用户名: 密码: 验证码:
岷江上游森林碳储量特征及动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是地球上重要的陆地生态系统之一,森林在全球碳平衡和减缓全球气候变化方面发挥着不可替代的作用。在森林碳循环与碳储量的计算方法上,材积源-生物量法具有广泛的应用基础并能满足估算精度要求,利用森林资源清查数据和优势树种(组)材积源-生物量关系进行碳储量估算,也是政府间气候变化专门委员会(IPCC)推荐的国家和区域碳计量计算较好方法。岷江上游是典型的亚高山区,该区域的森林碳储量大小、组成及动态变化状况具有北半球中高纬度和亚高山的森林特点,在地理区域和森林类型方面有较强的代表性。本文通过研究该区域森林乔木层碳储量的组成、动态变化及优势树种组(暗针叶林)的生物量碳密度变化及老龄林生物量动态特征,分析了碳储量动态变化的影响因素,目的是揭示岷江上游亚高山区森林地上碳储量分配特征及其动态变化的影响因子,可为利用森林资源清查数据进行区域碳储量研究提供范例。主要内容包括以下几个方面:
     (1)研究表明岷江上游现有森林面积8.39×10~5hm2,碳储量5.87×10~7Mg·C,其中针叶林碳储量占84.73%,阔叶林碳储量占15.27%,岷江上游森林平均生物量碳密度为69.97 Mg·C·hm~(-2),冷杉林所占面积和碳储量最高,碳密度最大。防护林面积和碳储量最大,特用林碳密度最高。人工林面积和碳储量分别占天然林面积和碳储量的20.3%、7.95%,人工林碳密度为天然林的37.80%。人工林面积所占比例相对较高,而碳储量与碳密度却较小。岷江上游碳储量主要集中在成、过熟林当中,占林分总碳储量的72.21%,碳密度随龄组的增大而增加。岷江上游林业用地和有林面积所占比例较高,但各县分配不均,森林平均覆盖率为34.50%。
     (2)岷江上游森林在1992-2006年期间,碳储量增加了10~.32×10~6Mg·C,平均年增长率为1.52%,年固碳量为0.1~2.0×10~6Mg·C·a~(-1),森林面积增加了38.82%,碳密度从80.06Mg·C·hm~(-2)降低到69.97Mg·C·hm~(-2),平均年降低0.9%。冷杉面积和碳储量所占比例不断下降,云杉面积和碳储量所占比例不断增加。用材林面积和碳储量减少,防护林面积和碳储量不断增加,特用林面积、碳储量及碳密度呈现增加,其他森林类型碳密度呈现下降。岷江上游碳储量在成、过熟林中所占比例不断下降,幼龄林、中龄林和近熟林所占比例呈不断增加的趋势,但目前仍然是成、过熟林碳储量所占比例高;中龄林和近熟林生物量碳密度呈现增加趋势,幼龄林、成、过熟林碳密度呈现下降趋势。在此期间林业用地面积和有林地面积不断增长,森林覆盖率增加了9.66%。
     (3)岷江上游暗针叶林中的成熟林、过熟林生物量碳密较高,中龄林、幼龄林生物量碳密度较低,成熟林、过熟林生物量碳密度高于全国平均水平,而中龄林和近熟林低于全国平均水平,幼龄林与全国平均水平相近;中龄林生物量碳密度年增长率最大,为1.3%,其次过熟林生物量碳密度年增长率为0.8%,幼龄林生物量碳密度年增长率最小,为0.7%;海拔3600~3800 m的生物量碳密度最大,明显高于其他海拔区段;海拔3000~3400m处的生物量碳密度年增长率最高,为1.03%;半阴坡和半阳坡的生物量碳密度高且年增长率大,阳坡生物量碳密度低,年增长率小,阴坡界于两者之间;过去20多年,岷江上游暗针叶林生物量碳密度呈现逐年增加的趋势,1997-2002年,生物量碳密度年平均增长率为1.15%,高于其他调查期间碳密度年增长率。
     (4)1988-2002年期间,老龄林地上生物量密度净增量为27.311±15.58Mg·hm~(-2),平均每年增长率为1.930±1.091Mg·hm~(-2)·year-1 ,平均每年枯损率为2.271±1.424Mg·hm~(-2)·year-1;地上生物量变化受各径级保留木生长量、枯损量及进界生长量影响,其中20~40cm径级保留木生长量与生物量净增量最大,>80cm径级生物量增量最小,40~60和60~80cm径级生物量在调查期间净增量出现负增长;岷江上游老龄林地上生物量动态变化具有时空间异质性,同一样地在不同调查间隔期或同一调查期间不同样地间生物量变化不同,不仅是增量数值大小差异,还表现为生物量增量的正负差异。
     (5)通过因子分析等方法分析气候因子、海拔、人口、森林年龄、面积和碳密度等要素对岷江上游森林碳储量的影响。表明温度和降水与碳储量呈正向关系,降水影响更大,海拔与碳储量呈负向关系;人口密度与区域碳密度呈对数下降关系,随着人口密度增大碳密度呈下降趋势;森林年龄是影响碳储量的内在因子,区域整体各龄组碳储量增加而碳密度在幼龄林、成、过熟林呈现下降,固定连续调查样地各龄组碳储量与碳密度呈现增加;森林储量变化主要受森林面积和碳密度影响,岷江上游碳储量积累主要来自于森林面积的增加,森林碳密度在研究后期呈现增长。
As one of the most important terrestrial ecosystems, forest ecosystem plays an irreplaceable role in balancing the global carbon budget and mitigating negative impact of global climate change. Among different approaches of measuring forest carbon cycling and carbon storage, the volume-derived method using forest resources inventory data (FID) and the relationship between dominant tree species (or species association) and its biomass have been widely applied with high accuracy. Therefore this method was recommended by the Intergovernmental Panel on Climate Change (IPCC) to calculate carbon storage at the national and regional scales. With the typical forest type, forest composition, dynamics and carbon storage size in the Valley of the Upper Minjiang River (UMR), the local at the sub-alpine area, is similar to those in the middle-high latitude of the Northern Hemisphere and sub-alpine mountainous area. By studying the dynamics and composition of carbon storage in tree layer, biomass density change of dominant tree species and biomass dynamics in old-growth forests, the factors influencing carbon dynamics in the UMR were determined and the carbon allocation features were addressed. The results provide useful information for regional carbon estimating. The major results are summarized as follows:
     The total forest carbon storage has increased by 0.32×10~6 Mg·C in the UMR from 1992 to 2006 [check whether this is your original meaning] with the average annual forest growth rate of 1.52 %, which converted to the annual increment of 0.1~2.0×10~6 Mg·C·a~(-1), forest area increasing of 38.82 % while biomass carbon density(BCD) reducing from 80.06 Mg·C·hm~(-2) to 69.97 Mg·C·hm~(-2) resulting from an average annual reduction rate of -0.9 %. The proportions of area and carbon storage of fir (Abies spp.) forest were declined,and the proportions for Picea spp. forest were increased. Timber forest area and its carbon storage were reduced, and the protected forest area and its carbon were increased. In the special purposed forest area, the carbon storage and BCD have observed an increase. BCD in the other forest types showed a reduction under the natural forest protection and forest classification management. Along with age, the proportion of carbon storage in the mature and over mature forest was declining, while it was increasing in young, middle-age and pre-mature forests. Currently, the mature and over-mature forest carbon storage still dominant in the UMR and the forest coverage rate has increased by 9.66 %. BCD of the middle-age and pre-mature forests showed an upward trend, while the young, mature and over-mature forests showed a downward trend.
     The higher BCD was found in the mature and over-mature dark coniferous forests (DCF) and the lower BCD in the young and middle aged DCF; For the same age class, the BCD values of the mature and over-mature DCF were higher than that of the national average level, while the BCD values of the middle age and pre-mature DCF were lower than that of the national average level. The BCD value of the young forests was similar to the national average. The annual increment rates of BCD in the middle-age, young and over-mature DCF were 1.3%, 0.8% and 0.7%, respectively. The higher BCD values occurred at the sites where the elevations range from 3600 to 3800 m. The annual increment rate of BCD was found to be the highest (1.03%) at the site with the elevation between 3 200 and 3 600 m. The higher BCD and the annual increment rate of BCD occurred on both north facing aspects and south-west and south-east aspects, while the lower values occurred on south facing aspects; The BCDs of DCF in the UMR have been increasing over the past 20 years, and the annual increment rate of BCD was 1.15% from 1997 to 2002, which was the highest among the five inventory periods.
     The net increase in the above-ground biomass density (AGBD) was 27.311±15.580 Mg·hm~(-2) while the mean annual growth rate and the mean annual mortality rate were 1.930±1.091 Mg·hm~(-2)·a~(-1) and 2.271±1.424 Mg·hm~(-2)·a~(-1) during 1988-2002, respectively. The above-ground biomass (AGB) depended largely on the growth and mortality rate of the remaining trees of different diameter at breast height (DBH) classes and recruitment rate from one DBH class to another as well. The largest increment component of AGB came from DBH class at 20 to 40 cm, whereas the minimum increment component of AGB was above 80 cm. The net negative increment of AGB occurred at DBH ranging from 40 ~ 60 to 60~80 cm. There were temporal and spatial variations of AGB in the alpine old-growth forests as AGB changed over time for the same sampling plot and AGB varied with location or sites for the same period. The variations not only reflected in numerical value but also in positive or negative biomass increment.
     Based on factor analysis and other analysis methods, we analyzed relative contribution of the biotic and abiotic factors which include climate (annual precipitation, mean annual temperature), elevation, population density, mean forest age and BCD to forest carbon storage in the UMR. Our results indicated that forest carbon storage was sensitive to changes in annual precipitation and mean annual temperature, with annual precipitation more sensitive than mean annual temperature. There was significant logarithmic relationship between population density and BCD, and BCD decreased along with the increase of population density. Forest age was the internal factors to forest carbon storages, and the total forest carbon storage of all age groups were increased; however, BCD in the young, mature and over-matures forest were decreased in the whole region. The forest carbon storage and BCD in every age group were increased in the permanent sampling plots. Forest area and BCD were major factors influencing forest carbon storage, and the increased forest carbon storage was resulted mainly from the contribution of increased forest area, and the BCD showed an increasing trend in the later period of this study.
引文
[1] Imhoff M L, Bounoua L, Ricketts T, et al. Global patterns in human consumption of net primary production. Nature, 2004, 429(6994): 870-873
    [2] Costanza R, d'Arge R, de Groot R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387: 253-260
    [3] Tian H, Melillo J M, Kicklighter D W, et al. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature, 1998, 396(6712): 664-667
    [4] Schimel D, Melillo J, Tian H, et al. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 2000, 287(5460): 2004-2006
    [5] Melillo J M, FieId C B, Moldan B. Interactions of the Major Biogeochemical Cycles:Global Change and Human Impacts, ed. I. Press. 2003, Washington,D.C.USA. 320.
    [6] Chapin Iii F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity. Nature, 2000, 405(6783): 234-242
    [7]田汉勤,万师强,马克平.全球变化生态学:全球变化与陆地生态系统.植物生态学报, 2007, 31(2): 173-174
    [8] Barford C C, Wofsy S C, Goulden M L, et al. Factors Controlling Long- and Short-Term Sequestration of Atmospheric CO2 in a Mid-latitude Forest. Science, 2001, 294(5547): 1688-1691
    [9] Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414(6860): 169-172
    [10]王效科,白艳莹,欧阳志云,等.全球碳循环中的失汇及其形成原因.生态学报, 2002, 22(1): 94-103
    [11] Janssens I A, Freibauer A, Ciais P, et al. Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science, 2003, 300(5625): 1538-1542
    [12] K?rner C. Slow in, rapid out--carbon flux studies and Kyoto targets. Science, 2003, 300(5623): 1242-1243
    [13] K?rner C, Asshoff R, Bignucolo O, et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science, 2005, 309: 1360-1362
    [14]赵德华,李建龙,齐家国,等.陆地生态系统碳平衡主要研究方法评述.生态学报, 2006, 26(8):2655-2662
    [15] Malhi Y, Baldocchi D D, Jarvis P G. The carbon balance of tropical, temperate and boreal forests. Plant, Cell and Environment, 1999, 22(6): 715-740
    [16] IGBP T, Carbon,Working,group. The terrestrial carbon cycle:implications for the Kyoto protocol. Science, 1998, 280: 1393-1394
    [17]曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟.中国科学D辑地球科学, 2004, 34(增刊II): 1-14
    [18]徐新良,曹明奎,李克让.中国森林生态系统植被碳储量时空动态变化研究.地理科学进展, 2007, 26(6): 1-10
    [19]毛子军.森林生态系统碳平衡估测方法及其研究进展.植物生态学报, 2002, 26(6): 731-738
    [20] Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 1999, 123(1): 81-90
    [21] Vallet P, Dh?te J-F, Moguédec G L, et al. Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management, 2006, 229: 98-110
    [22] Jenkins J C, Birdsey R A, Pan Y D. Biomass and NPP estimation for the mid-atlantic region (USA) using plot-level forest inventory data. Ecological Applications, 2001, 11(4): 1174-1193
    [23] Peichl M, Arain M A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 2007, 253: 68-80
    [24] Peichl M, Arain M A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 2006, 140(1-4): 51-63
    [25] Lambert M-C, Ung C-H, Raulier F. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research 2005, 35(8): 1996-2018
    [26]何海,乔永康,刘庆,等.亚高山针叶林人工恢复过程中生物量和材积动态研究.应用生态学报, 2004, 15(5): 748-752
    [27]徐德应.中国森林与全球气候变化的关系.林业科技管理, 2002, 4: 19-24
    [28] Etheridge D M, Steele L P, Francey R J, et al. Atmospheric methane between 1000 A D and present: Evidence of anthropogenic emissions and climatic variability Journal of Geophysical Research, 1998, 103(D13): 15979
    [29] Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core. Nature,2004, 429(6992): 623-628
    [30] Soegaard H, Thorgeirsson H. Carbon dioxide exchange at leaf and canopy scale for agricultural crops in the boreal environment. Journal of Hydrology, 1998, 212-213: 51-61
    [31] IPCC, Climate Change 2001: The Scientific Basis, C.U. Press, Editor. 2001: Cambridge
    [32] Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995, 1(1): 77-91
    [33] Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998, 282: 442-446
    [34] IPCC, Climate Change 2001:Synthesis Report, C.U. Press, Editor. 2001: Cambridge.
    [35] IPCC. Climate Change - IPPC Response Strategies. 1991, Washington,DC: Island press.
    [36] IPCC. The Regional Impacts of Climate Change: An Assessment of Vulnerability, ed. R.T.Watson, M.C.Zinyowera, R.H.Moss. 1997, Cambridge, England: Cambridge University Press.
    [37]李克让,陈育峰.全球气候变化影响下中国森林的脆弱性分析.地理学报, 1996, S1: 40-49
    [38] Lovelock J E. Hands up for the Gaia hypothesis. Nature, 1990, 344(6262): 100-102
    [39] Watson R T, Verardo D J. Land-use change and forestry. 2000: Cambridge University Press
    [40] Canadell J G, Mooney H A. Ecosystem metabolism and the global carbon cycle. Tree, 1999, 14(6): 249
    [41]杨洪晓,吴波,张金屯,等.森林生态系统的固碳功能和碳储量研究进展.北京师范大学学报(自然科学版), 2005, 41(2): 172-177
    [42] Cao M K, Prince S D, Li K R, et al. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003, 9(4): 536-546
    [43] Canadell J G, Mooney H A, Baldocchi D D, et al. Commentary: Carbon Metabolism of the Terrestrial Biosphere: A Multitechnique Approach for Improved Understanding. Ecosystems, 2000, 3(2): 115-130
    [44]张新时,周广胜,高琼,等.中国全球变化与陆地生态系统关系研究.地学前缘, 1997, 4(z1): 137-144
    [45]耿元波,董云社,孟维奇.陆地碳循环研究进展.地理科学进展, 2000, 19(4): 297-306
    [46]于贵瑞,李海涛,王绍强.全球变化与陆地生态系统碳循环和碳蓄积(Global Change,Carbon Cycle and Storage in Terrestrial Ecosystem). 2003,北京:气象出版社, 141.
    [47] Cao M K, Woodward F L. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252
    [48] Valentini R, Matteucci G, Dolman A J, et al. Respiration as themain determinant of carbon balance in European forests. Nature, 2000, 404: 861-865
    [49]吕超群,孙书存.陆地生态系统碳密度格局研究概述.植物生态学报, 2004, 28(5): 692-703
    [50]陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展.地理研究, 2001, 20(5): 564-575
    [51] Kerr S, Liu S, Pfaff A S P, et al. Carbon dynamics and land-use choices: building a regional-scale multidisciplinary model. Journal of Environmental Management, 2003, 69(1): 25-37
    [52] Goulden M L, Munger J W, Fan S-M, et al. Exchange of carbon dioxide by a deciduous forest: response to Interannual climate variability. Science, 1996, 271(5255): 1576-1578
    [53]于贵瑞,张雷明,孙晓敏,等.亚洲区域陆地生态系统碳通量观测研究进展.中国科学D辑地球科学, 2004, 34(增刊Ⅱ): 15-29
    [54]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量.生态学报, 1996, 16(4): 497-508
    [55] Ni J. Carbon Storage in Terrestrial Ecosystems of China: Estimates at Different Spatial Resolutions and Their Responses to Climate Change. Climatic Change, 2001, 49(3): 339-358
    [56]汪业勖,赵士洞.陆地碳循环研究中的模型方法.应用生态学报, 1998, 9(6): 658-664
    [57] IPCC. Land use, land-use change, and forestry-A special report of the IPCC. 2000, New York: Cambriage University press.
    [58] Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190
    [59] Turner D P, Koerper G J, Harmon M E, et al. A carbon budget for forests of the conterminous United States. Ecological Application, 1995, 5: 421-436
    [60] Detwiler R P, Hall C A S. Tropical forests and the global carbon cycle. Science, 1988, 239(4835): 42-47
    [61] Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282(5388): 439-442
    [62] WBGU, The accounting of biological sinks and sources under the Kyoto Protocol. Special Report. 1998: Bremerhaven, Germany.
    [63] Houghton R A. Land-use change and the carbon cycle. Global Change Biology, 1995, 1(4): 275-287
    [64]蒋有绪.世界森林生态系统结构与功能的研究综述.林业科学研究, 1995, 8(3): 314-321
    [65]刘华,雷瑞德.我国森林生态系统碳贮量和碳平衡的研究方法及进展.西北植物学报, 2005, 25(4): 835-843
    [66]沈文清,马钦彦,刘允芬.森林生态系统收支状况研究进展.江西农业大学学报, 2006, 28(2): 312-317
    [67] Grace J, Lloyd J, McIntyre J, et al. Carbon Dioxide Uptake by an Undisturbed Tropical Rain Forest inSouthwest Amazonia, 1992 to 1993. Science, 1995, 270(5237): 778-780
    [68] Phillips D L, Brown S L, Schroeder P E, et al. Toward error analysis of large-scale forest carbon budgets. Global Ecology and Biogeography, 2000, 9: 305-313
    [69] Goodale C L, Apps M J, Birdsey R A, et al. Forest carbon sinks in the Northern Hemisphere. Ecological Applications, 2002, 12(3): 891-899
    [70] Baker T R, Phillips O L, Malhi Y, et al. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society B:Biological Sciences, 2004, 359(1443): 353-365
    [71] Grace J. Understanding and managing the global carbon cycle. Journal of Ecology, 2004, 92: 189-202
    [72] Lewis S L, Malhi Y, Phillips O L. Fingerprinting the impacts of global change on tropical forests. Phil. Trans. R. Soc. Lond. B, 2004, 359: 437-462
    [73] Houghton R A. Aboveground forest biomass and the global carbon balance. Global Change Biology, 2005, 11(6): 945-958
    [74] Houghton R A. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 2007, 35(1): 313-347
    [75] Saatchi S S, Houghton R A, Dos.Santos.AlvaláR C, et al. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 2007, 13: 816-837
    [76]刘世荣,柴一新.兴安落叶松人工群落生物量与净初级生产力的研究.东北林业大学学报, 1990, 18(2): 40-46
    [77]李意德,方精云.尖峰岭热带山地雨林群落生产和二氧化碳同化净增量的初步研究.植物生态学报, 1998(2): 127-134
    [78]任海,彭少麟,向言词.鹤山马占相思人工林的生物量和净初级生产力.植物生态学报, 2000, 24(1): 18-21
    [79]杨玉盛,陈光水,王义祥,等.格氏栲人工林和杉木人工林碳吸存与碳平衡.林业科学, 2007, 43(3): 113-117
    [80]尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报(自然科学版), 2007, 35(1): 171-174
    [81]孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能.生态学报, 2007, 27(5): 1756-1763
    [82]桑卫国,马克平,陈灵芝.暖温带落叶阔叶林碳循环的初步估算.植物生态学报, 2002, 26(5): 543-548
    [83]曹军,张镱锂,刘燕华.近20年海南岛森林生态系统碳储量变化.地理研究, 2002, 21(5): 551-560
    [84]张德全,桑卫国,李曰峰,等.山东省森林有机碳储量及其动态的研究.植物生态学报, 2002, 26(增刊): 93-97
    [85]张娜,于贵瑞,赵士洞,等.长白山自然保护区生态系统碳平衡研究.环境科学, 2003, 24(1): 24-32
    [86]袁正科,田大伦,吴春英,等.森林碳固定能力计算方法及长株潭区域碳年固定量估算.湖南林业科技, 2004, 31(4): 1-5
    [87]焦秀梅,项文化,田大伦.湖南省森林植被的碳贮量及其地理分布规律.中南林学院学报, 2005, 25(1): 4-8
    [88]曾伟生.云南省森林生物量与生产力研究.中南林业调查规划, 2005, 24(4): 1-3,13
    [89]焦燕,胡海清.黑龙江省森林植被碳储量及其动态变化.应用生态学报, 2005, 16(12): 2248-2252
    [90]杨昆,管东生,周春华.潭江流域森林碳储量及其动态变化.应用生态学报, 2006, 17(9): 1579-1582
    [91]光增云.河南省森林碳储量及动态变化研究.林业资源管理, 2006(4): 56-60,48
    [92]李海涛,王姗娜,高鲁鹏,等.赣中亚热带森林植被碳储量.生态学报, 2007, 27(2): 693-704
    [93]黄从德,张健,杨万勤,等.四川省及重庆地区森林植被碳储量动态.生态学报, 2008, 28(3): 966-975
    [94]康惠宁,马钦彦,袁嘉祖.中国森林C汇功能基本估计.应用生态学报, 1996, 7(3): 230-234
    [95]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡.植物生态学报, 2000, 24(5): 518-522
    [96] Fang J Y ,Wang Z M. Forest biomass estimation at regional and global levels, with special reference to China's forest biomass. Ecological Research, 2001, 16: 587-592
    [97] Pan Y D, Luo T X, BIirdsey R, et al. New estimates of carbon storage and sequestration in China's forests:effects of age-class and method on inventory-based carbon estimation. Climatic Change, 2004, 67: 211-236
    [98]王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报, 2001, 12(1): 13-16
    [99] Houghton R A, Hackler J L. Sources and sinks of carbon from land-use change in China. Global Biogeochemical Cycles, 2003, 17(2): 1034, doi: 10.1029/2002GB001970
    [100]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析.地理科学, 2004, 24(1):50-54
    [101] Wang S, Chen J M, Ju W M, et al. Carbon sinks and sources in China's forests during 1901-2001. Journal of Environmental Management, 2007, 85: 524-537
    [102]吴庆标,王效科,段晓男,等.中国森林生态系统植被固碳现状和潜力.生态学报, 2008, 28(2): 517-524
    [103]方精云,陈安平.中国森林植被碳库的动态变化及其意义.植物学报, 2001, 43(9): 967-973
    [104]王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展, 1999, 18(3): 238-244
    [105] Clark D A, Brown S, Kicklighter D W, et al. Measuring net primary production in forests:concepts and field methods. Ecological Applications, 2001, 11(2): 356-370
    [106] Brown S. Measuring carbon in forests: current status and future challenges. Environmental Pollution, 2002, 116: 363-372
    [107]薛立,杨鹏.森林生物量研究综述.福建林学院学报, 2004, 24(3): 283-288
    [108]尉海东,马祥庆,刘爱琴,等.森林生态系统碳循环研究进展.中国生态农业学报, 2007, 15(2): 188-192
    [109] Litton C M, Raich J W, Ryan M G. Carbon allocation in forest ecosystems. Global Change Biology, 2007, 13(10): 2089-2109
    [110] Houghton R A. Why are estimates of the terrestrial carbon balance so different? Global Change Biology, 2003, 9(4): 500-509
    [111] Brumme R, Butterbach-Bahl K, Grace J, et al., Specific Study on Forest Greenhouse Gas Budget, M. Lindner, Lucht W., Bouriaud O., et al., Editors. 2004.
    [112] Ovington J D. The form, weights and productivity of tree species grown in close stands New Phytologist, 1956, 55(3): 289-304
    [113] Baskerville G L. Estimation of dry weight of tree components and total standing crop in conifer stands. Ecology, 1965, 46(6): 867-869
    [114] Ketterings Q M, Coe R, van Noordwijk M, et al. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 2001, 146(1-3): 199-209
    [115] Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropical, 2005, 37(1): 2-8
    [116] Hoshizaki K, Niiyama K, Kimura K, et al. Temporal and spatial variation of forest biomass in relation to stand dynamics in a mature, lowland tropical rainforest, Malaysia. Ecological Research, 2004, 19: 357-363
    [117]罗天祥,中国主要森林类型生物生产力格局及其数学模型. 1996,中国科学院研究生院博士学位论文:北京.
    [118] Brown S ,Lugo A E. Biomass of tropical forests:a new estimate based on forest volumes. Science, 1984, 223(4642): 1290-1293
    [119] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322
    [120] Somogyi Z, Cienciala E, M?kip?? R, et al. Indirect methods of large-scale forest biomass estimation. Eur J Forest Res, 2006: DOI 10.1007/s10342-006-0125-7
    [121] Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China:an estimate based on the biomass-volume relationship. Ecological Applications, 1998, 8(4): 1084-1091
    [122]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献.生态学报, 2000, 20(5): 733-740
    [123] Woodbury P B, Smith J E, Heath L S. Carbon sequestration in the U.S. forest sector from 1990 to 2010. Forest Ecology and Management, 2007, 241: 14-27
    [124] Lehtonen A, Carbon stocks and flows in forest ecosystems based on forest inventory data. 2005, Department of Forest Ecology, University of Helsinki, Finland.
    [125] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 1994, 99(D3): 5263-5284
    [126] Lieth H ,Whittaker R H. Primary productivity of the biosphere. 1975, New York: Spinger Verlag. 237-263.
    [127]周广胜,张新时.自然植被净第一性生产力模型初探.植物生态学报, 1995, 19(3)
    [128] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7(4): 811-842
    [129]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力.植物生态学报, 2001, 25(5): 603-608
    [130] Prince S D, Goward S N. Global primary production: a remote sensing approach Journal of Biogeography, 1995, 22(4/5): 815-835
    [131] Goetz S J, Prince S D, Goward S N, et al. Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecological Modelling, 1999, 122(3): 239-255
    [132]卢玲,李新, Frank V.黑河流域植被净初级生产力的遥感估算.中国沙漠, 2005, 25(6): 823-830
    [133] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363(6426): 234-240
    [134] Parton W J, Ojima D S, Kirchner T, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles ; Vol/Issue: 7:4, 1993: Pages: 785-809
    [135] Liu J, Chen J M, Cihlar J, et al. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 2002, 11(2): 115-129
    [136] Kramer K, Leinonen I, Bartelink H H, et al. Evaluation of six process-based forest growth models using eddy-covariance measurements of CO2 and H2O fluxes at six forest sites in Europe. Global Change Biology, 2002, 8(3): 213-230
    [137] IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry. 2003 [cited; Available from: www.ipcc-nggip.iges.or.jp/lulucf/gpglulucf_unedit.html.]
    [138] Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9(4): 479-492
    [139] Hutley L B, Leuning R, Beringer J, et al. The utility of the eddy covariance techniques as a tool in carbon accounting: tropical savanna as a case study. Australian Journal of Botany, 2005, 53(7): 663-675
    [140] Williams M, Schwarz P A, Law B E, et al. An improved analysis of forest carbon dynamics using data assimilation. Global Change Biology, 2005, 11: 89-105
    [141] Fearnside P M. Are climate change impacts already affecting tropical forest biomass? Global Environmental Change Part A, 2004, 14(4): 299-302
    [142] Curtis P S, Hanson P J, Bolstad P, et al. Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agricultural and Forest Meteorology, 2002, 113(1-4): 3-19
    [143] Carswell F E, Costa A L, Palheta M, et al. Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest Journal of Geophysical Research, 2002, 107(D20): 8076
    [144] Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of Northern forests. Proceeding of the National Academy of Sciences of the United States of America(PANS), 2001, 98(26):14784–14789
    [145] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science, 2003, 300(5625): 1560-1563
    [146]陈利军,刘高焕,冯险峰.运用遥感估算中国陆地植被净第一性生产力.植物学报, 2001, 43(11): 1191-1198
    [147]朴世龙,方精云,郭庆华. 1982-1999年我国植被净第一性生产力及其时空变化.北京大学学报(自然科学版), 2001, 37(4): 563-569
    [148]朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算.植物生态学报, 2007, 31(3): 413-424
    [149] Kauppi P E, Mielik?inen K, Kuusela K. Biomass and carbon budget of European forests,1971 to 1990. Science, 1992, 256: 70-74
    [150] Schroeder P, Brown S L, Mo J, et al. Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science, 1997, 43: 424-434
    [151] Kauppi P E. New, low estimate for carbon stock in global forest vegetation based on inventory data. Silva Fennica, 2003, 37(4): 451-457
    [152] Liski J, Korotkov A V, Prins C F L, et al. Increased carbon sink in temperate and boreal forests. Climatic Change, 2003, 61: 89-99
    [153]杨昆,管东生.珠江三角洲地区森林生物量及其动态.应用生态学报, 2007, 18(4): 705-712
    [154] Gurney K R, Law R M, Denning A S, et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 2002, 415(6872): 626-630
    [155]方精云,郭兆迪.寻找失去的陆地碳汇.自然杂志, 2007, 29(1): 1-6
    [156]樊宏.岷江上游近50a土地覆被的变化趋势.山地学报, 2002, 20(1): 64-69
    [157]刘世梁,傅伯杰,马克明,等.岷江上游高原植被类型与景观特征对土壤性质的影响.应用生态学报, 2004, 15(1): 26-30
    [158]何兴元,胡志斌,李月辉,等. GIS支持下岷江上游土壤侵蚀动态研究.应用生态学报, 2005, 16(12): 2271-2278
    [159]林勇,岷江上游杂古脑流域径流动态及其对气候变化响应研究. 2006,北京师范大学博士学位论文:北京.
    [160]包维楷,王春明.岷江上游山地生态系统的退化机制.山地学报, 2000, 18(1): 57-62
    [161]李崇巍,岷江上游生态系统空间格局与生态水文功能模拟. 2005,北京师范大学博士学位论文:北京.
    [162]包维楷,陈庆恒,刘照光.岷江上游山地生态系统的退化及其恢复与重建对策.长江流域资源与环境, 1995, 4(3): 277-282
    [163]姚建,丁晶,艾南山.岷江上游生态脆弱性评价.长江流域资源与环境, 2004, 13(4): 380-383
    [164]张荣祖.横断山区干旱河谷. 1992,北京:科学出版社. 6-12.
    [165]叶延琼,陈国阶,杨定国.岷江上游生态环境问题及整治对策.重庆环境科学, 2002, 24(1): 2-4,16
    [166] Liu S R, Wang J X, Chen L W. Ecology and restoration of sub-alpine ecosystem in western Sichuan,China. Informatore Botanico Italiano, 2003, 35(Supplement 1): 29~34
    [167]卧龙自然保护区管理局.卧龙植被及资源植物. 1987,成都:四川科学技术出版社.
    [168]吕瑜良,川西亚高山暗针叶林小流域生态水文过程耦合及模拟. 2007,中国林业科学研究院博士学校论文:北京.
    [169]四川省农业厅土壤普查领导小组.四川土壤. 1995,成都:四川科技出版社.
    [170]刘京涛,岷江上游植被蒸散时空格局及其模拟研究. 2006,中国林业科学研究院博士学位论文:北京.
    [171]光增云.河南森林植被的碳储量研究.地域研究与开发, 2007, 26(1): 76-79
    [172] Liski J, Lehtonen A, Palosuo T, et al. Carbon accumulation in Finland's forests 1922-2004-an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Annals of Forest Science, 2006, 63: 687-697
    [173]蒋有绪.川西米亚罗高山暗针叶林的群落特点及其分类原则.植物生态学与地植物学丛刊, 1963, 1(1): 42-50
    [174]江洪.云杉天然林分生产力与生态条件的初步研究.植物学报, 1986, 28(5): 538-548
    [175]李文华,罗天祥.中国云冷杉林生物生产力格局及其数学模型.生态学报, 1997, 17(5): 511-518
    [176]刘兴良,马钦彦,杨冬生,等.川西山地主要人工林种群根系生物量与生产力.生态学报, 2006, 26(2): 542-551
    [177]马明东,江洪,罗承德,等.四川西北部亚高山云杉天然林生态系统碳密度、净生产量和碳贮量的初步研究.植物生态学报, 2007, 31(2): 305-312
    [178] Lehtonen A, Cienciala E, Tatarinov F, et al. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 2007, 64: 133-140
    [179]张国斌,刘世荣,张远东,等.岷江上游亚高山暗针叶林的生物量碳密度.林业科学, 2008, 44(1):1-6
    [180] Zhang X Q, Kirschbaum M U F, Hou Z H, et al. Carbon stock changes in successive rotations of Chinese fir (Cunninghamia lanceolata (lamb) hook) plantations. Forest Ecology and Management, 2004, 202: 131-147
    [181]黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化.应用生态学报, 2007, 18(12): 2687- 2692
    [182]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力. 1999,北京:科学出版社. 31.
    [183]国家林业局森林资源管理司.第六次全国森林资源清查及森林资源状况.绿色中国, 2005(2): 10-12
    [184]胡会峰,刘国华.森林管理在全球CO2减排中的作用.应用生态学报, 2006, 17(4): 709-714
    [185] King A W, Post W M, Wullschleger S D. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climatic Change, 1997, 35(2): 199-227
    [186]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志, 2000, 19(4): 72-74
    [187]魏文俊,王兵,李少宁,等.江西省森林植被乔木层碳储量与碳密度研究.江西农业大学学报, 2007, 29(5): 767-772
    [188] Wang X K, Feng Z W, OuYang Z Y. The impact of human disturbance on vegetative carbon storage in forest ecosystems in China. Forest Ecology and Management, 2001, 148: 117-123
    [189]聂道平,徐德应,王兵.全球碳循环与森林关系的研究—问题与进展.世界林业研究, 1997, 5: 34-40
    [190]陈泮勤,黄耀,于贵瑞.地球系统碳循环. 2004,北京:科学出版社. 80.
    [191]周传艳,周国逸,王春林,等.广东省森林植被恢复下的碳储量动态.北京林业大学学报, 2007, 29(2): 60-65
    [192]王兵,魏文俊.江西省森林碳储量与碳密度研究.江西科学, 2007, 25(6): 681-687
    [193]刘其霞,常杰,江波,等.浙江省常绿阔叶生态公益林生物量.生态学报, 2005, 25(9): 2139-2144
    [194] Kauppi P E, Ausubel J H, Fang J Y, et al. Returning forests analyzed with the forest identity. PNAS, 2006, 103(46): 17574-17579
    [195]张煜星.中国森林资源1950-2003年结构变化分析.北京林业大学学报, 2006, 28(6): 80-87
    [196]杨玉坡,李承彪.四川森林. 1992,北京:中国林业出版社. 1189-1372.
    [197]张小全,侯振宏.森林、造林、再造林和毁林的定义与碳计量问题.林业科学, 2003, 39(2): 145-152
    [198] Christine L G, Apps M J, Birdsey R A, et al. Forest carbon sinks in the northern hemisphere. Ecological Applications, 2002, 12(3): 891-899
    [199]杨昆,管东生.珠江三角洲森林的生物量和生产力研究.生态环境, 2006, 15(1): 84-88
    [200] Piao S L, Fang J Y, Zhu B, et al. Forest biomass carbon stocks in China over the past 2 decades:estimation based on integrated inventory and satellite data. Journal of Geophysical Research, 2005, 110: G01006, doi:10.1029/2005JG000014
    [201]江洪.紫果云杉天然中龄林分生物量和生产力的研究.植物生态学与地植物学学报, 1986, 10(2): 146-152
    [202]蒋有绪.川西米亚罗、马尔康高山林区生境类型的初步研究.林业科学, 1963, 8(4): 321-335
    [203]孟宪宇主编.测树学(第二版) . 1996,北京:中国林业出版社. 203-204.
    [204] Zhao M, Zhou G S. Carbon storage of forest vegetation in China and its relationship with climatic factors. Climatic Change, 2006, 74: 175-189
    [205]刘庆,吴彦,何海.中国西南亚高山针叶林的生态学问题.世界科技研究与发展, 2001, 2: 63-69
    [206]杨玉坡.论川西高山林区的森林采伐方式问题.四川省林业科学研究所,四川高山林业研究资料集刊, 1979,第二集: 11-25
    [207]张远东,赵常明,刘世荣.川西米亚罗林区森林恢复的影响因子分析.林业科学, 2005, 41(4): 189-193
    [208] Overman J P M, Witte H J L, Saldarriaga J G. Evaluation of regression models for above-ground biomass determination in Amazon rainforest. Journal of Tropical Ecology, 1994, 10(2): 207-218
    [209] Keeling H C, Phillips O L. The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 2007, 16: 618-631
    [210] Kira T. Primary productivity and carbon cycling in a primeval lowland rainforest of Peninsular Malaysia.In:Tree Crop Physiology 1987, Amsterdam: Elsevier Science. 99-119.
    [211] Chave J, Condit R, Lao S, et al. Spatial and temporal variation of biomass in a tropical forest:results from a large census plot in Panama. Journal of Ecology, 2003, 91: 240-252
    [212] Carey E V, Sala A, Keane R, et al. Are old forests underestimated as global carbon sinks? Global Change Biology, 2001, 7(4): 339-344
    [213] Malhi Y, Wood D, Baker T R, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 2006, 12: 1107-1138
    [214] Zhou G Y, Liu S G, Li Z A, et al. Old-growth forests can accumulate carbon in soils. Science, 2006,314: 1417
    [215] Hollinger D Y, Goltz S M, Davidson E A, et al. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biology, 1999, 5: 891-902
    [216] Chen J Q, Falk M, Euskirchen E, et al. Biophysical controls of carbon flows in three successional Douglas-fir stands based on eddy-covariance measurements. Tree Physiology, 2002, 22: 169-177
    [217] Anthoni P M, Unsworth M H, Law B E, et al. Seasonal differences in carbon and water vapor exchange in young and old-growth ponderosa pine ecosystems. Agricultural and Forest Meteorology, 2002, 111: 203-222
    [218] Rice A H, Pyle E H, Saleska S R, et al. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications, 2004, 14(4 supplement): 55-71
    [219] Brown S L, Gillespie A J R, Lugo A E. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest science 1989, 35: 881-902
    [220]罗天祥,石培礼,罗辑,等.青藏高原植被样带地上部分生物量的分布格局.植物生态学报, 2002, 26(6): 668-676
    [221]石培礼,钟章成,李旭光.四川桤柏混交林生物量的研究植物生态学报, 1996, 20(6): 524-533
    [222]程堂仁,马钦彦,冯仲科,等.甘肃小陇山森林生物量研究.北京林业大学学报, 2007, 29(1): 31-36
    [223]罗辑,程根伟,杨忠,等.贡嘎山暗针叶林不同林型的优势木生长动态.植物生态学报, 2000, 24(1): 22-26
    [224] Jarvis P G. Atmospheric carbon dioxide and forests. 1989, Series B: Philosophical Tran sactions of the Royal Society of London. 324,369-392.
    [225] Melillo J M, Prentice I C, Farquhar G D, et al. Terestrial biotic responses to environmental change and feedbacks to climate.In:Houghton J et al,Eds.Climate Change 1995:the Science of Climate Change. 1996, New York: Cambridge University Press. 444-48l.
    [226]黄嘉佑.气象统计分析与预报方法. 2004,北京:气象出版社.
    [227]丁勇建,叶柏生,刘时银.祁连山区流域径流影响因子分析.地理学报, 1999, 54(5): 431-437
    [228]朴世龙,方精云. 1982—1999年我国陆地植被活动对气候变化响应的季节差异.地理学报, 2003(1): 119-125
    [229] Morales P, Hickler T, Rowell D P, et al. Changes in European ecosystem productivity and carbonbalance driven by regional climate model output. Global Change Biology, 2007, 13: 108-122
    [230]阿坝藏族羌族自治州政府网. http://www.abazhou.gov.cn/. 2005
    [231]肖兴威主编.中国森林资源清查. 2005,北京:中国林业出版社. 212.
    [232]周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报, 1996, 20(1): 11-19
    [233]刘世荣,郭泉水,王兵.中国森林生产力对气候变化响应的预测研究.生态学报, 1998, 18(5): 478-483
    [234]罗辑,杨忠,杨清伟.贡嘎山森林生物量和生产力的研究.植物生态学报, 2000, 24(2): 191-196
    [235]樊宏,张建平.岷江上游半干旱河谷土地利用/土地覆盖研究.中国沙漠, 2002, 22(3): 273-278
    [236]杨兆平,常禹,问青春.岷江上游干旱河谷耕地和居民用地的空间特征.生态学杂志, 2007, 26(3): 327-331
    [237]阿坝藏族羌族自治州统计局.阿坝州统计年鉴. 2007.
    [238]王乾, Wang K Y.川西亚高山针叶林生产力和光能利用效率研究现状.世界科技研究与发展, 2003, 25(5): 25-32
    [239]徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响.植物生态学报, 2007, 31(2): 175-188
    [240] Muukkonen P, Forest inventory-based large-scale forest biomass and carbon budget assessment:new enhanced methods and use of remote sensing for verification, in The Finnish Society of Forest Science Finnish Forest Research Institute. 2006, Helsinki University, Finland: Helsinki.
    [241]冯仲科,罗旭,石丽萍.森林生物量研究的若干问题及完善途径.世界林业研究, 2005, 18(3): 25-28
    [242]李克让,曹明奎,於刑,等.中国自然生态系统对气候变化的脆弱性评估.地理研究, 2005, 24(5): 653-663
    [243] House J I, Prentice I C, Ramankutty N, et al. Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources and sinks. Tellus B, 2003, 55(2): 345-363
    [244]项文化,田大伦,闫文德.森林生物量与生产力研究综述.中南林业调查规划, 2003, 22(3): 57-60, 64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700