用户名: 密码: 验证码:
基于J-积分和构型力理论的材料断裂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的连续介质力学(也称变形力体系)主要研究连续体的空间运动及其变形。近年来,连续介质力学一个新的分支,构型力理论(或者叫材料空间力学理论)逐渐发展起来以处理与连续体的结构演化与缺陷运动有关的力学问题。本文旨在开展热力学框架下的构型力理论研究,并将其与传统的变形力体系相结合来分析断裂问题。这不但为断裂力学研究提供新的思路和方法,而且也有助于深化对断裂问题的认识。以下是本文的主要研究内容、思路、方法和结论:
     第一章回顾和评述了宏观断裂力学的分析方法,包括以奇异场理论和围道积分为基础的经典断裂力学、构型力方法以及内聚力模型。
     第二章从传统的变形力体系出发研究了增量塑性本构关系下的断裂问题,重点分析了裂纹扩展过程中的能量耗散与裂纹扩展阻力。对于包含尖劈裂纹的弹塑性体,总的能量耗散包括塑性区耗散与裂尖耗散;通过裂纹扩展的局部稳态特性,裂尖耗散可以表示成无限小围道上的J_(tip)~(ep)-积分。与Rice的J -积分相比, J~(ep)-积分具有以下特征:其被积函数的能量项为自由能密度而非应力功密度;无论对增量塑性还是形变塑性, J~(ep)-积分始终是路径相关的;在裂纹稳态扩展条件下,用于评价裂纹扩展阻力的远场J_(far)~(ep)-积分可以写成裂尖耗散与塑性耗散之和,这个结果为J_(far)~(ep)-积分作为裂纹扩展阻力评价指标提供了一定的物理基础。从理论分析和数值模拟两方面评价了J_(far)~(ep)-积分裂纹扩展阻力和能量耗散率扩展阻力Γ(Δa )。计算结果表明, J_(far)~(ep)-积分裂纹扩展阻力随着裂纹扩展而增加,能量耗散率扩展阻力Γ(Δa )随裂纹扩展而减小,只有当裂纹扩展趋于稳态条件时,两者才逐渐趋于一致。采用Gurson损伤模型模拟了弹塑性材料钝化裂纹扩展,分析了材料硬化指数、孔洞体积含量和弹性极限应变对裂纹扩展阻力和断裂功的影响,结果表明断裂功与应力三轴度相关,而非固定的材料常数。
     第三章引入了构型力和演化控制体概念,建立了热/机械载荷与力/电载荷作用下的构型力基本方程。对于演化控制体,外界所做的功除了传统的变形功外还包括由于控制体内的物质增减引起的构型功。给出了物质观察者的坐标转换关系,通过所有的外力功(包括变形功与构型功)在物质观察者发生任意刚体运动的情况下保持不变这一基本原理建立了多物理场下构型力(矩)平衡。通过热力学第一定律以及构型功与演化控制体边界切向演化速度无关这一内在要求导出了Eshelby关系,即构型力与变形力的关系;对于热机械过程,通过演化控制体的热力学第二定律确定了构型热。
     第四章采用构型力理论分析了热弹性材料与电弹性材料的断裂问题。通过含缺陷的演化控制体的热力学第二定律推导了裂纹尖端的能量耗散,结果表明,无论在热/机械载荷还是力/电载荷作用下,裂尖处负的集中内部构型体积力在裂纹扩展方向的投影正是裂纹扩展驱动力。这表明裂纹扩展由裂尖处集中的内部构型体积力来控制,其做的功并不转化为自由能而是对应着不可逆过程的耗散。通过含裂尖演化控制体的广义动能定理导出了惯性集中构型力,进一步通过裂尖平衡方程求得内部集中构型力。
     除了奇异断裂理论以外,内聚力模型也广泛应用于各类材料与结构的断裂问题中。在论文的第五章,提出了界面变形梯度的概念,利用构型力理论的基本思想构建了材料空间应力矢量和界面分离位移矢量,在此基础上建立了材料空间下的不可逆内聚力模型,该模型能同时满足客观性原理和断裂能的加载路径相关性要求。随后,从变分原理出发推导出了含内聚区变形体的有限元离散形式,结合ABAQUS有限元软件,给出了内聚力单元用户子程序(UEL)。最后,模拟了双悬臂梁界面裂纹问题,分析了加载构型与界面性能对试件的极限承载能力的影响。
The traditional continuum mechanics which is rooted on deformational forces system mainly deals with the problems of the spacial movement and deformation of continuum. Recently, a new branch of continuum mechanics, configurational force which is also called material space mechanics, is developed to represent the evolution of material structures and the motion of defects. The present thesis primarily aims at carrying out the study of configurational forces theory in the framework of thermodynamics, and on this basis the fracture problems are investigated by combining configurational forces approach and the deformational forces system. This not only provides a fresh look and method onto the classical fracture mechanics, but also deepens the understanding on fracture problems. The main ideas, methods and conclusions are summarized as following:
     In Chapter 1, the methods dealing with fracture problems are reviewed, including the classical fracture mechanics theory characterized by singular field theory and contour integrals, configurational forces approach to fracture mechanics and cohesive zone model.
     In Chapter 2, starting from the deformational forces system, the fracture problem of materials with the incremental plasticity response is investigated with emphasis on the calculation of the energy dissipation and the evaluation of crack growth resistance during crack propagation. For the elastic-plastic body containing sharp crack, the total energy dissipation consists of the energy dissipation in plastic zone and that concentrated at the crack tip. Using local steady-state condition of crack propagation, crack tip dissipation can be reformulated as the form of J teipp-integral which is the value of J ep-integral evaluated along the infinite small contour circling the crack tip. Compared with Rice’s J -integral, J ep-integral has the following particularities: the energy-momentum tensor in J ep-integral is defined by the free energy density rather than stress working density; J~(ep)-integral is path-dependent no matter incremental plasticity or deformation plasticity; J_(farss)~(ep) -integral,the value of J~(ep)-integral evaluated along the far boundary contour under the global steady-state condition of crack propagation, can be rewritten as the sum of J~(tip)~(ep)-integral and the plastic dissipation, which indicates that J_(far)~(ep)-integral can be taken as a candidate to evaluate crack growth resistance due to the reasonable physical meaning. Both the J_(far)~(ep)-integral crack growth resistance and energy dissipation rate resistance are evaluated theoretically and numerically. Simulation results show that J_(far)~(ep)-integral resistance increases with the crack growth, whereas energy dissipation rate resistance decreases. When the steady-state condition is reached approximately the two resistances lie in the same level. At last, the crack propagation is simulated by using Gurson model. The effects of material hardening level, the void volume fraction and the yield strain on fracture energy and crack growth resistances are discussed and the numerical results demonstrate that fracture energy is stress-triaxiality-dependent instead of a material constant.
     In Chapter 3, the concepts of configurational forces and migrating control volume are introduced and the basic equations of configurational forces are established for thermomechanical and electro-mechanical loading using Gurtin’s ideas. The working expended on migrating control volume consists of not only deformation working but also configurational working which accounts for the addition and deletion of material particles through the boundary of the migrating control volume. The exchange of material observer is given. The balance equations of configurational forces and moment of multi-physical fields are established by using the basic principle that the total working on migrating control volume holds invariant under arbitrary translation and rigid rotation of material observer. Eshelby relation relating deformational forces and configurational forces is identified by combining the first thermodynamic law and the requirement that configurational working is independent of the tangential component of evolution velocity of the boundary of the migrating control volume. The configurational heating of thermomechanical process can be determined from the second thermodynamic law.
     In Chapter 4, the configurational forces are used to investigate the fracture problems of thermoelastic and electroelastic materials. Energy dissipation concentrated at the crack tip is derived from the generalized mechanical version of the second law of thermodynamics applicable to migrating control volume. Theoretical derivation shows that the negative projection of the internal configurational force concentrated at the crack tip along the direction of crack propagation plays the role of energy release rate no matter thermomechanical process or electro-mechanical processe. This indicates that the internal concentrated configurational force acts to govern crack propagation and its working is converted into irreversible energy dissipation. Furthermore, the inertia part of the concentrated configurational force at the crack tip is determined from the generalized kinetic energy theorem. Further, the internal configurational force concentrated at the crack tip can be obtained by substituting the inertia part of the configurational force into the configurational force balance.
     In addition to singular field theory, cohesive zone model is also widely used to study the fracture problems of materials and components. In Chapter 5, the concept of interfacial deformation gradient is introduced and the traction and separation displacement vectors of material space are constructed by using the basic ideas of configurational forces. On this basis, the irreversible cohesive zone model of material space is developed. The cohesive law not only meets the requirement of objectivity principle but also predicts the path-dependent cohesive energy. The discrete form of balance equation of the continuum containing cohesive zone are derived using variational principle and the finite element solution is implemented by coding user element subroutine (UEL) of the cohesive zone model in the commercial software ABAQUS. At last, the interfacial crack propagation of double cantilever beam (DCB) is simulated, and the effects of interfacial parameters and loading configuration on the loading capacity of DCB specimen are discussed.
引文
1 J. D. Eshelby. The force on an elastic singularity. Philos. Trans. R. Soc. London 1951, A244: 87-112
    2 J. D. Eshelby. The energy-momentum tensor. Journal of Elasticity. 1975, 5: 321-335
    3 M. E. Gurtin. The nature of configurational forces. Archive for Rational Mechanics and Analysis. 1995, 131: 67-100
    4 M. E. Gurtin. Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York. 2000
    5 G. A. Maugin. Material Inhomogenities in Elasticity. Chapman and Hall, London. 1993
    6 G. A. Maugin. Material forces: concepts and applications. Applied Mechanics Reviews. 1995, 48: 213-245
    7 R. Kienzler and G. Herrmann. Mechanics in material space, with application to defect and fracture mechanics. Spring-Verlag, Berlin Herdelberg. 2000
    8范镜泓高芝晖著.非线性连续介质力学基础.重庆大学出版社, 1987.
    9 J. F. Scott. Applications of Modern Ferroelectrics. Science. 2007, 315:954-959
    10 G.. Y. Kang, S. W. Bae, H. H. Park, and T. S. Kim. Fabrication and Electromechanical Properties of a Self-actuating Pb(Zr0.52Ti0.48)O3 Microcantilever Using a Direct Patternable Sol-gel Method. Applied Physics Letters. 2006, 88:042904
    11 T. Kobayashi, M. Ichiki, R. Kondou, K. Nakamura and R. Maeda. Fabrication of 3-Dimensional PbZr1?xTixO3 Nanoscale Thin Film Capacitors for High Density Ferroelectric Random Access Memory Devices. Journal of Nanoscience and Nanotechnology. 2006, 6: 3333-3337
    12 S. M. Spearing. Fabrication of Piezoelectric Microcantilevers Using LaNiO3 Buffered Pb(Zr,Ti)O3 Thin Film. Journal of Micromechanics and Microengineering. 2008, 18: 035007
    13 A. Wu, P. M. Vilarinho, S. Srinivasan, A. I. Kingon, I. M. Reaney, D.Woodward, A.R. Ramos and E. Alves. Microstructural Studies of PZT Thick Films on Cu Foils. Acta Materialia. 2006, 54: 3211-3220.
    14 N. R. Harris, M. Hill, R. Torah, R. Townsend, S. Beeby, N. M. White and J. Ding. A Multilayer Thick-Film PZT Actuator for MEMs Applications. Sensors and Actuators A. 2006, 132: 311-316.
    15 H. Gao, T. Y. Zhang and P. Tong. Local and global energy release rates for anelectrically yielded crack in a piezoelectric ceramic. Journal of the Mechanics and Physics of Solids.1997, 45: 491-510
    16 R. M. McMeeking. A J-integral for the analysis of electrically induced mechanical stress at cracks in elastic dielectrics. International Journal of Engineering Science.1990, 28:605-613
    17 Y. E. Pak. Crack extension force in a piezoelectric material. Journal of Applied Mechanics.1990, 57: 647-653
    18 X. H. Chen. Crack driving force and energy-momentum tensor in electroelastodynamic fracture. Journal of the Mechanics and Physics of Solids. 2009, 57(1):1-9
    19 G. R. Irwin. Fracturing of Metals, ASM, Cleveland, OH. 1949, 147-166
    20 J. R. Rice. A path independent integral and the approximate analysis of strain concentrations by notches and cracks. Journal of Applied Mechanics. 1968, 35: 379-386
    21 J. R. Rice and E. P. Sorensen. Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. Journal of the Mechanics and Physics of Solids. 1978, 26: 163-186
    22 J. W. Hutchinson. Singular behavior at the end of a tensile crack in a hardening material. Journal of the Mechanics and Physics of Solids. 1968, 16: 13-31
    23 J. W. Hutchinson. Fundamentals of the phenomenological theory of nonlinear fracture mechanics. Journal of Applied Mechanics. 1983, 50: 1042-1051
    24 H. Riedel. Cracks loaded in anti-plane shear under creep conditions.Z Metallkunde. 1978, 69: 755-760
    25 H. Riedel and J. R. Rice. Tensile cracks in creep solids, In ASTM STP 700. American Society for Testing and Materials, Philadelphia 1980
    26 J. L. Bassani and F. A. McClintock. Creep relaxation of stress around a crack tip. International Journal of Solids and Structures. 1981, 17: 479-492
    27 L. Hermann and J. R. Rice. Comparison of theory and experiment for elastic-plastic plane-strain crack growth. Metal Science. Metal Science. 1980, 14: 285-291
    28 V. Tvergaard and J. W. Hutchinson. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids. 1992, 40(6): 1377-1397
    29 L. Xia and C. F. Shih. Ductile crack growth—I. A numerical study using computational cells with microstructurally-based length scales. Journal of the Mechanics and Physics of Solids. 1995, 43: 233-259
    30 L. Xia and C. F. Shih. Ductile crack growth—II. Void nucleation and geometryeffects on macroscopic fracture behaviour. Journal of the Mechanics and Physics of Solids. 1995, 43: 1953-1981
    31 L. Xia, C. F. Shih and J. W. Hutchinson. A computational approach to ductile crack growth under large scale yielding conditions. Journal of the Mechanics and Physics of Solids. 1995, 43, 389-413
    32 V. Tvergaard and J. W. Hutchinson. The influence of plasticity on mixed mode interface toughness. Journal of the Mechanics and Physics of Solids. 1993, 41(6): 1119-1135
    33 V. Tvergaard. Resistance curves for mixed mode interface crack growth between dissimilar elastic–plastic solids. Journal of the Mechanics and Physics of Solids. 2001, 49(11): 2689-2703
    34 O. Kolednik. On the physical meaning of the J-de1ta a-curves. Engineering Fracture Mechanics. 1991, 38: 403–412
    35 C. E. Turner. A re-assessment of ductile tearing resistance, part I: the geometry dependence of J–R curves in fully plastic bending. Eighth European Conference on Fracture, Warley, UK: EMAS. 1990, 933-949
    36 C. E. Turner. A re-assessment of ductile tearing resistance, part II: energy dissipation rate and associate R-curves on normalized axes. Eighth European Conference on Fracture. Warley, UK: EMAS. 1990, 951-968
    37 C. E. Turner and O. Kolednik. A micro and macro approach to the energy dissipation rate model of stable ductile crack growth. Fatigue & Fracture of Engineering Materials & Structures. 1994, 17: 1089-1107
    38 O. Kolednik and C. E. Turner. Application of energy dissipation rate arguments to ductile instability. Fatigue & Fracture of Engineering Materials & Structures. 1994, 17: 1129-1145
    39 J. D. G. Sumpter. An alternative view of R curve testing. Engineering Fracture Mechanics. 1999, 64 (2): 161-176
    40 J. Stampfl and O. Kolednik. The separation of the fracture energy in metallic materials. International Journal of Fracture. 2000, 101(4): 321-345
    41 T. Siegmund and W. Brocks. A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Engineering Fracture Mechanics. 2000, 67: 139-154
    42 D. Memhard, W. Brocks and S. Fricke. Characterization of ductile tearing resistance by energy dissipation rate. Fatigue & Fracture of Engineering Materials & Structures. 1993, 16: 1109-1124
    43 N. K. Simha, F. D. Fischer, G. X. Shan, C. R. Chen and O. Kolednik. J-integral and crack driving force in elastic–plastic materials. Journal of the Mechanicsand Physics of Solids. 2008, 56: 2876-2895
    44 J. K. Knowles and E. Sternberg. On a class of conservation laws in linearized and finite elastostatics. Archive for Rational Mechanics and Analysis. 1972, 44: 187-211
    45 E. Noether. Invariante variationsprobleme. Gottinger Nachrichten, mathematics-physikalische Klasse.1998, 2:235
    46 B. Budiansky and J. R. Rice. Conservation laws and energy-release rates. Journal of Applied Mechanics. 1973, 40: 201-203
    47 V. A. Lubarda and X. Markenscoff. Conservation integrals in couple stress elasticity. Journal of the Mechanics and Physics of Solids. 2000, 48(3): 553-564
    48 L. B. Freund Stress intensity factor calculations based on a conservation integral. International Journal of Solids and Structures. 1978, 14(3): 241-250
    49 Y. Z. Chen. A technique for evaluating the stress intensity factors by means of the m integral. Engineering Fracture Mechanics. 1986, 23(4): 777-780
    50 V. A. Lubarda and X. Markenscoff. Dual conservation integrals and energy release rates. International Journal of Solids and Structures. 2007, 44: 4079-4091
    51 T. Honein and G. Herrmann. Conservation laws in nonhomogeneous plane elastostatics. Journal of the Mechanics and Physics of Solids. 1997, 45(5): 789-805
    52 N. Chien, T. Honein and G. Herrmann. Conservation laws for nonhomogeneous Bernoulli-Euler beams. International Journal of Solids and Structures. 1993, 30(23): 3321-3335
    53 N. Chien, T. Honein and G. Herrmann. Conservation laws for non-homogeneous Mindlin plates. International Journal of Engineering Science. 1994, 32(7): 1125-1136
    54 C. Atkinson and J. D. Eshelby. Flow of energy into the tip of a moving crack. International Journal of Fracture Mechanics. 1968, 4: 3-8
    55 L. B. Freund. Dynamic Fracture Mechanics. Cambridge University Press. 1990
    56 L. B. Freund. Energy flux into the tip of an extending crack in an elastic solid. Journal of Elasticity. 1972, 2: 341-349
    57 B. Moran and C. F. Shih. Crack tip and associated domain integrals from momentum and energy balance. Engineering Fracture Mechanics. 1987, 27: 615-642
    58 G. Herrmann. On energy-release rates for a plane crack. Journal of Applied Mechanics. 1981, 48: 525-528
    59 J. W. Eischen and G. Herrmann. Energy release rates and related balance laws in linear elastic defect mechanics. Journal of Applied Mechanics. 1987, 54: 388-392
    60 Y. E Pak and G. Herrmann. Conservation laws and the material momentum tensor for the elastic dielectric. International Journal of Engineering Science. 1986, 24: 1365-1374
    61 G. A. Maugin and M. Epstein. The elctroelastic energy-momentum tensor. Proceedings of the Royal Society of London. Series A. 1991, 433: 299-312
    62 G. A. Maugin. On the universality of the thermomechanics of forces driving singular sets. Archive of Applied Mechanics. 2000, 70: 31-45
    63 M. Epstein. and G. A. Maugin Thermoelastic material forces: definition and geometric aspects. C.R. Acad. Sci. Paris.1995, II-320: 63-65
    64 C. Dascalu and G. A. Maugin. The thermoelastic material-momentum equation. Journal of Elasticity. 1995, 39: 201-212
    65 A. E. Green and R. S. Rivlin. On Cauchy’s equations of motion. Z. Angew. Math. Phys. 1964, 15: 290-292
    66 P. Podio-Guidugli. Configurational forces: are they needed? Mechanics Research Communications. 2002, 29: 513-519
    67 P. Podio-Guidugli. Configurational balances via variational arguments. Interfaces and Free Boundaries. 2000, 3: 1-10
    68 V. K. Kalpakides and C. Dascalu. On the configurational force balance in thermomechanics. Proceedings of the Royal Society of London. 2002, A 458: 3023-3039
    69 A. E. Green and P. M. Naghdi. On the thermodynamics and the nature of the second law. Proceedings of the Royal Society of London. 1977, A357: 253-270
    70 A. E. Green and P. M. Naghdi. A re-examination of the basic postulates of thermomechanics. Proceedings of the Royal Society of London. 1991, A 432: 171-194
    71 A. E. Green and P. M. Naghdi. A demonstration of consistency of an entropy balance with balance of energy. Journal of applied mathematics and physics. (ZAMP). 1991, 42: 159-168
    72 A. E. Green and P. M. Naghdi. Thermoelasticity without energy dissipation. Journal of Elasticity. 1993, 31: 189-208
    73 A. E. Green and P. M. Naghdi. A unified approach for construction of theories of deformable media. I. Classical continuum physics. Proceedings of the Royal Society of London. 1995, A448: 335-356
    74 M. E. Gurtin and P. Podio-Guidugli. Configurational forces and the basic lawsfor crack propagation. Journal of the Mechanics and Physics of Solids. 1996, 44: 905-927
    75 M. E. Gurtin and P. Podio-Guidugli. Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. Journal of the Mechanics and Physics of Solids. 1998, 48: 1343-1378
    76 M. E. Gurtin and M. M. Shvartsman. Configurational Forces and the Dynamics of Planar Cracks in Three-Dimensional Bodies. Journal of Elasticity. 1997, 48: 167-191
    77 E. K. Agiasofitou and V. K. Kalpakides. The concept of balance law for a cracked elastic body and the configurational force and moment at the crack tip. International Journal of Engineering Science. 2006, 44: 127-139
    78 N. K. Simha, F. D. Fischer, O. Kolednik and C. R. Chen. Inhomogeneity effects on the crack driving force in elastic and elastic-plastic materials. Journal of the Mechanics and Physics of Solids. 2003, 51: 209-240
    79 N. K. Simha, F. D. Fischer, O. Kolednik, J. Predan and G. X. Shan. Crack Tip Shielding or Anti-shielding due to Smooth and Discontinuous Material Inhomogeneities. International Journal of Fracture. 2005, 135: 73-93
    80 O. Kolednik, J. Predan, G. X. Shan, N. K. Simha and F. D. Fischer. On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials. International Journal of Solids and Structures. 2005, 42(2): 605-620
    81 T. D. Nguyen, S. Govindjee, P. A. Klein and H. Gao. A material force method for inelastic fracture mechanics. Journal of the Mechanics and Physics of Solids. 2005, 53: 91-121
    82 R. Larsson. and M. Fagerstr?m. A framework for fracture modelling based on the material forces concept with XFEM kinematics. International Journal for Numerical Methods in Engineering. 2005, 62: 1763-1788.
    83 M. Fagerstr?m and R. Larsson. Approaches to dynamic fracture modelling at finite deformations. Journal of the Mechanics and Physics of Solids. 2008, 56: 613-639
    84 P. Steinmann. Application of material forces to hyperelastostatic fracture mechanics.I. Continuum mechanical setting. International Journal of Solids and Structures. 2000, 37: 7371-7391
    85 P. Steinmann, D. Ackermann and F. J. Barth. Application of material forces to hyperelastostatic fracture mechanics.II. Computational setting. International Journal of Solids and Structures. 2001, 38: 5509-5526
    86 T. Liebe, R. Denzer and P. Steinmann. Application of the material force methodto isotropic continuum damage. Computational Mechanics. 2003, 30(3):171-184
    87 R. Mueller and G. A. Maugin. On material forces and finite element discretizations. Computational Mechanics. 2002, 29: 52-60
    88 R. Mueller, D. Gross and G. A. Maugin. Use of material forces in adaptive finite element methods. Computational Mechanics 2004, 33: 421-434
    89 D. Gross, S. Kolling, R. Mueller and I. Schmidt. Configurational forces and their application in solid mechanics. European Journal of Mechanics/A Solids. 2003, 22(5): 669-692
    90 R. Mueller, S. Kolling and D. Gross. On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering. 2002, 53(7): 1557-1574
    91 E. Fried and M. E. Gurtin. The role of the configurational force balance in the nonequilibrium epitaxy of films. Journal of the Mechanics and Physics of Solids. 2003, 51(3): 487-517
    92 N. K. Simha and K. Bhattacharya. Kinetics of phase boundaries with edges and junctions in a three-dimensional multi-phase body. Journal of the Mechanics and Physics of Solids. 2000, 48(12): 2619-2641
    93 M. E. Gurtin and P. Podio-Guidugli. On configurational inertial forces at a phase interface. Journal of Elasticity. 1996, 44(3): 255-269
    94 M. Epstein and G. A. Maugin. Thermomechanics of volumetric growth in uniform bodies. International Journal of Plasticity. 2000, 16: 951-978
    95 E. Kuhl and P. Steinmann. Computational modeling of healing: an application of the material force method. Biomechanics and Modeling in Mechanobiology. 2004, 2(4): 187-203
    96 E. Kuhl and P. Steinmann. On spatial and material settings of thermo-hyperelastodynamics for open systems. Acta Mechanica. 2003, 160: 179-217
    97 E. Kuhl and P. Steinmann. Mass- and volume specific views on thermodynamics for open systems. Proceedings of the Royal Society of London. 2003, A 459: 2547-2568
    98 E. Kuhl and P. Steinmann. Material forces in open system mechanics. Computer Methods in Applied Mechanics and Engineering. 2004, 193: 2357-2381
    99 E. Kuhl, R. Denzer, F. J. Barth and P. Steinmann. Application of the material force method to thermo-hyperelasticity. International Journal for Numerical Methods in Engineering. 2003, 58: 1593-1615
    100 E. Kuhl, A. Menzel and P. Steinmann. Computational modeling of growth: a critical review, a classification of concepts and two new consistent approaches.Computational Mechanics. 2003, 32: 71-88
    101 J. Dolbow, E. Fried and H. D. Jia. Chemically induced swelling of hydrogels. Journal of the Mechanics and Physics of Solids. 2004, 52: 51-84
    102 J. Dolbow, E. Fried and H. Ji. A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Computer Methods in Applied Mechanics and Engineering. 2005, 194(42-44): 4447-4480
    103 H. Ji, H. Mourad, E. Fried and J Dolbow. Kinetics of thermally induced swelling of hydrogels. International Journal of Solids and Structures. 2006, 43(7-8): 1878-1907
    104杨卫.宏微观断裂力学.国防工业出版社. 1995
    105 A. L. Gurson. Continuum theory of ductile rupture by void nucleation and growth-I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 1977, 99: 2-15
    106 V. Tvergaard. Influence of voids on shear band instabilities under plane strain conditions. International Journal of Fracture. 1981, 17: 389-407
    107 V. Tvergaard. On localization in ductile materials containing voids. International Journal of Fracture. 1982, 18: 237-251
    108 V. Tvergaard. Material failure by void growth to coalescence. Advances in Applied Mechanics. 1990, 27: 83-151
    109 V. Tvergaard and A. Needleman. Analysis of the cup–cone fracture in a round tensile bar. Acta Metallurgica. 1984, 32: 157-169
    110 T. Pardoen and J. W. Hutchinson. An extended model for void growth and coalescence. Journal of the Mechanics and Physics of Solids. 2000, 48(12): 2467-2512
    111 G. Rousselier. Ductile fracture models and their potential in local approach of fracture. Nuclear Eengineering and Design. 1987, (105): 97-111
    112 G. Rousselier. Dissipation in porous metal plasticity and ductile fracture. Journal of the Mechanics and Physics of Solids. 2001, 49(8): 1727-1746
    113 D. S. Dugdale. Yielding steel sheets containing slits. Journal of the Mechanics and Physics of Solids. 1960, 8: 100-104
    114 G. I. Barenblatt. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics. 1962, 7: 55-129
    115 Zhengyu Zhang and G. H. Paulino. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials. International Journal of Plasticity. 2005, 21: 1195-1254
    116 A. Needleman. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics.1987, 54: 525-531
    117 M. G. A. Tijssens,E. van der Giessen and L. J. Sluys. Simulation of mode I crack growth in polymers by crazing. International Journal of Solids and Structures. 2000, 37(48-50): 7307-7327
    118 M. Alfano, F. Furgiuele, A. Leonardi and C. Maletta. Mode I fracture of adhesive joints using tailored cohesive zone models. International Journal of Fracture. 2009, 157: 193-204
    119 S. Li, M. D. Thouless, A. M. Waas and J. A. Schroeder. Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite. Composites Science and Technology. 2005, 65(2): 281-293
    120 Q. D. Yang, M. D. Thouless and S. M. Ward. Elastic-plastic mode-II fracture of adhesive joints. International Journal of Solids and Structures. 2001, 38(18): 3251-3262
    121 Q. D. Yang and M. D. Thouless. Mixed-mode fracture analyses of plastically-deforming adhesive joints. International Journal of Fracture. 2001, 110: 175-187
    122 S. Li, M. D. Thouless, A. M. Waas and J. A. Schroeder. Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer–matrix composite. Engineering fracture mechanics. 2006, 73(1): 64-78
    123 S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder and P.D. Zavattieri. Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer–matrix composite. Composites Science and Technology. 2005, 65(3-4): 537-549
    124 P. P. Camanho, C. G. Davila and M. F. De Moura. Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials. Journal of composite materials. 2003, 37(16): 1415-1438
    125 A. Turon, P. P. Camanho, J. Costa and C. G. Dávila. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mechanics of Materials. 2006, 38(11): 1072-1089
    126 M. Comninou. The interface crack in a shear field. Journal of Applied Mechanics. 1978, 45: 287-290
    127 J. R. Rice. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics. 1988, 55: 98-103
    128 A. Neeleman. An analysis of decohesion along an imperfect interface. International Journal of Fracture. 1990, 42: 21-40
    129 X. P. Xu and A. Neeleman. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering. 1993,1(2): 111-132
    130 X. P. Xu and A. Neeleman. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids. 1994, 42: 1397-1434
    131 A. Needleman. Numerical modeling of crack growth under dynamic loading conditions. Computational Mechanics. 1997, 19: 463-469
    132 T. Siegmund and A. Needleman. A numerical study of dynamic crack growth in elastic–viscoplastic solids. International Journal of Solids and Structures. 1997, 34: 769-787.
    133 X. P. Xu and A. Neeleman. Numerical simulations of dynamic crack growth along an interface. International Journal of Fracture. 1995, 74: 289-324
    134 T. Siegmund, N. A. Fleck and A. Needleman. Dynamic crack growth across an interface. International Journal of Fracture. 1997, 85: 381-402
    135 M. J. Van den Bosch, P. J. G. Schreurs and M. G. D. Geers. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Engineering Fracture Mechanics. 2006, 73(9): 1220-1234
    136 M. J. Van den Bosch, P. J. G. Schreurs and M. G. D. Geers. A cohesive zone model with a large displacement formulation accounting for interfacial fibrillation. European Journal of Mechanics - A/Solids. 2007, 26(1): 1-19
    137 M. J. Van den Bosch, P. J. G. Schreurs and M. G. D. Geers. On the development of a 3D cohesive zone element in the presence of large deformations. Computational Mechanics. 2008, 42: 171-180
    138 G. T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle materials. International Journal of Solids and structures. 1996, 33(20-22): 2899-2938
    139 N. Murphy and A. Ivankovic. The prediction of dynamic fracture evolution in PMMA using a cohesive zone model. Engineering Fracture Mechanics. 2005, 72(6): 861-875
    140 N. Chandra, H. Li, C. Shet and H. Ghonem. Some issues in the application of cohesive zone models for metal–ceramic interfaces. International Journal of Solids and Structures. 2002, 39(10):2827-2855
    141 P. H. Geubelle and J. S. Baylor. Impact-induced delamination of composites: a 2D simulation. Composites Part B. 1998, 29B: 589-602
    142 H. D. Espinosa, S. Dwivedi and H. C. Lu. Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws. Computational Methods in Applied Mechanics and Engineering. 2000, 183(3-4): 259-290
    143 J. W. Foulk, D. H. Allen and K. L. E. Helms. Formulation of a three-dimensional cohesive zone model for application to a finite element algorithm. Computer Methods in Applied Mechanics and Engineering. 2000, 183(1-2): 51-66
    144 M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering. 1999, 44: 1267-1282
    145 S. Roychowdhury, Y. D. Arun Roy and R. H. Dodds. Ductile tearing in thin aluminum panels: experiments and analyses using large-displacement, 3-D surface cohesive elements. Engineering Fracture Mechanics. 2002, 69(8): 983-1002
    146 Z. H. Jin and C.T. Sun. Cohesive zone modeling of interface fracture in elastic bi-materials. Engineering Fracture Mechanics. 2005, 72: 1805-1817
    147 Z. H. Jin, G. H. Paulino and R. H. Dodds. Cohesive fracture modeling of elastic–plastic crack growth in functionally graded materials. Engineering Fracture Mechanics. 2003, 70(14): 1885-1912
    148 Z. H. Jin and R.H. Dodds Jr. Crack growth resistance behavior of a functionally graded material: computational studies. Engineering Fracture Mechanics. 2004, 71: 1651-1672
    149 J. R. Reeder and J. H. Crews. Mixed-Mode Bending Method for Delamination Testing. AIAA Journal. 1990, 28: 1270-1276
    150 J. R. Reeder and J. H. Crews. Nonlinear Analysis and Redesign of the Mixed-Mode Bending Delamination Test. NASA-TM-102777. 1991
    151 M. L. Benzeggagh and M. Kenane. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus. Composites Science and Technology. 1996, 56: 439-449
    152 O. Allix and A. Corigliano. Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens. International Journal of Fracture. 1996, 77(2): 111-140
    153 N. Valoroso and L. Champaney. A damage-mechanics-based approach for modelling decohesion in adhesively bonded assemblies. Engineering fracture mechanics. 2006, 73(18): 2774-2801
    154 Y. Freed and L. Banks-Sills. A new cohesive zone model for mixed mode interface fracture in bimaterials. Engineering Fracture Mechanics. 2008, 75(15): 4583-4593
    155 M. A. Crisfield and G. Alfano. Adaptive hierarchical enrichment fordelamination fracture using a decohesive zone model. International Journal for Numerical Methods in Engineering. 2002, 54 ( 9): 1369-1390
    156 G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering. 2001, 50(12): 2667-2682
    157 N. Moes and T. Belytschko. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics. 2002, 69: 813-33
    158 Rene de Borst. Numerical aspects of cohesive-zone models. Engineering Fracture Mechanics. 2003, 70: 1743-1757
    159 Rene de Borst, Joris J. C. Remmers and A. Needleman. Mesh-independent discrete numerical representations of cohesive-zone models. Engineering Fracture Mechanics. 2006, 73:1 60-177
    160 Joris J.C. Remmers, Rene de Borst and A. Needleman. The simulation of dynamic crack propagation using the cohesive segments method. Journal of the Mechanics and Physics of Solids. 2008, 56(1):70-92
    161 J. P. Goncalves, M. F. de Moura, P. T. de Castro and A. T. Marques. Interface Element Including Point-to-Surface Constraints for Three-Dimensional Problems with Damage Propagation. Engineering Computations. 2000, 17(1): 28-47.
    162 Y. Mi, M. A Crisfield, G. A. O. Davies and H. B. Hellweg. Progressive Delamination Using Interface Elements. Journal of Composite Materials. 1998, 32: 1246-1273
    163 J. C. J. Schellekens and Rene de Borst. On the Numerical Integration of Interface Elements. International Journal for Numerical Methods in Engineering. 1993, 36: 43-66
    164 J. C. J. Schellekens. Computational Strategies for Composite Structures, PhD Thesis, Technical University of Delft, The Netherlands. 1992
    165 Rene de Borst and J. G. Rots. Occurrence of Spurious Mechanisms in Computation of Strain-Softening Solids. Engineering Computations.1989, 6: 272-280.
    166 G. Alfano and M. A. Crisfield. Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues. International Journal for Numerical Methods in Engineering. 2001, 50: 1701-1736.
    167 J. Lemaitre and J. L. Chaboche. Mechanics of solid materials. Cambridge, UK: Cambridge University Press. 1990
    168 B. Moran and C. F. Shih. Crack tip and associated domain integrals frommomentum and energy balance. Engineering Fracture Mechanics. 1987, 27: 615-642
    169 L. M. Brown and J. D. Embury. The initiation and growth of voids at second phase particles. In: Proc. 3rd Int. Conf. Strength of Metals and Alloys, Institute of Metals, London. 1973, 164-169.
    170 H. Andersson. Analysis of a model for void growth and coalescence ahead of a moving crack tip. Journal of the Mechanics and Physics of Solids. 1977, 25: 217-233
    171 C. Atkinson and R. V. Craster. Some fracture problems in fully coupled dynamic thermoelasticity. Journal of the Mechanics and Physics of Solids. 1992, 40: 1415-1432.
    172 H. D. Bui, A. Erlacher and Q. S. Nguyen. Propagation de fissure en thermoélasticitédynamique. Journal de Mécanique. 1980, 19: 697-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700