发生.环氧封接铍窗正比计数管的寿命.核电子学与探测技术,1986,4:236~239.
    [266]肖文明,李惠君.球形含氢正比计数管的气体放大.核电子学与探测技术,1981,3:49~51.
    [267]肖文明,李惠君,陈玉华等.球形阴极含氢正比计数管的研制.核电子学与探测技术,1983,3(1):50~53.
    [268]肖文明,李惠君.含氢正比计数管氢气净化的新方法.核电子学与探测技术,1983,3(3):59~61.
    [269]肖文明,李惠君.小型圆柱形含氢正比计数管.原子能科学技术,1985,5:575~579.
    [270]金斗英,李文明,孟庆贤,等.正比计数管对超软X射线的探测.吉林大学自然科学学报,1981,2:71~76.
    [271]杜兰存,张玉江. X射线正比计数管的使用.核电子学与探测技术,1983,3(3):48~49.
    [272]许岚林,谷正海,谢萍.0.1-2KeV软X射线及薄窗流气式正比管的性能.核技术,1984,1:49~50.
    [273]赵眉,高建华,周本富.炮眼式X荧光分析仪用的正比计数管.核电子学与探测技术,1984,2:102~104.
    [274]梁伟圣,谢行恕,康士秀.软X射线流气正比计数管.中国科学技术大学学报,1985,S1:66~70.
    [275]杜兰存,张玉江.端窗类型的低能γ和X射线正比管.核电子学与探测技术,1985,5(2):69~72.
    [276]杨名格.封闭型超软X射线正比计数管的设计.光学机械,1985,1:15~25.
    [277]杨名格.封闭型超软X射线正比计数管.物理学报,1987,16(3):173~174.
    [278]王章智,吕为之,吴水龙,等.用单个正比计数管进行低本底αβ同时测量.核技术,1982,2:9~13.
    [279]许岚林,谷正海,谢萍.0.1-2KeV软X射线及薄窗流气式正比管的性能.核技术,1984,1:49~50.
    [280]许蓉珠,梁生柱,喻金火,等.放射气相色谱内流气正比计数管研制、性能研究及其应用.原子能科学技术,1985,1:113~114.
    [281]张凤祥,任伟唐,邵华,等.大面积流气式正比计数管及其实验装置.辐射防护通讯,1990,6:20~22.
    [282]任基.流气式正比计数管效率标定.成都气象学院学报,1990,1:88~93.
    [283]沈承德,姜漫涛.环形多丝反符合屏蔽正比计数管的研制.核技术,1986,3:22~24.
    [284]喻金火,林斐雯,肖文明,等.3He正比计数管的充气系统.原子能科学技术,1981,4:460~463.
    [285]董秀芳.计算正比管反冲质子谱的相关蒙特卡罗方法.原子能科学技术,1982,4:492~499.
    [286]吴应荣,赵长,占唐素.正比计数管效率坪在线测量.高能物理与核物理,1983,7(6):772~778.
    [287]彭慰先.对于单个初电子在正比计数管中产生的脉冲高度分布形状的研究.核技术,1985,3:34~35.
    [288]尹协锦,王正民.实验标定正比计数管的探测效率.原子能科学技术,1986,20(2):180~184.
    [289]徐芷昔,张良生,张英平,等.影响正比计数管脉冲幅度的气体因素.高能物理与核物理,1987,11(4):437~440.
    [290]李焕铁.正比管的气体放大.高能物理与核物理,1989,13(7):577~585.
    [291]李忠珍,万裕德.矩形截面正比管的等效圆柱形阴极半径.辐射防护,1990,10(4):272~278.
    [292]尚秀兰,刘桂梅,杜金增,等.铝壁硼沉积正比计数管.核电子学与探测技术,1990,10(4):211~215.
    [293]廖俊辉,陈元柏.一维位置灵敏热中子3He高气压正比计数管的研究.核电子学与探测技术,1992,12(3):146~150.
    [294]廖俊辉,谢一冈,陈元柏,等.用于热中子探测的正比管性能研究.核电子学与探测技术,2007,27(2):367~371.
    [295]许小明,祝利群.3He正比计数管性能研究.中国原子能科学研究院年报,2007,0:322~325.
    [296]杨巧荣,张雅玲,江历阳,等.3He正比计数管性能测试.中国原子能科学研究院年报,2010,0:221~222.
    [297]杭恒荣,于敏,宫一忠.高气压式正比管探测效率的模拟计算.紫金山天文台台刊,1991,10(1):33~39.
    [298]李文明,孙昕,徐立兴.低能X射线在正比管内产生脉冲幅度的分布.核电子学与探测技术,1992,12(3):146~150.
    [299]李文明,孙昕,马文军.低气体放大倍数下单电子和少数电子在正比管内产生的脉冲分布.吉林大学自然科学学报,1992,2:48~51.
    [300]祁兰英,沈华忠,冯攫,等.超软X射线流气式正比计数管.强激光与粒子束,1993,5(1):134~140.
    [301]于敏,杭恒荣.宇宙线通过正比管径迹长度的模拟计算.紫金山天文台台刊,1998,17(3):22~25.
    [302]李奇,常永福,解峰,等.内充气正比计数管系统绝对测量87Kr放射性活度浓度.原子能科学技术,2006,40(4):443~446.
    [303]向永春,龚建,李伟.气体正比计数管测量37Ar的效率研究.核技术,2007,30(10):828~832.
    [304]曹琳,亢武,向永春,等.内充气正比计数管测量37Ar活度中壁效应的理论研究.原子能科学技术.2008,42(12):1077~1081.
    [305]李奇,王世联,樊元庆,等.内充气正比计数管系统绝对测量135Xe活度.核电子学与探测技术,2008,28(3):486~499.
    [306]张凤翔,任伟.大面积流气式多丝正比计数管的空间电场强度分布及参数选择.辐射防护通讯,2006,26(2):15~20.
    [307]任熠,孟丹,邓长明,等.一种大面积流气式正比计数管的物理特性测试.核电子学与探测技术,2007,27(4):756~758.
    [308]赵永飞,谢行恕,贾成芝,等.正比计数管用于同步辐射扫描软6射线显微镜.核电子学与探测技术,1994,14(6):371~374.
    [309]李泰华,李新,胡纫兰,等.正比计数管用于射线荧光分析的研究.四川大学学报自然科学版,1996,33(3):262~265.
    [310]孔祥林,刘学庆.用正比计数管探测单电子的试验研究.东北电力学院学报,1997,17(3):55~59.
    [311]刘家华,房宗良.应用网络分析法分析正比计数管输出电压.现代电子技术,2008,1:127~128.
    [312]官锐,翁葵平,任兴碧.氦对正比计数管测量的影响研究.中国核科技报告,2009,CNIC-01964, CAEP-0232:118~125.
    [313] A. E. de Vries, H. Jansz, J. Kistemaker, et al. Detection of thermal neutrons by borazolefilled proportional counters. Phys. B,1954,20(7-12):1138~1140.
    [314] R. E. White. Polarisation in the elastic scattering of neutrons by helium. Nucl. Phys. A,1957,3(3):476~478.
    [315] C. P. Sikkema. Scattering of fast neutrons by neon in the energy region1.9to3.5MeV,.Nucl. Phys. A,1957,3(3):375~384.
    [316] K. Kudo, T. Kinoshita. Measurements of contaminated d+D neutrons in d+T neutron fieldsby using a3He proportional counter. Nucl. Instrum. Methods A,1986,249(2-3):339~340.
    [317] R, Alessandro, C. Francesco, L. Marco, et al. Underground neutron flux measurement.Nucl. Instrum. Methods A,1988,272(3):871~874.
    [318] S. Seuthe, H. W. Becker, C. Rolfs, et al. Construction and properties of a gamma-raydetector based on D(γ, n)H neutron counting. Nucl. Instrum. Methods A,1988,272(3):814~824.
    [319] E. Dietz, Matzke. M, W. Sosaat, et al. Neutron response of an3He proportional counter.Nucl. Instrum. Methods A,1993,332(3):521~528.
    [320] Y. Hajimé, Y. Hiroshi, I. Shigeru, A flat-type3He proportional counter for ultracold neutron(UCN) detection. Nucl. Instrum. Methods A,1994,343(2-3):573~582.
    [321] I. Brearley, A. Bore, N. Evans, et al. Some aspects of the use of proton recoil proportionalcounters for neutron spectrometry. Nucl. Instrum. Methods,1982,192(2-3):439~446.
    [322] K. Knauf. The response of a cylindrical proton recoil proportional counter to neutronsimpinging perpendicularly to its axis. Nucl. Instrum. Methods A,1991,305(2):419~422.
    [323] C. Konno, Y. Ikeda, K. Kosako, et al. Measurement and analysis of low energy neutronspectrum in a large cylindrical iron assembly bombarded by D-T neutrons. Fusion Eng. Des.,1991,18:297~303.
    [324] J. A. Becker. A real-time neutron beam monitor. Nucl. Instrum. Methods,1983,211(2-3):297~300.
    [325] A. Gavron, R. C. Byrd, W. C. Sailor, et al. A neutron detector for use in strong gammabackgrounds. Nucl. Instrum. Methods A,1990,290(1):139~144.
    [326] T. Kniss, C. Johnson. A multi-anode proportional counter. Nucl. Instrum. Methods A,1994,353(1-3):180~183.
    [327] A. J. Waker. Experimental uncertainties in microdosimetric measurements and an examina-tion of the performance of three commercially produced proportional counters. Nucl. Instrum.Methods A,1985,234(2):354~360.
    [328] L. S. Chuang, H. K. Wong. Fabrication of a multiwire tissue equivalent proportionalcounter and its use in14MeV neutron dosimetry. Nucl. Instrum. Methods A,1985,234(2):344~353.
    [329] R. Berliner. A large area position sensitive neutron detector. Nucl. Instrum. Methods,1981,185(1-3):481~495.
    [330] R. K. Crawford, J. R. Haumann, J. E. Epperson, et al. Experience with position-sensitiveneutron detectors at the intense pulsed neutron source. Nucl. Instrum. Methods A,1990,299(1-3):17~24.
    [331] H. Borst. Proportional counter telescopes for fast neutron spectrometry. Nucl. Instrum.Methods,1980,169(1):69~75.
    [332] D. W. Vehar. Neutron spectrum measurements using miniature proton recoil proportionalspectrometers. Nucl. Instrum. Methods,1981,190(2):351~364.
    [333] M. Kopp, K. Valentine, L. Christophorou, et al. New gas mixture improves performance of3He neutron counters. Nucl. Instrum. Methods,1982,201(2-3):395~401.
    [334] N. Koori, T. Goto, H. Konishi, et al. A position sensitive counter-telescope with largeangular acceptance for study of fast-neutron induced reactions. Nucl. Instrum. Methods,1983,206(3):413~419.
    [335] A. Kreft, J. Gyurcsak. Determining the thermal neutron absorption cross section of rocks.Appl. Radiat. Isotopes,1984,35(7):573~575.
    [336] S. Sakamoto. Temperature dependence of BF3proportional counters. Nucl. Instrum.Methods A,1994,353(1-3):160~163.
    [337] P. E. Fehlau, K. L. Coop. Neutron-chamber detectors and applications. Nucl. Instrum.Methods A,1990,299(1-3):29~32.
    [338] V. Vylet. Energy response of Bonner spheres to neutrons in parallel beam and point sourcegeometries. Nucl. Instrum. Methods A,1988,271(3):607~610.
    [339] V. Mares, G. Schraube, H. Schraube. Calculated neutron response of a Bonner spherespectrometer with3He counter. Nucl. Instrum. Methods A,1991,307(2-3):398~412.
    [340] N. Kobayashi, T. Michikawa. Correction factors of detection efficiency of proton recoilfast neutron detectors calculated by the Monte Carlo method. Nucl. Instrum. Methods A,1985,242(1):164~170.
    [341] J. S. Petler. The effect of charged particles produced in detector walls on the use of protonrecoil proportional counters for neutron spectrometry. Nucl. Instrum. Methods A,1985,228(2-3):425~431.
    [342] M. Oraby, R. P. Gardner. Investigation of an improved-sensitivity neutron-porosity oil-welllogging tool. Nucl. Instrum. Methods A,1990,299(1-3):674~681.
    [343] K. Weise, K. Knauf. Neutron response of a spherical proton recoil proportional counter.Nucl. Instrum. Methods A,1991,309(1-2):287~293.
    [344] L. A. Braby. Proportional counter as neutron detector. Radiat. Meas.,2001,33(3):265~267.
    [345] T. Bouassoule, F. Fernández, M. Tomás, et al. Monte Carlo calculations and experimentalcalibrations of Bonner sphere systems with a new cylindrical helium-3proportional counter.Radiat. Meas.,2001,34(1):199~202.
    [346] I. K. Bronica. Experimental study of gas mixtures in strong non-uniform electric fields.Radiat. Phys. Chem.,2001,61(3-6):477~478.
    [347] S. Masaoka, Y. Isozumi. Analysis of outputs from a Helium-filled proportional counter atliquid helium temperature. Nucl. Instrum. Methods A,2001,179(1):133~144.
    [348] R.I. Scherpelz. Neutron measurements at nuclear power reactors. Nucl. Instrum. Methods A,2002,476(1-2):400~404.
    [349] H. Muller, F. Fernández, L. Van Ryckeghem, et al. Monte Carlo calculations andexperimental results of Bonner spheres systems with a new cylindrical Helium-3proportionalcounter. Nucl. Instrum. Methods A,2002,476(1-2):411~415.
    [350] B. Wiegel, A. V Alevra. NEMUS-the PTB Neutron Multisphere Spectrometer:Bonnerspheres and more. Nucl. Instrum. Methods A,2002,476(1-2):36~41.
    [351] B. Jansky, E. Novák, Z. Turzík, et al. Neutron and gamma spectra measurements andcalculations in benchmark spherical iron assemblies with252Cf neutron source in the centre. Nucl.Instrum. Methods A,2002,476(1-2):358~364.
    [352] B. Tournier, C. Itié, R. Médioni, et al. Dosimetric and spectrometric neutron measurementsaround an annular vessel containing a plutonium nitrate fissile solution. Nucl. Instrum. MethodsA,2002,476(1-2):440~445.
    [353] G. Pichenota, S. Guldbakke, B. Asselineau, et al. Characterisation of spherical recoil protonproportional counters used for neutron spectrometry. Nucl. Instrum. Methods A,2002,476(1-2):165~169.
    [354] I. Busch, U. Keyser. Absolute measurement of the activity of222Rn using a proportionalcounter. Nucl. Instrum. Methods A,2002,481(1-3):330~338.
    [355] G. D. Badhwar, D. E. Robbinsl, F. Gibbons, et al. Response of a tissue equivalentproportional counter to neutrons. Radiat. Meas.,2002,35(6):551~556.
    [356] H. Tagziria, D. J. Thomas. Measurement of the241Am-Li radionuclide neutron sourcespectrum. Nucl. Instrum. Methods A,2003,510(3):346~356.
    [357] M. Farahmanda, A. J. J. Bos, J. Huizenga, et al. Design of a new tissue-equivalentproportional counter based on a gas electron multiplier. Nucl. Instrum. Methods A,2003,509(1-3):262-267.
    [358] P. M. Dighe, K. R. Prasad, et al. Boron-lined proportional counters with improved neutronsensitivity. Nucl. Instrum. Methods A,2003,496(1):154~161.
    [359] P. M. Dighe, S. K. Kataria,. Silver-lined proportional counter for detection of pulsedneutrons. Nucl. Instrum. Methods A,2004,523(1-2):158~162.
    [360] R. Kampmann, M Marmotti, M. Haese-Seiller, et al. Design and performance of atwo-dimensional multi-wire neutron detector with a sensitive area of50×50cm2and a spatialresolution of~2×2mm2. Phys. B,2004,350(1-3):845~848.
    [361] K. Kudo, N. Takeda, A. Uritani, et al. Ideal response function of a3He proportionalcounter to thermal neutrons determined by different length counters. Nucl. Instrum. Methods B,2004,213:305~309.
    [362] T. Horiguchi, T. Itoh, S. Ito, et al. Basic performance of a pressurized backgammon-typeposition-sensitive proportional counter for thermal neutrons. Nucl. Instrum. Methods A,2004,529(1-3):369~372.
    [363] G. Manzin, B. Guerard, F. A. F. Fraga, et al. A gas proportional scintillator counter forthermal neutrons instrumentation. Nucl. Instrum. Methods A,2004,535(1-2):102~107.
    [364] J. erny, Z. Dlouhy, Z. Dole al, et al. Neutron response function for a detector with3Hecounters for the0.39-1.54MeV neutron energy range. Nucl. Instrum. Methods A,2005,540(2-3):430~436.
    [365] G. Curzio, D. Mazed, R. Ciolini, et al. Effect of air on gas amplification characteristics inargon-propane (1%)-based proportional counters for airborne radon monitoring. Nucl. Instrum.Methods A,2005,537(3):672~682.
    [366] K. Mitev, P Segur, A. Alkaa, et al. Study of non-equilibrium electron avalanches,application to proportional counters. Nucl. Instrum. Methods A,2005,538(1-3):672~685.
    [367] M. Manolopouloua, M. Fragopoulou, S. Stoulos, et al. Studies on the response of3He and4He proportional counters to monoenergetic fast neutrons. Nucl. Instrum. Methods A,2006,562(1):371~379.
    [368] A. Ravazzani, A. Foglio Para, R. Jaime, et al. Characterisation of3He proportional counters.Radiat. Meas.,2006,41(5):582~593.
    [369] G ran L vestam. The recoil proton telescope in non-coincidence mode for neutron fluencemeasurements. Nucl. Instrum. Methods A,2006,566(2):609~614.
    [370] S. S. Desai. On studies of3He and isobutane mixture as neutron proportional counter gas.Nucl. Instrum. Methods A,2006,557(2):607-614.
    [371] R. Tayama, Y. Fujita, M. Tadokoro, et al. Measurement of neutron dose distribution for apassive scattering nozzle at the Proton Medical Research Center (PMRC). Nucl. Instrum.Methods A,2006,564(1):532~536.
    [372] M. R. Ibarra. Calculation of electron deposition in proportional counters. Appl. Radiat.Isotopes,2006,64(10-11):1193~1197.
    [373] V. A. Andreev, E. A. Ivanov, D. S. Ilyin, et al. Two-dimensional detector of thermalneutrons. Nucl. Instrum. Methods A,2007,581(1-2):123~127.
    [374] Sangeeta, K. Chennakesavulu, D. G. Desai, et al. Neutron flux measurements with aLi2B4O7crystal. Nucl. Instrum. Methods A,2007,571(3):699~703.
    [375] N. P. Hawkes. Pulse shape discrimination in hydrogen-filled proportional counters bydigital methods. Nucl. Instrum. Methods A,2007,574(1):133~136.
    [376] M. Deptuch. Performance of Ar+CO2filled proportional counters under high gas gain athigh working gas pressure. Nucl. Instrum. Methods A,2007,572(1):181~183.
    [377] H. J. Bleif, D. Clemens, A. Eads, et al. Square single-wire detectors for neutron diffractionstudies. Nucl. Instrum. Methods A,2007,580(2):1110~1114.
    [378] M. Anelli, G. Battistoni, S. Bertolucci, et al. Measurement and simulation of the neutronresponse and detection efficiency of a Pb-scintillating fiber calorimeter. Nucl. Instrum. MethodsA,2007,581(1-2):368-372.
    [379] D. Mazed. Experimental gas amplification study in boron-lined proportional counters forneutron detection. Radiat. Meas.,2007,42(2):245~250.
    [380] D. Mazed, R. Ciolini, G. Curzio, et al. A new active method for continuous radonm72easurements based on a multiple cell proportional counter. Nucl. Instrum. Methods A,2007,582(2):535~545.
    [381] T. S. Li, H. Li. A Monte Carlo design of a neutron dose-equivalent survey meter based on aset of3He proportional counters. Radiat. Meas.,2007,42(1):49-54.
    [382] A. Alkaa, P. Ségur. A fast technique for Monte Carlo simulation of the process of gasmultiplication in cylindrical proportional counters. Nucl. Instrum. Methods A,2007,580(1):161~164.
    [383] P. M. Dighe. New cathode design boron lined proportional counters for neutron areamonitoring application. Nucl. Instrum. Methods A,2007,575(3):461~465.
    [384] M. Benmosbah, P. Crovisier. Proton recoil spectra in spherical proportional counterscalculated with finite element and Monte Carlo methods. Nucl. Instrum. Methods A,2008,593(3):485~491.
    [385] P. J. Taddei, T. B. Borak. A comparison of the measured responses of a tissue-equivalentproportional counter to high energy heavy (HZE) particles and those simulated using the Geant4Monte Carlo code. Radiat. Meas.,2008,43(9-10):1498~1505.
    [386] I. Murata. Low-energy neutron spectrometer using position sensitive proportionalcounter-Feasibility study based on numerical analysis. Nucl. Instrum. Methods A,2008,589(3):445~454.
    [387] I. Murata, H Miyamaru, I. Kato, et al. On accelerator-based neutron sources and neutronfield characterization with low energy neutron spectrometer based on position sensitive3Hecounter. Appl. Radiat. Isotopes,2009,67(7-8):S288~S291.
    [388] W. Z. Wang, K. J. Kang. A modified neutron dose-equivalent meter for pulsed neutronradiation field. Nucl. Instrum. Methods A,2009,603(3):236~246.
    [389] S. Kopernya. Performance of proportional counters under high count rate, high gas gainand at high working gas pressure. Nucl. Phys. B-Proc. Sups.,2009,197:370-373.
    [390] S. Agosteo, M. Ferrarini. A passive rem counter based on CR39SSNTD coupled with aboron converter. Radiat. Meas.,2009,44(9-10):985-987.
    [391] Z. Debicki, K. Jedrzejczak, J. Karczmarczyk, et al. Thermal neutrons at Gran Sasso. Nucl.Phys. B-Proc. Sup.,2009,196:429-432.
    [392] P. M. Dighe, D. N. Prasad, K. V. Rao, et al. Anode wire mounting technique for hightemperature boron-10lined proportional counter. Nucl. Instrum. Methods A,2010,621(1-3):713~715.
    [393] A. J. Waker. A preliminary study of the performance of a novel design of multi-elementtissue equivalent proportional counter for neutron monitoring. Radiat. Meas.,2010,45(10):1309~1312.
    [394] S. Agosteo, M. Caresana, M. Ferrarini et al. A dual-detector extended range rem-counter.Radiat. Meas.,2010,45(10):1217~1219.
    [395] R. J. Tanner, L. G. Hager. A new design of neutron survey instrument. Radiat. Meas.,2010,45(10):1585~1588.
    [396] R. T. Kouzes, J. H. Ely, L. E. Erikson, et al. Neutron detection alternative sto3Hefornational security applications. Nucl. Instrum. Methods A,2010,623(3):1035~1045.
    [397] Stefano Agosteo. Overview of novel techniques for radiation protection and dosimetry.Radiat. Meas.,2010,45(10):1171~1177.
    [398] M. Manolopoulou, M. Fragopoulou, S. Stoulos, et al. Non-linearity of recoil pulse heightevents in He-3tubes. Nucl. Instrum. Methods A,2010,618(1-3):284~293.
    [399] M. Králík, K. Turek, V. Vondrá cek, et al. Measurement with Bonner spheres spectrometerin pulsed neutron fields. Radiat. Meas.,2010,45(10):1245~1249.
    [400] T. Yagi, T. Misawa, C. H. Pyeon, et al. A small high sensitivity neutron detector using awavelength shifting fiber. Appl. Radiat. Isotopes,2011,69(1):176~179.
    [401] S. Garny, V. Mares, H. Roos, et al. Measurement of neutron spectra and neutron doses atthe Munich FRM II therapy beam with Bonner spheres. Radiat. Meas.,2011,46(1):92-97.
    [402] K. D. Ianakiev, M. T. Swinhoe, A. Favalli, et al.6Li foil scintillation sandwich thermalneutron detector. Nucl. Instrum. Methods A,2011, Article in press
    [403] A. Lintereur, J. Ely.3He and BF3neutron detector pressure effect and model comparison.Nucl. Instrum. Methods A,2011, Article in press
    [404] A. J. Waker. An experimental study of the microdosimetric response of a graphite walledproportional counter in low energy neutron fields. Nucl. Instrum. Methods A,2011,Article inpress
    [405] S. L. Bellinger, R. G. Fronk, W. J. McNeil, et al. Enhanced variant designs andcharacteristics of the microstructured solid-state neutron detector. Nucl. Instrum. Methods A,2011, Article in press
    [406] K. Watanabe, J. Otsuka, M. Shigeyama, et al. Flat-response neutron detector using spatialdistribution of thermal neutrons in a moderator. Nucl. Instrum. Methods A,2011, Article in press
    [407] K. Tsorbatzoglou. Novel and efficient10B lined tubelet detector as a replacement for3Heneutron proportional counters. Nucl. Instrum. Methods A,2011, Article in press
    [408] Aslam, N. Qashua, A. J. Waker. Study of the effect of high dose rate on tissue equivalentproportional counter microdosimetric measurements in mixed photon and neutron fields. Nucl.Instrum. Methods A,2011, Article in press
    [409]李卫国,屠志健.电气设备绝缘试验与检测.北京:中国电力出版社,2006:7.
    [410]经福谦,谢盘海,王金贵.冲击压缩下聚四氟乙烯电阻率及冲击绝热线的实验研究.高压物理学报.1989,3(1):31-41.
    [411]王丽芳,马智强.直流绝缘子配方的研究.电瓷避雷器.2007,2:16-21.
    [412]郝素娥,张巨生. Pr, Mn改性BaTiO3陶瓷的制备及其PTC特性.稀有金属材料与工程.2008,37(4):821-824.
    [413] http://www.huafuly.cn/
    [414] http://13226739906.b2b.hc360.com or http://www.wzy97811.cn.alibaba.com
    [415] http://www.zkxpc.com/
    [416] http://free.99114.com/Index/348127.shtml
    [417] http://www.btmmf.com/
    [418] http://www.tungsten-moly.com/
    [419] http://gb.chinatungstens.com/index.html
    [420]卢希庭.原子核物理(修订版).北京:原子能出版社,2000:238,299.
    [421] H. Nanjo, T. bando, K. Hasuko, et al. Neutron sensitivity of thin dap chambers. NuclearInstruments and Methods A.2005,543:441-453.
    [422]凌球.核辐射探测.北京:原子能出版社,1992:45-70.
    [423]于群.原子核物理试验方法.北京:人民教育出版社,1961:216.
    [424] L. Zhang, H. Takahashi, N. Hinamoto, et al. Design of a hybrid gas proportional counterwith CdTe guard counters for14C dating system. Nucl. Instrum. Methods A,2002,478:431-434.
    [425] J. F. Ziegler. SRIM-2003. Nucl. Instrum. Methods B,2004,219-220:1027~1036.
    [426] W. Diethorn. US Atomic Energy Commision Report, NYO-66281956:28
    [427] R. S. Wolff. Measurement of the gas constants for various proportional-counter gasmixtures. Nucl. Instrum. Methods,1974,115(2):461-463.
    [428] G. F. Knoll. Radiation Detection and Measurement. New York:Wiley Press,1989:195.
    [429]朱启明,陈元柏,金艳,等. BESШ漂移室丝的实验研究.核电子学与探测技术,2005,25(3):228~232.
    [430]王学仁,郝秀兰.利用改进的挂重法测定丝的张力.计量学报.1993,14(3):209~213.
    [431] http://blog.ednchina.com/jizzll/131325/Message.aspx
    [432]王经谨,范天明,钱永康.核电子学.北京:原子能出版社,1983:50~52.
    [433]朱德恒,严璋.高电压绝缘.北京:清华大学出版社,1992:26.
    [434]殷之文.电介质物理学.北京:科学出版社,2003:170~172.
    [435]陈国云,魏志勇,方美华,等.正比计数器漏电流研究.南京航空航天大学学报.2010,42(5):670-674.
    [436]刘圣康.中子物理学.北京:原子能出版社,1986:30.
    [437]罗璋琳.实验反应堆物理.北京:原子能出版社,1987:14.
    [438] A. G. Bishay, S. E. Gamal. Effect of γ-irradiation on the temperature coefficient of surfaceresistivity of two-dimensional island platinum films. Nucl. Instrum. Methods B,2011,269(10):1108~1112.
    [439] S. A. Nouh. Physical changes associated with gamma doses of PM-555solid-state nucleartrack detector. Radiat. Meas.,2004,38(2):167~172.
    [440] K. Noda, T. Nakazawa, Y. Oyama, et al. Electrical resistivity of ceramic insulators underirradiation using14MeV neutrons. J Nucl. Mater.,1996,233-237:1289~1293.
    [441]刘运作.常用放射性核素衰变纲图.北京:原子能出版社,1982:77~78.
    [442]田志恒.辐射剂量学.北京:原子能出版社,2004:50.
    [443]邓鹏,陆双桐,杨道广等. CEFR用DL-126型γ补偿中子电离室.中国电子学会核电子学与核探测技术分会,福建武夷山:2005:10~13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700