用户名: 密码: 验证码:
温度周期变化作用下大理岩宏细观力学变形试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周期温度应力作用使岩石发生灾害是个极为复杂且具有重大经济意义的课题,如何才能做到经济有效地在这类岩石中建设工程并维持其稳定性,一直是困扰着广大岩石力学和工程地质工作者的一个难题。当岩体受到温度应力作用引起损伤,岩石的抗压强度发生显著的变化,严重影响着工程的稳定性。
     本文以大理岩为研究对象,通过不同加温温度和加温周期后的大理岩单轴压缩试验,得到了不同周期温度下大理岩全应力—应变曲线、应用断裂力学理论分析岩石试样内部微裂隙的扩展模式;运用岩石力学、损伤力学理论对试验结果进行了分析,建立本构方程;最后通过对试样断口扫描图像的细观研究,分析试样损伤度;得到了以下一些结论:
     (1) 通过对周期温度应力作用后大理岩的单轴压缩试验,得到了大理岩抗压强度、弹性模量和峰值应变等随加温温度和加温周期变化的关系。加温温度越高,加温周期越多,大理岩抗压强度、弹性模量越低;加温温度越高,峰值应变越大。
     (2) 运用断裂力学理论,分析了在温度应力作用后,岩石试样内部微裂隙的扩展规律。在经历一次加温降温过程时,初始微裂隙会发生扩展,同时由于岩石内部晶体和连接物之间的热膨胀系数不同,会产生新的微裂隙;在多次加同等温度时,岩石内部已经扩展完成的微裂隙不再扩展,但是在此过程中会产生新产生的微裂隙,会扩展,或与原有的微裂隙汇合,加大岩石损伤。
     (3) 利用弹性模量比商法,定义岩石损伤,认为由于温度应力使岩石试样内部微裂隙大量扩展,单轴抗压的损伤弱化阶段不可忽略,寻找单轴压缩过程中微裂隙正好完全闭合点,在前人基础上建立大理岩在周期温度应力作用后的单轴压缩损伤本构方程。
     (4) 对试样断口图像进行分析处理,得出断口图像中微裂隙面积以及在整个图片中所占面积比例,验证加温温度和加温次数对岩石损伤特性的影响。
The rock disaster caused by the period temperature stress is a subject of extreme complication and momentously economic implications. How to construct projects and sustain its stability economically and effectively in such rock is always a problem puzzling many experts in rock mechanics and engineering geology. When the rock get damage caused by temperature stress, the evidently change of rock compression strength will happen, which seriously influences the stability of engineering.The whole stress-strain curves of marble under different period temperature are achieved through the marble uniaxial compression tests under different temperature and heating period in this paper. The inner microcrack extended pattern of rock is analyzed by the fracture mechanics theory. The theory of the rock mechanics and damage mechanics is used in analyzing the results of tests, then the constitutive equations is gained. Finally, by researching on scan imagery of sample fracture and analyzing the damage degree, some conclusions are summarized as the following:(1) The relations between the marble compression strength, elastic ratio, peak strain and the changes of the temperature, heating period are achieved by analyzing the uniaxial compression tests of marble which was effect under different periodic temperature stress. The higher the heating temperate and the more frequent the heating period, the lower the marble compression strength and elastic ratio, but the larger the peak strain.(2) The inner microcrack extended law of rock which is effect under the temperature is analyzed by the fracture mechanics theory. After going through once the process of the heating and cooling, the initial microcrack will extend, at the same time, the new microcrack will generate because of the different between the rock inner crystals and junctional complex in the coefficient of thermal expansion. After multiple the same temperature periods, the rock inner microcracks which have finished expansion will not develop, but the new microcracks generated in this process will develop, or converge with initial microcracks, and aggravate the rock damage.(3) By compared the elastic ratio, the rock damage is defined and the avianize phase of the rock damage caused by uniaxial pressure force can not be ignored because of the massive development of the rock microcracks caused by temperature stress. The completely closing point will be found in process of the uniaxial compression. Based on predecessor's achievement, the damage constitutive equation of the marble uniaxial compression under action of period temperature stress is constituted.(4) The microcrack area in the fracture image and the area ratio of it in the whole picture are gained by analyzing the fracture image of the sample.
引文
[1] 冯夏庭,智能岩石力学导论[M],科学出版社,2000.
    [2] 王青海,周府生,季恒玉,花岗岩介质中处置中低放核废料的热应力[J],第9卷第2期 地质灾害与环境保护 Vol.9,No.2.
    [3] 张品瑶,马万吕,张凤鹏,金校元,高温条件下岩石结构特征的研究[J],1996年2月第17卷 第1期 东北大学学报,自然科学版.
    [4] 徐燕萍,刘泉声,许锡昌,温度作用下的岩石热弹型性本构方程的研究[J],第20卷第4期 辽宁工程技术大学学报(自然科学版),2001年8月.
    [5] 李兆霞,损伤力学及其应用[M],科学出版社,2002.
    [6] 周维垣,高等岩石力学[M],科学技术出版社,1990.
    [7] Dougill J W, Lau J.C and Burr N J. Toward a theoretical model for progressive failnre and softening in rock, concrete and similar materials. MechinEngng,ASCE-END,335—355,1976
    [8] Dragon A.and Mroz Z A. Continuum model for plastic-brittle behaviour of rock and concrete. Int J Engng Sci,1979,17:121—137
    [9] Mazars J. A description of micro and macro-scale damage of concrete structure, Engineering Fracture Mechanics, 1986,25(5/6):729—737
    [10] KrajcinovcD. and Fonseka G.U. The continuous damage theory of brittle materials, part Ⅰ and part Ⅱ. ASMEJ.Appl.Mech.,Vol.48,PP.809—824,1
    [11] KrajcinovcD. and Silva M A G. Statisticala spects of the continuous damage theory. Int J Solids Structure,Vol. 18,NO. 7,1982
    [12] KachanovM.A micro-crack model of rock in elasticity, part Ⅰ: frictional sliding on micro-crack, part Ⅱ: propagation of micro-cracks. Mech Mat, 1982a(1):3—28
    [13] Lemaitre J. A continuous damage mechanics model for ductile fracture Art. Trans. ASME,J. of Engng. Mat. And Techn, 1985,107:83—89
    [14] 谢和平.大理岩微观断裂的分形模型研究[J].科学通报,1989,34(5)
    [15] 谢和平,高峰.岩石类材料损伤演化的分形特征[J].岩石力学与工程学报,1991,10(1)
    [16] 谢和平,Sanderson D.J,Peacock D.C.P.雁形断裂分形模型与能量耗散[J].岩土工程学报,1994,16(1)
    [17] 凌建明,孙均.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4)
    [18] 凌建明,孙均.应变空间表述的岩体损伤本构天系[J].同济大学学报,1994,22(2)
    [19] 周维垣,剡公瑞,杨若琼.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报,20(5)
    [20] 赵永红.岩石弹脆性分维损伤本构模型[J].地质科学,1997,32(4)
    [21] 李广平.类岩石材料微裂纹损伤模型分析[J].岩石力学与工程学报,1995,14(2)
    [22] 杨更社.岩体损伤力学特性及细观损伤的CT识别[D].西安理工大学,1995
    [23] 许锡昌,花岗岩热损伤特性研究[J],第24卷,增刊,岩土力学
    [24] WaiR, LoK.Y.and RoweR.K., Thermal stress analysis in rock with nonlinear properties [J].Int.J.Rock Mech. Min.Sci.&Geomech.Abstr., 1982(19):211-220.
    [25] Simpson C, Deformation of granitic rock across the brittle-ductile transition [J].J. Struc. Geol. 1985, (7): 503-511.
    [26] 张静华,王靖涛,赵爱国.高温下花岗岩断裂特性的研究[J],岩土力学,1987,8(4):11-16.
    [27] 王靖涛,赵爱国,黄明昌.花岗岩断裂韧度的高温效应[J].岩土工程学报,1989,6(11):113-118.
    [28] John V R and Peter D. L[M].Brittle-ductile,1989.
    [29] Heueckel T. Peano A. and Pellegrint R., A constitutive law for thenno-plastic behaviour of rocks: an analogy with clays [J].Surveysin Geophys. 15(4):643-671,1994.
    [30] Lau J.S.O. Gorski B. and Jackson R.. The effects of temperature and water-saturational on mechanical properties of Lacdu Bonnet pink granite [M].SthInt.Con.OnRockMecb.,Tokyo,Japan, 1995.
    [31] 席道瑛.温度对岩石模量和波述的影响[J].岩石力学与工程学报,1998,17(增刊):802-807.
    [32] 许锡昌,刘泉声.高温下花岗岩基本力学性质初步研究[J],岩土工程学报,2000,22(3):276-278.
    [33] 许锡昌.温度作用下三峡花岗岩力学性质及损伤特性初步研究[C].中国科学院武汉岩土力学研究所,1998.
    [34] 刘亚晨.核废料贮存裂隙岩体水热耦合迁移及其与应力的耦合分析[C].中国科学院武汉岩土力学研究所,2000.
    [35] 刘泉声,王崇革.岩石时-温等效原理的理论与实验研究——第一部分:岩石时-温等效原理存在的热力学基础[J].岩石力学与工程学报,2002,21(2):193~198
    [36] 许锡昌,花岗岩热损伤特性研究[J],岩土力学,第24卷增刊2003年10月.
    [37] 陆雅萍,黄醒春,沈为平,高温后大理岩在不同应力水平下超声波特性的实验研究[J],上海交通大学学报,第38卷第7期,2004年7月.
    [38] 中国科学院武汉岩土力学研究所,RMT-150B岩石力学试验系统操作规程[M].
    [39] 方荣,朱珍德,张勇,王思敬,高温和循环高温作用后大理岩力学性能试验研究与比较[Jl,岩石力学与工程学报,第24卷增1,2005年8月.
    [40] 张晶瑶,马万昌,张凤鹏,金校元,高温条件下岩石结构特征的研究[J],东北大学学报(自然科学版),第17卷第1期,1996年2月.
    [41] 李浩,任林娥,岩石软化的细观损伤模型[J],武汉大学学报(工学版),第34卷,第2期,2001年4月.
    [42] CHONG K P, Einstein E. Fracture of Concrete and Rock [M], Ed. by Shah S P and Swartz S E ,New York: Spring 1989.
    [43] BUI H D,Ehrlacher A. Propagation of damage in elastic and plastic solids [M],Pergamon, Oxford, 1981.
    [44] MIZUNO E,Hatanaka S.Compressive softening model for concrete[J],J.Eng. Mech,1992(118): 1546-1563.
    [45] JU J W, Lee X. Micro-mechanical damage models for brittle solids[J],J. Eng,Mech. ,1991(58): 927-930.
    [46] BROEKD. Elementary Engineering Fracture Mechanics[M]. The Netherlands: Sijthoff & Noordh off,1974.
    [47] 李浩.岩石细观损伤理论及其力学过程模型的研究[D].武汉:武汉水利电力大学,1998.
    [48] 李浩.预测非贯通节理裂隙岩体等效模量的有效场方法[J].武汉水利电力大学学报,1999,4(32),1-4.
    [49] 周维垣,杨延毅.节理岩体的损伤断裂力学模型及其验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [50] 谢和平.岩石蠕变损伤非线性大变形及微观断裂FRACTAL模型[D].中国矿业大学北京研究生部,1987。
    [51] 邵鹏,贺永年.脆性岩石细观损伤分析与临界破坏行为[J].煤炭科学技术,2001,29(7):32—33
    [52] 于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1989:20—51
    [53] 周克勤,楚泽涵,张元中,等.岩石热开裂与检测方法研究[J].岩石力学与工程学报,2000,19(4):412.
    [54] Sahimi M, Arbabi S. Phys. Rev. B 1993, Vol. 47.
    [55] 赵永红.受压岩石中裂纹发育过程及分维变化特征[J].科学通报,1995,40(7),621-624,
    [56] 村上澄男.损伤力学—材料损伤与断裂的连续介质力学处理.材料(日).1982,31(340):1—11
    [57] Cordebois J. P. Sidoroff F. Endom magement ani-sotrope en elastic et plastic.J.M. Theorique et Appliquee. Numero special, 1982,45—60.
    [58] LEMAITRE.J.损伤力学教程[M].北京:科学出版社,1996.
    [59] 谢和平,鞠扬,董毓利.经典损伤定义中的“弹性模量法”探讨[J].力学与实践,1997,19(2):1.
    [60] 黄国明,黄润秋.岩石弹塑性损伤耦合本构模型[J].西安科技大学学报,1996,16,4:328—333
    [61] 徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21(6):787—791
    [62] 任建喜,葛修润,蒲毅彬.岩石破坏全过程的细则损伤演化机理动态分析[J].西安公路交通大学学报,2000,20(2):12—15
    [63] 任建喜,葛修洲,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学,2001,22(2):130—133
    [64] 张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1):30—34
    [65] 曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17(6):628—633
    [66] Curran D R, Shockey D A, Seaman L. J. Appl. Phys., 1973, Vol. 44:4025
    [67] 杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报,1999,18(1):23—27
    [68] Mazars J. Application de la mecanique de endommagement au comportement non lineaire et a la rupture du beton de structure. These de Doctorat d'Etat. Univ, ParisⅥ,1984
    [69] Loland K E. Continuous damage model for load-response estimation of coucrete. Cement and Concrete Research, 1980(10): 392—492.
    [70] 席道瑛,刘小燕,张程远.由宏观滞回曲线分析岩石的微细观损伤[J].岩石力学与工程学报,2003,22(2):182.
    [71] 席道瑛,刘小燕,张程远.应力控制疲劳载荷作用下循环硬化的应变响应[J].岩石力学与工程学报,2003,22(11):1807.
    [72] 席道瑛,刘斌,田象燕.饱和岩石的各向异性及非线性粘弹性响应[J].地球物理学报,2002,45(1):109.
    [73] 张立民.循环加载与随机加载对疲劳损伤等效性的研究[J].强度与环境,1997,3:9.
    [74] Hohnan JP, Solutions manual toac company heat transfer[M].McGraw Hill Book Company,1976:12120.
    [75] 席道瑛,薛彦伟,宛新林.循环载荷下饱和砂岩的疲劳损伤[J].第26卷 第3期 2004年8月 物探化探计算技术 Vol126 No.3 Aug.2004
    [76] DRAGONA,MROZZ.A continuum model for plastic-brittle behavior of rock and concrete [J]. Eng. Sci, 1979,17:121.
    [77] KAWAMOTOT, ICHIKAWAY, KYOYAT. Deformation and fracture behavior of discontinuous rock mass and damage mechanics theory[J], for Numerical and Analytical Methods in Geo-mechanics,1988, 12(1):1.
    [78] EWARTL,SURESHH. Crack propagation in ceramics under cyclic loads[J].Meter. Sci, 1987,22:1173.
    [79] BUDIANSKYB,O'CONNELLRJ. Elastic moduli of a cracked solid [J].Solids Structure, 1976,12(2):81.
    [80] 周光泉,樊坚强.损伤弹性材料的有效模量及本构关系[J].爆炸与冲击,1996,16(2):123.
    [81] 牛华.试验射孔与油气井产能的关系[J].大庆石油学院学报,1995,19(2):32.
    [82] HOLCOMBDJ. Memory, Relaxation and Micro-fracturing in Dilatant Rock[J]. Geophys. Res, 1981, 86:6235.
    [83] Matlab 7.0.4 Release Notes [M]. Math works Inc.2005.
    [84] 阮秋琦,阮宇智等译.Rafael C.Gonzalez,Richard E.Woods.数字图像处理(第二版)[M].北京:电子工业出版社,2004
    [85] 毛灵涛,薛茹,安里千.MATLAB住微观结构SEM图像定量分析中的应用[M].电子显微学报,2004,23f5):579-583
    [86] 孙霞,吴自勤,黄畇.分形原理及其运用[M].合肥:中国科学技术大学版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700