用户名: 密码: 验证码:
一维动静组合加载下岩石力学特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先总结了近几十年来岩石力学界的学者们在岩石单轴静态加载和动态加载方面取得的理论和成果,重点阐述了李夕兵教授及其课题组近年来在岩石动力学方面取得的一些理论和实验研究成果,然后通过实验,论证了一种利用低周疲劳加载在Instron电液伺服材料试验机上进行岩石在中等应变速率下一维动静组合加载试验的新实验方法的可行性,接着利用该方法进行了红砂岩试样的一维动静组合加载试验。
     该试验研究了岩石在一维动静组合加载条件下的各种基本力学特性和破坏特征,得到了如下主要的结论:1、红砂岩在一维动静组合加载条件下的强度和破碎耗能比它在单独动载作用下小,同时比它在单独静载作用下大;2、对于同一种岩石试样,在动载频率保持不变的情况下,随着静载的增加,试件达到峰值载荷时的平均应变逐渐减小,对应的破坏时间也相应缩短,但各组试件的平均应变速率基本保持不变。3、在组合加载条件下,保持动载频率不变,红砂岩的弹性模量随着静载的增大而减小,泊松比(μ)随着静载的增大而增大,即红砂岩的破坏方式由脆性破坏向塑性破坏过渡;4、在组合加载条件下,较大静载比较小静载下的岩石初始破裂强度降低,初始破裂提前;5、在组合加载条件下,静载对岩石破坏的特征曲线的形状一定产生影响。其中第一条结论说明了岩石在一维动静组合加载条件下比只在动态加载条件下更容易破坏,该结论为实际岩体工程安全评估和
    
    破坏准则的理论和方法提出了新的思路。
    论文还在最后部分讨论了动静组合加载的研究的现实意义及工
    程应用,并举例说明了它将来可能应用的一些前景。
The theories and experimental study of uniaxil static loading and dynamic loading on rocks for the last decades were firstly summarized, in which Dr. Li XiBing and their study group's theories on rock impact dynamics were especially reviewed. Then a new method for dynamic loading with intermediate strain rate was developed in experiments, in which a low cycle fatigue loading is adopted to obtain qusi-dynamic loading using servo-controlled Instron material testing system. Through the above method, large numbers of experimentations were carryed out on red sandstone, and experimental results obtained from sandstone revealed that the static load is of great influence on both the failure energy G and dynamic response of rock. It was found that both the failure energy G and the maximum failure load Pb, decrease with the increasing of static load. The maximum failure stress ob in the present loading case is found to be larger than that in the static loading case but less than that in the dynamic loading case only.
    Stress vs. strain curves become nonlinear in the whole static-dynamic loading process as the static stress increases to one third of static strength of sandstone, which may be considered as a transition point of this rock. Young' s modulus E decreases while Poisson's ratio v increases with the increasing of static load, which shows a kind of soften tendency under a higher static
    
    
    
    load.
    Based on these experiments on sandstone, the conclusion that rock may be broken easier under a combinatory static-dynamic loading than under a dynamic loading only is acquired. The combinatory loading method is useful for the investigation of constitutive relationship and failure behavior of rock,
    Finally, the practical meaning and engineering applications were simply discussed, and some potential applications were illustrated.
引文
[1] 李夕兵、古德生。岩石冲击动力学[M].长沙:中南大学出版社,1994.
    [2] 李夕兵.冲击破岩的应力波基础与应用[A].机械岩石破碎学,长沙:中南工业大学出版社,1991,122~125.
    [3] 章根德.岩石在动载作用下的脆性断裂[J].岩土工程学报,3(2):43~49,1981.
    [4] 章根德.岩石对冲击载荷的动态响应.爆炸与冲击,10(3):266~271,1990.
    [5] Chase, K. W., Mechanical and optical characterization of an anelastic polymer at large strain rates and large strains, [J] Experimental Mechanics, I974, 14(1): 10-18.
    [6] 王礼立编著.应力波基础.北京:国防工业出版社,1985.
    [7] 王靖涛.加速发展岩石动力学.岩石力学,10(3):6~12,1989.
    [8] Zukas J.A,Nicholas T, Swift H.F, et al. Impact Dynamics, New Youk: John Wiley &Sons, 1982.
    [9] 王礼立,余同希,李永池编.冲击动力学进展.合肥:中国科学技术出版社,1992.
    [10] 王礼立.高应变率下材料动态力学性能.力学与实践,4(1):9~19,1982.
    [11] Green J.S, Perkins R.D. Uniaxial compression tests at varying strain rates on three geologic materials[A], Basic and Applied Rock Mechanics,3[M],Univ. Texas, 35~52,1970.
    [12] Olsson W.A. The compressive strength of tuff as a function of strain rate from 10-6 to 103/sec, Int. J. Rock Mech. Min.Sci. & Geomech. Abstr., 28 (1):115~118,1991.
    [13] Ranman K.E. Rock fragmentation by cutting, ripping and impacts-some theoretical and experimental studies[D], thesis, Lulea Univ. of Tech., Sweden, 1986.
    [14] 吴绵拔、刘远惠,中等应变速率对岩石力学特性的影响,岩土力学,No.1,1980,PP.51~58.
    [15] 李先炜.岩块力学性质.北京:煤炭工业出版社,1983.
    [16] Logan J.M, Handin J. Triaxial compression testing at intermediate strain rates, Dynamic Rock Mechanics (Ed. George B. Clark),Port city pres, 167~194, 1970.
    [17] Blanton T.L. Effect of strain rates from 10-2 to 10 sec-1 in triaxial compression tests on three rocks, Int.J. Rock Mech.Sci. & Geomech. Abstr, 18(1):47~62,1981.
    
    
    [18] 王武林等.RDT-1000型岩石高压动力三轴仪的研制.岩土力学,1989,10(2):69~82.
    [19] 鞠庆海、吴绵拔.岩石材料三轴压缩动力特性的试验研究.岩土工程学报,15(3):3~80.
    [20] 张学峰、夏源明,中应变率材料试验机的研制,实验力学,2001(1),:13~18.
    [21] Le Blance M M and Lassila D H. Experimental Techniques [J]. 1996,20(5): 21-24.
    [22] Jerome T T zeng.An Experimental Method for Dynamic Behavior of Composites Laminates at Strain Rate of 1-100/s,AD-Vol.46[C]. Dynamic Response and Behavior of Composites ASME, 1995.
    [23] Le Blanc M M.A Hybrid Technique for Compression Testing at Intermediate Strain Rates[J]. Experimental Techniques,Oct, 1996.
    [24] 吴绵拔,加载速率对岩石抗压和抗拉强度的影响,岩土工程学报,No.2,1982,PP.97~105.
    [25] 吴绵拔、刘远惠,中等应变速率对岩石力学特性的影响,岩土力学,No.1,1980 PE51~58.
    [26] 朱瑞赓,吴绵拔.不同加载率下花岗岩的破坏判据.爆炸与冲击,4(1):1~9,1984
    [27] R.D.Perkins and S.J.Green. Uniaxial stress behavior of porphyritic tonalite at strain rates to 103/second. Int.J. Rock mech. Min. Sci. Vol.7,pp527~535(1970).
    [28] Green S.J. and Perkins R.D. Uniaxial compression tests at strain rates from 10-4 to 104/s on three gellogic materials, Proceedings of the Tenth symposium on Rock Mechanics,May, 1968.
    [29] E.Z. Lajtai, E.J.Scott Duncan,and B.J. Carter. The effect of strain rate on rock strength. Rock Mechanics and Rock Engineering 24,99~109,1991.
    [30] Ryoji Kobayashl. On mechanical behaviours of rocks under various loading-rates. Rock Mechanics in Japan, Vol. 1,pp.56~58.
    [31] Chunhe Yang and Tingjie Li. The strain rate-dependent mechanical properties of marble and its constitutive relation. International Conference on Computational Methods in Structural and Geotechnical Engineering, December 12~14,1994.
    [32] Duchar J, Dusek F, Svododa J. The behavior of rocks at stress wave loading, RETC Proceeding, 115~129, 1975.
    [33] Kumar A. The effect of stress rate and temperature on the strength of basalt and granite, Geophysics, 33(3): 501~510, 1968.
    [34] 北稔,木下重教,于亚伦,佐藤一彦.用三轴霍浦金松高速冲击试验机对岩石
    
    进行研究.有色金属(矿山部分),(6):32~36,1983.
    [35] 根德。岩石在动载荷作用下的脆性断裂.岩土工程学报,3(2):43~49,1981.
    [36] 陆岳屏,杨业敏,寇绍全等.霍布金生压力杆测定砂岩、石灰岩动态破碎应力和杨氏模量.岩土工程学报,5(3):28~37,1983.
    [37] Ohanty B. Strength of rock under high strain rate loading conditions applicable to blasting[A], Proceedings of 2th Int. Symp. On Rock Frag. Blasting[C], 72~87, 1988.
    [38] 于亚伦,金科学。高应变率下矿岩特性研究。爆炸与冲击,10(3):266~271,1990.
    [39] Olsson W.A. The compressive strength of tuff as a function of strain rate from 10-6 to 103/sec., Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28(1):115~118, 1991.
    [40] 李夕兵,古德生,赖海辉。岩石在不同应力波下的动态响应。第三届全国岩石动力学论文选集,武汉:武汉测绘科技大学出版社,1992.10,142~151.
    [41] Inehart J.S. Effects of transient stress waves in rocks, Mining Research, 2, 713~725, 1962.
    [42] Perkin R.D, Green S.J and Friedman M. Uniaxial stress behavior of porphritic to nalite at strain rates to 103/sec, Int. J. Rock Mech. Min. Sci., 7:527~535,1970.
    [43] Lankfork J. The role of tensile microfracture in the strain rate dependence of compressive strength of fine grained limestone analogy with strong ceramics, Int. J. Rock Meck. Min. Sci. & Geomeck. Abstr., 18:173~175,1981.
    [44] 李夕兵,赖海辉,朱成忠.冲击载荷 下岩石破碎能耗及其力学性能的探讨.矿冶工程,8(1):15~19,1988.
    [45] 切列帕诺夫,黄克智等译。脆性断裂力学。北京:科学出版社,1990.
    [46] Steverding B, Lehnigk S.H. Response of cracks to impact, J. Appl. Phys.,41(5): 2096~2099,1970.
    [47] Steverding B, Lehnigk S.H. Collision of stress pulses with obstacles and dynamic of fracture, J. Appl. Phys.,42(8): 3231~3238, 1971.
    [48] 南京工学院数学教研组编。积分变换(第二版)。北京:高等教育出版社,1989.
    [49] 李夕兵,古德生。岩石在不同加载波条件下能量耗散的理论探讨。爆炸与冲击,14(2):129~140,1994.
    [50] Thomas J A, Allan M R. Impact-induced Tensional Failure in Rock [J].J Geo Res, 1993,98(E1): 1185—1203.
    [51] Liu C, Thomas J A. Stress Wave Attenttation in Shock-Damaged Rocks [J]. J Geo
    
    Res,1997,102(B3):5243—5250.
    [52] D.S. kim, M.K. McCarter. Quantitative Assessment of Extrinsic Damage in Rock Materials. Rock Mech. Rock Engng. (1998)31(1): 43—62.
    [53] Rubin A M, Ahrens T J. Dynamic Tensile Failure Induced Velocity Deficits in Rock [J].Geophys Res Lett. 1991(2): 219—223.
    [54] C.A. TANG, P.K. KAISER. Numerical Simulation of Cumulative Damage and Seismic Energy Release During Brittle Rock Failure —Part Ⅰ: Fundamentals. Int. J. Rock. Mech. Min. Sci., Vol.35, No.2, PP:113—121,1998.
    [55] Kusmaul J S. A Mew Constitutive Model for Fragmentation of Rock under Dynamic Loading [A]. 2nd Int Symp on Rock Fragm by Blast [C]. 1987, 412—424.
    [56] 杨军,金乾坤,黄雷风。岩石爆破理论模型数值计算[M]。北京:科学出版社,1999.74—85.
    [57] 张万甲,曾元金,宋春香,刘晓海。不锈钢(OOCr18Ni9)动态累积损伤研究。爆炸与冲击,Vol.19,No.4,309~314,1999.
    [58] 王军著。损伤力学的理论及应用。北京:科学出版社,1997.
    [59] Rubin A M, Ahrens T J. Dynamic Tensile Failure Induced Velocity Deficits in Rock. Geophys Res Lett. 1991 (2):219~223.
    [60] 谢和平著。岩石、混凝土损伤力学。中国矿业大学出版社,1990.
    [61] Hoe I. Ling, A.H.-D. Cheng. Rock sliding induced by Seismic Force. Int. J. Rock. Mech. Min. Sci. Vol. 34, No. 6, 1021~1029, 1997.
    [62] 李焯芬,李光煜,章光等.如何合理确定核岛地基动态杨氏模量[J].岩石力学与工程学报,1998,17(2):207~215
    [63] 林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究[J].岩石力学与工程学报,1998,17(2):216~222
    [64] 金丰年,杨海杰.岩石的载荷速度效应[J].岩石力学与工程学报,1998,17(6):712~717
    [65] 单仁亮,竹志强.大理岩、花岗岩冲击破坏模式[J].岩石力学与工程学报,1998,17(增):774~779
    [66] 信礼田,刘建武,何翔.高应变速率下石灰岩的力学特性[J].岩石力学与工程学报,1998,17(增):780~783
    [67] 蔡小虎,李玉民,高文东.岩石的Hopkinson冲击拉杆的设计及应用[J].岩石力学与工程学报,1998,17(增):793~796
    [68] Mainstone RJ.材料在高速应变或高速加载下的力学性能.徐明德等译.1978,(1):74~88.
    
    
    [69] Harry G Harris.混凝土结构动力模型.朱世杰译.北京:地震出版社,1982.21~31.
    [70] 张学峰、夏源明,中应变率材料试验机的研制,实验力学,No.1,2001,PP13~18.
    [71] 林韵梅等.地压讲座.北京:煤炭工业出版社,1981.
    [72] 陈顒.地壳的岩石力学性能:理论基础与实验方法.北京:地质出版社,1988年
    [73] 唐春安著.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993
    [74] 冯涛,潘长良等.测定岩爆岩石弹性变形能量指数的新方法.中国有色金属学报,1998,8(2)
    [75] 刘小明等.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报,1997,16(2)
    [76] 陈明祥,侯发亮.岩石损伤模型与岩爆机理解释.武汉水利电力大学报,1993,26(20)
    [77] 李庶林.岩爆倾向性的动态破坏实验研究[J].辽宁工程技术大学学报,2001.20(4)
    [78] Nakayama Y, Inoue A, Tanaka M A, et al. Laboratory experiment for development of acoustic methods to investigate condition changes induced by excavation around a chamber [A]. Young(ed), Rock—bursts and Seismicityin Mines[C], Rotterdam. 1993. 383—385
    [79] 祝方才,宋锦泉。岩爆的力学模型及物理数值模拟述评.中国工程科学,2003,5(3)。
    [80] 郭然,于润沧.有岩爆危险巷道的支护设计[J].中国矿业,2002,11(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700