用户名: 密码: 验证码:
大气压脉冲介质阻挡放电特性及放电参数效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着低温等离子体在各领域的广泛应用,在大气压下通过气体放电产生均匀低温等离子体已成为目前国际上气体放电和等离子体领域的研究热点之一。介质阻挡放电(Dielectric Barrier Discharge)被认为是产生大气压低温等离子体的种有效方法并受到人们的广泛关注。以往关于大气压介质阻挡放电的研究,通常采用正弦电压源激励,但随着脉冲功率技术的发展,以重频脉冲电压作为激励源的大气压脉冲介质阻挡放电显示出了其独特的优越性。虽然近些年围绕大气压脉冲介质阻挡放电已经开展了一些工作,但仍存在诸多问题,如一些放电现象还没有得到一致的、合理的解释,放电机理还不是很清楚,关于放电特性与放电条件之间关系的研究还很有限。
     为此,本文应用一维流体模型对大气压脉冲介质阻挡放电进行了模拟研究,论文主要包含以下方面的内容及结果:
     1、对氦气大气压下脉冲介质阻挡放电电压、电流及各粒子密度等特性参量随时间的演化进行了详细的模拟计算,给出了大气压脉冲介质阻挡放电电压、电流随时间的变化关系以及放电过程中不同时刻离子密度、电子密度以及电场的空间分布,在此基础上对放电演化规律和特征进行了机理分析,得到了如下的结果:对于窄脉冲电压激励的介质阻挡放电,分别发生在外施脉冲电压上升、下降沿的两次放电的演化具有相似性;离子和电子密度的空间分布,在第一次放电过程中仅在瞬时阴极侧出现一个峰,而在第二次放电过程当中在瞬时阴极侧和瞬时阳极侧均会出现一个峰;两次放电发生时平均电子温度空间分布的峰均出现在瞬时阴极侧。
     2、系统地研究了外施脉冲电压参数对大气压脉冲介质阻挡放电特性的影响。这些参数包括外施脉冲电压的幅值、上升时间、下降时间、脉冲宽度和频率。当外施脉冲电压幅值增大时,两次放电电流密度峰值增加,气隙内电子密度明显增加,阴极鞘层区减小,鞘层区平均电子温度明显增大。当外施脉冲电压上升、下降时间增加时,各放电参量的变化与脉冲电压幅值减小时的类似,同时能够观察到多脉冲放电现象,且在放电发生时中性等离子体区将逐渐减小并最终消失。此外,当外施脉冲电压宽度或频率改变时,在两次放电中,电子密度和平均电子温度在放电气隙的两侧变化比较明显,在气隙中间区域并未有太大变化。
     3、系统地研究了放电结构参数对大气压脉冲介质阻挡放电特性的影响。放电结构参数主要包括:二次电子发射系数,介质板的厚度及其相对介电常数,放电气隙宽度。研究表明,提高二次电子发射系数将会增大放电电流密度幅值,并使放电可以在消耗较小能量的情况下提高时空平均电子密度,且放电发生时,阴极鞘层区减小,电子密度空间分布在瞬时阴极侧的峰值将有所增加,但是阴极鞘层区中的平均电子温度将会降低。当放电气隙宽度增加时,第一次放电电流密度峰值减小,第二次放电电流密度峰值存在最大值,且放电发生时,瞬时阴极侧电子密度空间分布的峰值和阴极鞘层区的平均电子温度将会减小。相对介电常数增加或者减小,两次放电电流密度峰值均增加,放电发生时阴极鞘层区减小,鞘层区平均电子温度增大
     4、模拟研究了大气压脉冲介质阻挡放电中多脉冲放电现象的产生及特性,并系统地分析了放电条件对多脉冲放电特性的影响。外施脉冲电压幅值一定,电压上升率的减小会导致放电电流脉冲个数的增加,且在电压上升率较小时,放电电流脉冲个数随电压上升率的变化明显;各放电电流脉冲密度幅值随电压上升率的变化规律不同;当电压上升率不是很高时,放电发生时离子密度和电子密度空间分布呈现汤生放电粒子分布的特点。电压上升率一定,随着外施脉冲电压幅值的增加,放电电流脉冲个数将会增加,但是对应的每个放电电流脉冲密度幅值变化不大。当外施脉冲电压宽度或者频率增加时,在外施脉冲电压上升沿的最后个电流脉冲密度幅值降低或者放电电流脉冲个数减小,而在外施脉冲电压下降沿的最后一个电流脉冲密度幅值增加或放电电流脉冲个数增加。减小介质板的相对介电常数或增加它的厚度时,放电电流脉冲密度幅值均减小,放电电流脉冲个数将会增加。
     5、研究了氮气掺量对氦气大气压下脉冲介质阻挡放电特性的影响,并对掺入少量氮气杂质时,氦气大气压下脉冲介质阻挡放电和正弦激励介质阻挡放电两种类型放电的特性进行了比较研究。在氦气中掺入少量氮气时,两种类型的放电中,电子产生项随时间的演化有如下异同:放电发生时电了均主要通过直接电离产生,而在放电后期及放电完成后电了则主要通过潘宁电离产生,但直接电离和潘宁电离在两种类型的放电中反应速率有很大差异。对于氦气大气压脉冲介质阻挡放电,随着氮气掺量的增加,时空平均He2+密度逐渐减小,时空平均N2+离子和N4+离子密度存在最大值,并且He2+离子、N2+离子和N4+离子将相继成为放电的主要离子;放电电流密度峰值随氮气掺量增加呈非单调的变化,且在第二次放电中的变化比在第一次放电中的更为复杂。对于不同的外施脉冲电压上升、下降时间,时空平均电子密度、时空平均耗散功率密度及两次放电电流密度峰值随氮气掺量的变化规律基本相同。当氮气掺量大于一定值时,随着氮气掺量的增大,第一次放电电流密度峰值达到最大值时所对应的氮气掺量随外施脉冲电压上升、下降时间的增大而逐渐减小。
With the wide applications of the non-thermal plasmas in various fields, the generation of homogeneous non-thermal plasmas through gas discharge at atmospheric-pressure has become one of the most attractive researches in the field of gas discharge and non-thermal plasmas. Dielectric barrier discharge (DBD) is considered as an effective method to generate the atmospheric-pressure non-thermal plasmas and has attracted much attention. For the reported studies on atmospheric-pressure DBD, continuous sinusoidal voltage is usually used as a driving source. With the development of pulsed power technology, the atmospheric-pressure DBD excited by repetitive voltage pulses (pulsed DBD) presents its particular advantages. Although some studies on atmospheric-pressure pulsed DBD have been made experimentally and numerically in recent years, there are many problems to need solving, such as the reasonable and general explanation for the mechanism of the discharge, the more knowledge for some discharge behaviors, and the relationship between characteristics of discharges and conditions.
     To this end, in this thesis the atmospheric-pressure pulsed DBD has been systematically investigated by means of numerical simulation with the use of a one-dimensional fluid model, and the main contents and results are summarized as follows:
     (1) The time evolutions of the characteristic quantities of the pulsed DBD in pure helium at atmospheric-pressure have been simulated in detail. These characteristic quantities refer to discharge voltage, discharge current density, and particles density, and they as a function of time have been given. In addition, the spatial distributions of ion density, electron density, and electric filed at different time points have been obtained. Based on the above, the characteristics and mechanism of the discharge have been analyzed, and the following are obtained. For the DBD excited by the repetitive voltage pulses with small pulse width, the time evolution of the discharge occurring at the rising edge of applied voltage pulse is similar to that occurring at the falling edge. For the spatial distribution of electron density, only one peak appears nearby the momentary cathode (MC) in the first discharge, and there are two peaks nearby both the MC and the momentary anode (MA) in the second discharge. In addition, the peaks of the spatial distribution of averaged electron temperature appear nearby the MC in the two discharges.
     (2) The influences of the parameters of the applied voltage pulse on the characteristics of atmospheric-pressure pulsed DBD have been systematically investigated. These parameters include amplitude, pulse width, frequency, rising time, and falling time. When the amplitude of the applied voltage pulse increases, both the amplitude of current density in each discharge and the electron density in the gap increase, the cathode sheath becomes thinner, and the averaged electron temperature in cathode sheath increases obviously. When the rising and falling times of the applied voltage pulse decrease, the dependences of the characteristic quantities of the discharge on these two times are similar to those due to decrease of the amplitude of the applied voltage pulse, the multi-peak behavior can be observed, and the quasi-neutral plasma bulk in the discharges decreases gradually and disappears eventually. Moreover, when the pulse width or frequency of the applied voltage pulse changes, the electron density and averaged electron temperature nearby both edges of the gap change evidently, and those in the middle area change slightly.
     (3) The influences of the parameters of the discharge configuration on the characteristics of atmospheric-pressure pulsed DBD have been systematically investigated. These parameters include secondary electron emission coefficient, dielectric thickness, the relative permittivity of the dielectric, and the gap width. The following are shown. When the secondary electron emission coefficient increases, the amplitude of discharge current density increases, large averaged electron density can be obtained by small averaged dissipated power density. In addition, in the discharge the cathode sheath gets thinner, the peak value of the spatial distribution of electron density nearby the MC increases, but the averaged electron temperature in the cathode sheath decreases. With the increase of the gap width, the amplitude of the discharge current density in the first discharge decrease, there is the peak value for that in the second discharge, and in the discharge both the peak value of the spatial distribution of electron density nearby the MC and the averaged electron temperature in the cathode sheath decrease. Decreasing the relative permittivity of the dielectric or the dielectric thickness increases, the amplitudes of the current densities in the two discharges increase, and in the discharge the cathode sheath becomes thinner and the averaged electron temperature becomes larger.
     (4) The investigation on the generation and characteristics of multi-peak behavior in atmospheric-pressure pulsed DBD has been carried out, and the influences of the discharge conditions on multi-peak behavior have been systematically analyzed. For a given applied voltage amplitude, the number of discharge current pulses increases with decreasing voltage growth rate, and when voltage growth rate is small, its effect on the number of current pulses is more evident, and the dependence of the amplitude of each current pulse on voltage growth rate is different. When the voltage growth rate is not larger, the spatial distributions of ion density and electron density in the discharge are similar to those in Townsend discharge. For a given voltage growth rate, the number of discharge current pulses increases with increasing amplitude of the applied voltage pulse, but the amplitude of each current pulse changes little. The increase of the pulse width or frequency can induce not only later appearance of current pulses and smaller amplitude of the last current pulse at the rising edge of the applied voltage pulse but also larger amplitude of the last current pulse at the falling edge of the applied voltage pulse. With the decrease of the relative permittivity of the dielectric or with the increase of dielectric thickness, the amplitudes of discharge current densities decrease and the number of discharge current pulses increase.
     (5) The effects of N2impurity amount on the characteristics of atmospheric-pressure pulsed DBD in He-N2admixture gas have been investigated, and the comparison between the characteristics of the pulsed DBD and the DBD excited by continuous sinusoidal voltages in He-N2admixture gas at atmospheric pressure at small N2impurity amount has also been made. For small N2impurity amount in He-N2admixture gas, in two types of discharge, i.e., the pulsed DBD and the DBD excited by continuous sinusoidal voltages, the electrons are mainly generated through direct ionizations when the discharge occurs and through penning ionizations in the later stage of the discharge or after the discharge, but the reaction rates of both direct ionizations and penning ionizations in the pulsed DBD differ obviously from those in the DBD excited by continuous sinusoidal voltages. For the pulsed DBD in He-N2admixture gas at atmospheric-pressure, with the increase of N2impurity amount, the averaged density of He2+keeps decreasing, there are the maximum value for the averaged density of N2+and N4+, and He2+, N2+, and N/play a dominating role in the discharge. With the increase of N2impurity amount, the amplitudes of the current densities in the two discharges are in no monotonous variety, and those in the second discharge present complex variety. For the different rising times and falling times of the applied voltage pulse, the dependences of averaged electron density, dissipated power density, and the amplitudes of the two discharge current densities on N2impurity amount are similar for each other. When N2impurity amount is larger than a certain ppm under the given discharge parameters, the N2impurity amount corresponding to the maximum value of the amplitude of the first discharge current density decreases with increasing rising and falling times of applied voltage pulse.
引文
[1]Dorai R, Kushner M J. A model for plasma modification of polypropylene using atmospheric pressure discharges[J]. Journal of Physics D:Applied Physics,2003,36(6):666.
    [2]Chu P K. Plasma-treated biomaterials[J]. IEEE Transactions on Plasma Science,2007,35(2):181-187.
    [3]Laroussi M. Low Temperature Plasma-Based Sterilization:Overview and State-of-the-Art[J]. Plasma Processes and Polymers,2005,2(5):391-400.
    [4]Bruggeman P, Graham L, Degroote J, et al. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin-water electrode system[J]. Journal of Physics D:Applied Physics,2007, 40(16):4779.
    [5]Fridman G, Brooks A D, Balasubramanian M, et al. Comparison of Direct and Indirect Effects of Non-Thermal Atmospheric-Pressure Plasma on Bacteria[J]. Plasma Processes and Polymers,2007,4(4):370-375.
    [6]Stoffels E, Kieft I E, Sladek R E J. Superficial treatment of mammalian cells using plasma needle[J]. Journal of Physics D:Applied Physics,2003,36(23): 2908.
    [7]Lu X P, Ye T, Cao Y G, et al. The roles of the various plasma agents in the inactivation of bacteria[J]. Journal of Applied Physics,2008,104(5): 053309-053309-5.
    [8]Goree J, Liu B, Drake D. Gas flow dependence for plasma-needle disinfection of S-mutans bacteria[J]. J. Phys. D, Appl. Phys.,2006,39(16):3479-3486.
    [9]Kolb J, Mohamed A, Price R, et al. Cold atmospheric pressure air plasma jet for medical applications [J]. Appl. Phys. Lett.,2008,92(24):241501.
    [10]Vidmar R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers[J]. IEEE Transactions on Plasma Science,1990,18(4): 733-741.
    [11]Laroussi M. Interaction of microwaves with atmospheric pressure plasmas[J]. International journal of infrared and millimeter waves,1995,16(12): 2069-2083.
    [12]Ostrikov K. Colloquium:Reactive plasmas as a versatile nanofabrication tool[J]. Reviews of modern physics,2005,77(2):489.
    [13]Ostrikov K, Murphy A B. Plasma-aided nanofabrication:where is the cutting edge?[J]. Journal of Physics D:Applied Physics,2007,40(8):2223.
    [14]Van Dijk J, Kroesen G M W, Bogaerts A. Plasma modelling and numerical simulation[J]. Journal of Physics D:Applied Physics,2009,42(19):190301.
    [15]Bogaerts A, Gijbels R. Numerical modelling of gas discharge plasmas for various applications[J]. Vacuum,2002,69(1):37-52.
    [16]Chen F F著,林光海译.等离子体物理导论[M].北京:人民教育出版社,1980.
    [17]国家自然科学基金委员会.等离子体物理学[M].北京:科学出版社,1994.
    [18]等离子体物理学科发展战略研究课题组.核聚变与低温等离子体[M].北京:科学出版社,2004.
    [19]江南.我国低温等离子体研究进展(Ⅰ)[J].物理,2006,35(02):130-139.
    [20]江南.我国低温等离子体研究进展(Ⅱ)[J].物理,2006,35(03):230-237.
    [21]Denes F, Young R A. Surface modification of polysaccharides under cold plasma conditions. Polysaccharides-structural diversity and functional versatility[M]. New York:Marcel Dekker,1998.
    [22]Inagaki N. Plasma surface modification and plasma polymerization[M]. CRC, 1996.
    [23]Chu P K, Chen J Y, Wang L P, et al. Plasma-surface modification of biomaterials[J]. Materials Science and Engineering:R:Reports,2002,36(5): 143-206.
    [24]Liston E M, Martinu L, Wertheimer M R. Plasma surface modification of polymers for improved adhesion:a critical review[J]. Journal of adhesion science and technology,1993,7(10):1091-1127.
    [25]孟月东,钟少锋,熊新阳.低温等离子体技术应用研究进展[J].物理,2006,35(02):140-146.
    [26]von Siemens W. Ueber die elektrostatische Induction und die Verzogerung des Stroms in Flaschendrahten[J]. Poggendorfs Ann. Phys. Chem,1857,102: 66-122.
    [27]Eliasson B, Hirth M, Kogelschatz U. Ozone synthesis from oxygen in dielectric barrier discharges[J]. Journal of Physics D:Applied Physics,2000, 20(11):1421.
    [28]Pietsch G J, Gibalov V I. Dielectric barrier discharges and ozone synthesis[J]. Pure and applied chemistry,1998,70(6):1169-1174.
    [29]Morent R, Leys C. Ozone generation in air by a DC-excited multi-pin-to-plane plasma source[J]. Ozone:science & engineering,2005,27(3):239-245.
    [30]Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma[J]. IEEE Transactions on Plasma Science,1996,24(3):1188-1191.
    [31]Laroussi M, Sayler G S, Glascock B B, et al. Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure[J]. IEEE Transactions on Plasma Science,1999,27(1):34-35.
    [32]Herrmann H W, Henins I, Park J, et al. Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ)[J]. Physics of Plasmas,1999,6:2284.
    [33]Lederberg J, Alexander M, Bloom B R, et al. Encyclopedia of Microbiology,(4 Volume Set)[M]. Elsevier,2000.
    [34]Moisan M, Barbeau J, Crevier M C, et al. Plasma sterilization. Methods and mechanisms[J]. Pure and applied chemistry,2002,74(3):349-358.
    [35]Laroussi M, Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressurefJ]. International Journal of Mass Spectrometry,2004,233(1):81-86.
    [36]Jiistel T, Krupa J C, Wiechert D U. VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps[J]. Journal of luminescence, 2001,93(3):179-189.
    [37]Boeuf J P. Plasma display panels:physics, recent developments and key issues[J]. Journal of physics D:Applied physics,2003,36(6):R53.
    [38]Raizer Y P, Allen J E. Gas discharge physics[M]. Berlin:Springer-Verlag, 1991.
    [39]徐学基,复旦大学电光源教授,诸定昌.气体放电物理[M].复旦大学出版社,1996.
    [40]Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges [J]. IEEE Transactions on Plasma Science,2002,30(4):1400-1408.
    [41]Sherman D M. The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure[J]. Journal of Physics D:Applied Physics,2005,38(4):547.
    [42]Kozlov K V, Brandenburg R, Wagner H E, et al. Investigation of the filamentary and diffuse mode of barrier discharges in N2/O2 mixtures at atmospheric pressure by cross-correlation spectroscopy[J]. Journal of Physics D:Applied Physics,2005,38(4):518.
    [43]Kogelschatz U. Dielectric-barrier discharges:their history, discharge physics, and industrial applications[J]. Plasma chemistry and plasma processing,2003, 23(1):1-46.
    [44]王新新.介质阻挡放电及其应用[J].高电压技术,2009(1):1-11.
    [45]Buss K. Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen[J]. Electrical Engineering (Archiv fur Elektrotechnik), 1932,26(4):261-265.
    [46]Raether H. Die entwicklung der elektronenlawine in den funkenkanal[J]. Zeitschrift fur Physik A Hadrons and Nuclei,1939,112(7):464-489.
    [47]Raether H. Zur entwicklung von kanalentladungen[J]. Electrical Engineering (Archiv fur Elektrotechnik),1940,34(1):49-56.
    [48]Loeb L B, Meek J M. The mechanism of spark discharge in air at atmospheric pressure. I[J]. Journal of Applied Physics,1940,11(6):438-447.
    [49]Kanazawa S, Kogoma M, Moriwaki T, et al. Stable glow plasma at atmospheric pressure[J]. Journal of Physics D:Applied Physics,1988,21:838.
    [50]Kogoma M, Okazaki S. Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure[J]. Journal of Physics D:Applied Physics,1999,27(9):1985.
    [51]Sawada Y, Ogawa S, Kogoma M. Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge[J]. Journal of Physics D:Applied Physics,1999,28(8): 1661.
    [52]Mori T, Tanaka K, Inomata T, et al. Development of silica coating methods for powdered pigments with atmospheric pressure glow plasma[J]. Thin solid films, 1998,316(1):89-92.
    [53]Okazaki S, Kogoma M, Uehara M, et al. Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source[J]. Journal of Physics D:Applied Physics,1999,26(5):889.
    [54]Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal of Applied Physics,1998,83(6):2950-2957.
    [55]Massines F, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure[J]. Journal of Physics D:Applied Physics,1999,31(24):3411.
    [56]Massines F, Messaoudi R, Mayoux C. Comparison between air filamentary and helium glow dielectric barrier discharges for the polypropylene surface treatment[J]. Plasmas and Polymers,1998,3(1):43-59.
    [57]Massines F, Gouda G, Gherardi N, et al. The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment[J]. Plasmas and Polymers,2001,6(1):35-49.
    [58]Massines F, Segur P, Gherardi N, et al. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure:diagnostics and modelling[J]. Surface and Coatings Technology,2003,174:8-14.
    [59]Naude N, Cambronne J P, Gherardi N, et al. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge[J]. Journal of physics D:applied physics,2005,38(4): 530.
    [60]Roth J R, Ku Y, Tsai P P, et al. A study of the sterilization of nonwoven webs using one atmosphere glow discharge plasma[C]. NONWOVENS CONFERENCE. TAPPI PRESS,1996:225-230.
    [61]Roth J R, Sherman D M, Gadri R B, et al. A remote exposure reactor (RER) for plasma processing and sterilization by plasma active species at one atmosphere [J]. IEEE Transactions on Plasma Science,2000,28(1):56-63.
    [62]Montie T C, Kelly-Wintenberg K, Roth J R. An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials[J]. IEEE Transactions on Plasma Science,2000,28(1): 41-50.
    [63]Kelly-Wintenberg K, Sherman D M, Tsai P P Y, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter)[J]. IEEE Transactions on Plasma Science,2000,28(1):64-71.
    [64]Golubovskii Y B, Maiorov V A, Behnke J, et al. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. Journal of Physics D:Applied Physics,2002,35(8): 751.
    [65]Golubovskii Y B, Maiorov V A, Behnke J, et al. Modelling of the homogeneous barrier discharge in helium at atmospheric pressure[J]. Journal of Physics D:Applied Physics,2002,36(1):39.
    [66]Golubovskii Y B, Maiorov V A, Behnke J, et al. On the stability of a homogeneous barrier discharge in nitrogen relative to radial perturbations[J]. Journal of Physics D:Applied Physics,2003,36(8):975.
    [67]Yan-Hui W, De-Zhen W. Modes of Homogeneous Barrier Discharge at Atmospheric Pressure in Helium[J]. Chinese Physics Letters,2004,21(11): 2234.
    [68]Wang Y, Wang D. Influence of impurities on the uniform atmospheric-pressure discharge in helium[J]. Physics of plasmas,2005,12:023503.
    [69]Wang D, Wang Y, Liu C. Multipeak behavior and mode transition of a homogeneous barrier discharge in atmospheric pressure helium[J]. Thin solid films,2006,506:384-388.
    [70]Zhang Y T, Wang D Z, Kong M G. Two-dimensional simulation of a low-current dielectric barrier discharge in atmospheric helium[J]. Journal of applied physics,2005,98(11):113308-113308-6.
    [71]Zhang Y T, Wang Y H. Two-dimensional numerical simulation of the splitting and uniting of current-carrying zones in a dielectric barrier dischargc[J]. Physics of plasmas,2005,12:103508.
    [72]Zhang Y T, Wang D Z, Kong M G. Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges[J]. Journal of applied physics,2006,100(6):063304-063304-9.
    [73]Bo L, Xin-Xin W, Hai-Yun L, et al. Characterizing uniform discharge in atmospheric helium by numerical modelling[J]. Chinese Physics B,2009, 18(2):646.
    [74]Luo H, Liang Z, Lv B, et al. Observation of the transition from a Townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Applied Physics Letters,2007,91(22):221504-221504-3.
    [75]Luo H, Liang Z, Lv B, et al. Radial evolution of dielectric barrier glowlike discharge in helium at atmospheric pressure[J]. Applied Physics Letters,2007, 91(23):231504-231504-3.
    [76]Yuan X, Raja L L. Role of trace impurities in large-volume noble gas atmospheric-pressure glow discharges[J]. Applied physics letters,2002,81(5): 814-816.
    [77]Yuan X, Shin J, Raja L L. One-dimensional simulation of multi pulse phenomena in dielectric-barrier atmospheric-pressure glow discharges[J]. Vacuum,2006,80(11):1199-1205.
    [78]Shin J, Raja L L. Dynamics of pulse phenomena in helium dielectric-barrier atmospheric-pressure glow discharges [J]. Journal of applied physics,2003, 94(12):7408-7415.
    [79]Martens T, Brok W J M, Van Dijk J, et al. On the regime transitions during the formation of an atmospheric pressure dielectric barrier glow discharge[J]. Journal of Physics D:Applied Physics,2009,42(12):122002.
    [80]Martens T, Bogaerts A, Brok W J M, et al. The influence of impurities on the performance of the dielectric barrier discharge [J]. Applied Physics Letters, 2010,96(9):091501-091501-3.
    [81]Martens T, Bogaerts A, Brok W J M, et al. The dominant role of impurities in the composition of high pressure noble gas plasmas[J]. Applied Physics Letters, 2008,92(4):041504-041504-3.
    [82]Walsh J L, Shi J J, Kong M G. Submicrosecond pulsed atmospheric glow discharges sustained without dielectric barriers at kilohertz frequencies[J]. Applied physics letters,2006,89(16):161505-161505-3.
    [83]Liu S, Neiger M. Excitation of dielectric barrier discharges by unipolar submicrosecond square pulses[J]. Journal of Physics D:Applied Physics,2001, 34(11):1632.
    [84]Laroussi M, Lu X, Kolobov V, et al. Power consideration in the pulsed dielectric barrier discharge at atmospheric pressure[J]. Journal of applied physics,2004,96(5):3028-3030.
    [85]Xu X P, Kushner M J. Ion composition of expanding microdischarges in dielectric barrier discharges[J]. Journal of Applied Physics,1998,83(12): 7522-7532.
    [86]Lu X P, Laroussi M. Electron density and temperature measurement of an atmospheric pressure plasma by millimeter wave interferometer[J]. Applied Physics Letters,2008,92(5):051501-051501-2.
    [87]Lu X, Laroussi M. Optimization of ultraviolet emission and chemical species generation from a pulsed dielectric barrier discharge at atmospheric pressure[J]. Journal of applied physics,2005,98(2):023301-023301-5.
    [88]Lu X P, Laroussi M. Temporal and spatial emission behaviour of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses[J]. Journal of Physics D:Applied Physics,2006,39(6):1127.
    [89]Lu X P, Xiong Q, Xiong Z L, et al. Effect of nano-to millisecond pulse on dielectric barrier discharges[J]. IEEE Transactions on Plasma Science,2009, 37(5):647-652.
    [90]龙凯华,邵涛,严萍,等.高压纳秒脉冲下介质阻挡放电的仿真研究[J].高电压技术,2008,34(6):1249-1254.
    [91]Shao T, Yan P, Long K, et al. Dielectric-barrier discharge excitated by repetitive nanosecond pulses in air at atmospheric pressure [J]. IEEE Transactions on Plasma Science,2008,36(4):1358-1359.
    [92]Shao T, Long K, Zhang C, et al. Electrical characterization of dielectric barrier discharge driven by repetitive nanosecond pulses in atmospheric air[J]. Journal of Electrostatics,2009,67(2):215-221.
    [93]Borcia G, Borcia C, Dumitrascu N. Temporal evolution of pulsed atmospheric pressure DBD in asymmetric configuration [J]. Rom Journ Phys,2009,94: 689-697.
    [94]Martens T, Bogaerts A, Van Dijk J. Pulse shape influence on the atmospheric barrier discharge[J]. Applied Physics Letters,2010,96(13):131503-131503-3.
    [95]Yuan X, Raja L L. Computational study of capacitively coupled high-pressure glow discharges in helium[J]. IEEE Transactions on Plasma Science,2003, 31(4):495-503.
    [96]Macheret S O, Shneider M N, Miles R B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses[J]. IEEE Transactions on Plasma Science,2002,30(3):1301-1314.
    [97]Kim H C, Iza F, Yang S S, et al. Particle and fluid simulations of low-temperature plasma discharges:benchmarks and kinetic effects[J]. Journal of physics D:applied physics,2005,38(19):R283.
    [98]袁忠才,时家明,黄勇,等.低温等离子体数值模拟方法的分析比较[J].核聚变与等离子体物理,2008,28(3):278-284.
    [99]Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Transactions on Electron Devices,1969,16(1):64-77.
    [100]Boeuf J P. Numerical model of rf glow discharges[J]. physical Review A,1987. 36(6):2782.
    [101]Boeuf J P. A two-dimensional model of dc glow discharges[J]. Journal of applied physics,1988,63(5):1342-1349.
    [102]Kulikovsky A A. The structure of streamers in N2. I. fast method of space-charge dominated plasma simulation[J]. Journal of Physics D:Applied Physics,1999,27(12):2556.
    [103]Stewart R A, Lieberman M A. Model of plasma immersion ion implantation for voltage pulses with finite rise and fall times[J]. Journal of applied physics, 1991,70(7):3481-3487.
    [104]Park G, Lee H, Kim G, et al. Global model of He/O2 and Ar/O2 atmospheric pressure glow discharges[J]. Plasma Processes and Polymers,2008,5(6): 569-576.
    [105]Martens T, Bogaerts A, Brok W, et al. Computer simulations of a dielectric barrier discharge used for analytical spectrometry[J]. Analytical and bioanalytical chemistry,2007,388(8):1583-1594.
    [106]Deloche R, Monchicourt P, Cheret M, et al. High-pressure helium afterglow at room temperature [J]. Physical Review A,1976,13(3):1140.
    [107]Ward A L. Calculations of Cathode-Fall Characteristics[J]. Journal of applied physics,1962,33(9):2789-2794.
    [108]Mangolini L, Anderson C, Heberlein J, et al. Effects of current limitation through the dielectric in atmospheric pressure glows in helium[J]. Journal of Physics D:Applied Physics,2004,37(7):1021.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700