用户名: 密码: 验证码:
植物根系固土机理与护坡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的飞速发展,开矿、筑路、水利等基础建设产生了大量的人工边坡,包括挖方边坡和路基填方边坡,大量裸露的边坡,不仅可引起水土流失,还能引发滑坡、泥石流等地质灾害,而且同时破坏了原有的地表植被,破坏了生态环境。它对生态环境的影响随着建设规模的增大而增加,已不再是某一地区或一定范围内的局域性问题,而是影响到我国生态环境建设总体目标实现的全局性问题。
     植被护坡能有效地克服工程措施护坡的不足,在发挥固土护坡作用的同时,能充分发挥植被的景观效应和环境效应,起到恢复生态、保护环境、美化景观的作用。采用植被措施或采用植被与工程措施相结合的方式来加固边坡,达到既加固了边坡,又恢复了生态和美化了环境的目的。随着人们环境意识的逐渐增强,恢复生态和保护环境成为项目开发和建设中不可回避的问题,项目开发与环境保护必须同时兼顾才能促进经济可持续性发展。因此,边坡防护的目的不仅仅是保护坡面、稳定坡体、减少水土流失,还必须同时兼顾恢复植被、丰富景观。近年来,对边坡采用植被防护进行生态恢复日益引起重视,植被护坡成为了边坡防护的一种新的发展趋势。本文基于土力学、复合材料力学、水土保持学、生态学、数学等原理和方法,采用原位试验与室内试验相结合,试验测定与理论分析相结合的方法,对植物根系的固土机理和护坡技术进行了深入研究。
     论文首先详细阐述了植物根系固土的力学机制,主要包括:根系的加筋作用,即将根系视为带预应力的三维加筋材料,含根土体看作加筋土,根系将对土体起到加筋的作用,增加根土复合体的抗剪强度指标C、φ值;根系的锚固作用,即垂直深粗根系穿过坡体浅层的松散风化层,锚固到深处较稳定的岩土层上,对边坡起到预应力锚杆的作用;根系的吸水减压作用,通过根系吸水和植物的蒸腾作用,能够有效降低土体的含水量,减小土体中的孔隙水压力,增加土体的抗剪强度参数C和φ值;根系的抗拉特性使得根系能够分担传递荷载、约束土体的变形,从而提高土体的抗剪强度;根表面凹凸不平、表面存在数量众多的根节及根毛、根表面的分泌物、根系的形态等生物特征,有利于增加根土间的摩擦力和粘结力,有利于增加土体的C、φ值,从而提高根土复合体的抗剪强度。
     接着论文从复合材料的角度,提出了一种新的根系固土护坡的作用机理,即把含根土体看成由根和土组成的复合材料,将土体中数量众多、盘根错节、相互交织成网状的侧根和须根,看作乱向分布的天然的纤维材料,而含根土体就犹如纤维增强的脆性复合材料,根系将对土体起到阻裂增强增加延性的作用。根系具有较高的抗拉强度和延性,再加上根系与土体在变形模量方面存在着巨大的差异,当受外力作用共同变形的过程中,根系和土体间存在相互错动的趋势。这种错动被根土界面上的摩擦黏结作用所抵抗,而使根系受拉,当土体进入塑性状态后,土体中剪应力逐渐向根系转移并被扩散,土体的应力、应变相对均匀,从而提高了根土复合体的抗剪强度和延性,增加了边坡的稳定性。根系对土体的阻裂增强作用的具体表现为:在微裂缝扩展阶段,根系主要通过改变微裂纹扩展路径而增加裂缝扩展的能量耗散,来提高复合土体的抗剪能力,此阶段强度提高的幅度相对很小;在塑性裂缝扩展阶段,根系主要通过扩散和转移土体中的剪应力,来提高复合土体的抗剪强度,此阶段强度提高的幅度相对较大。根系阻裂增加土体延性的作用具体表现为:根系扩散和转移了土体中的部分应力,应变相对均匀,从而延缓了根土复合体塑性区的开展及渐进开裂面的出现;加之,根系的抗拉、阻隔作用,阻止了局部的剪切破坏向连贯的剪切破裂发展,从而使是复合土体的峰值强度跌落为残余强度的程度趋缓,土体的延性提高。
     根土界面的粘结强度是影响根土复合材料抗剪强度、延性的重要因素,根系对土体阻裂增强增加延性作用的大小主要取决于根土界面粘结的强度。文中分析了根土界面粘结作用的组成成分及影响因素,把根系拔出过程看作根系与其周围土介质间剪切滑移过程,提出根土界面的抗剪强度τ由界面摩擦作用和黏结作用耦合而成,并采用莫尔-库仑准则描述了根土界面的粘结强度,推导出根系极限抗拉拔力的计算公式。
     论文以根系固土护坡的复合材料作用原理为基础,提出了根系增强土体的计算模型。因根系具有阻裂增强作用,同素土相比,根土复合体发生剪切破坏需要消耗更多的能量。如果把根系从土体中拔出所消耗的能量称为拔出功,把拉断根系所消耗的能量称为根系断裂功。则根据能量守恒和转化原理在复合土体破坏之前,裂纹扩展必须克服由于根系的加入而产生的拔出功及根系断裂功。论文运用此能量模型分析了根系对土体的增强作用,给出了根系增加土体抗剪强度的增量计算公式。并指出土体中某点的抗剪强度增量主要影响因素为:该点处拔出根的面积比、平均长径比及拔出的长度;该点处拔断根系的面密度、根的平均抗拉强度;根土界面间的黏聚力及摩擦系数。最后采用自制的直剪仪对300mm×300mm×300mm的大尺寸含根土样和素土试样进行室内直剪试验,通过含根土样和素土样的抗剪强度的对比,得到含根土体的抗剪强度增量值,将该增量值与采用根系增强的计算模型计算的结果进行比较,两者非常吻合,对该计算模型进行了验证。
     论文采用室内直剪试验及大尺寸试样的原位直剪试验相结合的方法,对根系阻裂增强增加延性的固土理论进行了验证。具体分析如下:
     1、论文对不同含根量的紫穗槐根土复合体、苦刺根土复合体及素土在100kpa、200kPa、300kPa、400kPa垂直压力下分别进行了直接剪切试验,得出了紫穗槐根土复合体、苦刺根土复合体及素土的抗剪强度与垂直压力的关系曲线以及剪应力与剪切位移关系曲线。试验结果表明:(1)复合体的抗剪强度与剪切面上的法向压力成正比,根土复合体的抗剪强度也符合库仑定律,即满足:τ=σtgφ+c;(2)当土壤的含水量、干密度一定时,随着含根量、根系体积比的增加,复合体的黏聚力C值明显增加,复合体的内摩擦角φ值仅有一定程度的增加,但效果不明显;(3)根土复合体的断裂韧性要比素土的断裂韧性大,含根土体比素土具有更大的抵抗剪损的能力,含根土体剪损时具有更大的滑移量和位移值,根系的存在增加了土体的延性。
     2、论文通过对南望山脚下樟树的4个含根土样和素土样在现场进行原位剪切试验,对比素土样和4个含根土样的强度值、位移值,分析评价植物根系的固土护坡效应。试验结果表明:(1)4个含根土样的峰值强度较素土样增强,抗剪强度的增加幅度分别是:35%、55%、64%、78%,根系还提高了土体的残余强度,其残余强度增加幅度分别为:50%、62.8%、71.6%、77.8%,根系提高土体残余强度的程度更高;(2)4个含根土样在强度峰值点的位移分别是素土样峰值点位移的1.36倍、1.52倍、1.56倍、1.72倍,在土体被剪破前,含根土体能够承受更大的变形,根系增加了土体的延性;(3)4个含根土样应变软化段位移分别是素土样的1.4倍、1.675倍、1.825倍、2.05倍,含根土体的应变软化段曲线较素土体的更加平缓,根系降低了土体峰值点后抗剪强度的减小幅度,使土体在较大应变处仍能保持较高的强度,提高了土体的延性;(4)含根土样和素土样的荷载—位移曲线在开始阶段均近似成线性,几乎重合,随着剪力的不断增大,关系曲线均为圆滑曲线,含根土体的关系曲线逐渐远离素土样的关系曲线,含根土体的抗剪能力逐渐提高,接近剪破时,含根土样的荷载—位移关系曲线相对更加平缓,剪破前含根土样发生了更大的位移,提高了土体的延性。
     实验证实,根土复合体的宏观剪切破坏过程中所表现的各种物理特性与根系的阻裂增强增韧增延作用机理分析完全吻合。
     要形成生态防护,必须具备两个必要条件:①活植物;②与土木工程或非生命的植物材料相结合。没有活植物,生态护坡就无从谈起,为了确保植被护坡的功能效应、生态效应和景观效应的尽快实现,往往要采取植被护坡与土木工程或非生命的植物材料相结合的方法。论文介绍了几种常见的土质边坡生态防护技术,并以荆宜高速公路第一标段内的一土质边坡的生态防护为例介绍了液压喷播技术的应用。
     在进行植被护坡工程设计时除了要考虑对边坡防护的功能要求,还应充分考虑植被护坡实施后的景观效果和改善环境功能。论文基于生态系统生态学、景观生态学及恢复生态学基本原理,提出固坡植物的选择一方面要求有利于满足防护要求的性状,另一方面要求能适应造林的立地条件,即能达到适地适树(草)的要求,并以乡土植物为主,引种外来植物为辅。论文还提出护坡植物群落的配置应遵循:乔灌草相结合,先锋植物、中期植物和目标植物相搭配,配置密度相适应以及满足景观效应的原则。只有根据边坡变形破坏的类型、地质状况、地形地貌、土壤性质及坡度、气候条件等,有针对性地选择适宜的护坡植物及合理的群落配置,才能充分发挥植被的固土护坡、生态恢复及美化环境等功能作用。
     为了科学合理评价植被护坡工程的质量,进而为植被护坡工程设计提供借鉴及理论和技术支持,论文从植被护坡的生态效应、功能效应、景观效应3个方面共提出13项评价指标构成了具有递阶层次结构的边坡植被防护系统质量评价体系框架。并采用层次分析法确定了各评价指标的相对权重,采用模糊综合评价法建立了边坡植被防护系统质量评价模型,从而初步建立了植被护坡工程质量综合评价体系。将该综合评价体系应用于荆宜高速公路边坡植被护坡工程质量的综合评价,从其综合评价得分可知,荆宜高速公路边坡植被护坡工程的总体质量为“较好”。将采用植被护坡工程质量综合评价体系得出的评价结果同实地的考察情况进行对比分析,发现评价结果基本能够得到比较合理的解释并与实际情况较吻合。
With the rapid development of China economy, mining, road construction,water conservancy and other infrastructure generated a lot of artificial slope, including the cutting slope and embankment filling slope, a large number of exposed slope not only can cause soil erosion, but also triggered landslides and debris flows and other geological disasters, but also destroyed the original vegetation, damaged the environment.The effect on environment increases with the increasing scale of construction, it is no longer the local issue of a given area or a certain range, but the overall problem affecting achievement of the overall objective of ecological environment.
     Vegetation maintaining slope stability can effectively overcome the shortcoming of engineering measure maintaining slope stability.When vegetation maintaining slope stability exert the function of soil reinforcement and slope protection of vegetation,at the same time,it can fully exert landscape and environment effects of vegetation, exert the functions of restoring the ecologic, protecting environment and landscaping. Use of vegetation measures or use a combination of vegetation and engineering approach to reinforcement slope, reach the goal of strengthening the slope, but also to restore the ecologic and beautify the environment. As environmental awareness gradually increasing,ecological restoration and environmental protection can not be avoided during the project development and construction, the project development and environmental protection must all take into account in order to promote economic sustainable development. Therefore, the slope protection aims not only to protect the slope, stable slope and reduce soil erosion, but also taking into account the need to restore the vegetation and abundant landscape. In recent years, use of vegetation in slope protection is pay the increasing attention, slope protection by vegetation has become a new trend. Based on Soil Mechanics, Composite material mechanics, Soil& Water Conservation, Forest Ecology and Mathematics theories, In-situ test combining laboratory test and trial method combining theoretical analysis,the paper conducted in-depth study of the plant roots stabilization mechanism and slope protection technology.
     Paper first detailed the mechanism of plant roots solid soil, the action of roots solid soil include:roots reinforcement mechanism, where the soil reinforced with root,the root regarded as three-dimensional prestressed reinforcement materials, the shear strength parameters C andφ of the root soil complex increased; root anchoring mechanism,when the perpendicular deep coarse roots across the shallow loose weathered layer anchored to the deep stable layer,roots play the role of pre-stressed anchor on the slope; root decompression mechanism, root absorbing water and plants transpiration can effectively reduce the soil moisture content, reduce the soil's pore water pressure, increase soil shear strength parameters C andφ;the root biological characteristics such as uneven surface, a large number of root-knot and root hairs, surface secretions and root shape are conducive to increasing the cohesive force and the friction between root and soil,conducive to increasing the soil C value andφvalue, thereby enhancing the shear strength of the root-soil complexes.
     The paper proposed a new theory on mechanism of plant root protection slope from the perspective of composite materials. The soil with plant roots was regarded as a special composite material, a large number of interweaving roots like the random distributing fibers, the soil with roots like a fiber-reinforced brittle composite material.root can restrain crack and increase the strength and ductility of soil. By analyzing the action of root resistance cracking and increasing soil strength and ductility the author descripted the mechanism of plant root protection slope. As root higher tensile strength and ductility compare to soil, and the significant differences of deformation modulus, exist dislocation trend between the root and soil during the co-deformation by the external force.The cohesive force and the friction between root and soil can restrain this dislocation, then root pulled, so when the soil into the plastic state the shear stress was gradually transferred to the root system and diffused. Thereby the shear strength and ductility of the root soil complex can be increased,and ultimately improve the stability of the slope. Root resistance cracking and enhancement were as follows:in the micro-crack propagation stage, roots increased the shear strength of composite soil mainly by changing the micro-crack propagation path to increase the energy dissipation, and the increasing amplitudes of the shear strengths was relatively small;in the plastic crack propagation stage, roots improved the shear strength of composite soil mainly by diffusion and transfer the shear stress,and the increasing amplitudes of the shear strengths was relatively big. Root resistance crack and increasing soil ductility were as follows:root diffusion and transfer the stress and strain relatively uniform, the emergence of rupture surface was slow down; in addition, roots tensile and barrier effect prevented the coherent of local shear failure, the dropping extent of the shear strengths of composite soil was slow down from the peak intensity to the residual strength,the ductility of soil improved.
     The bond strength of interface between soil and root is the important factor that affect shear strength and ductility of the root soil composite materials, the action of root resistance cracking and increasing soil strength and ductility depends on the bond strength of interface.
     This paper analyzes the composition and influencing factors of the bond strength of interface between soil and root, the process of roots pulled out regarded as the root with the surrounding soil medium shear slipping process, and puts forward that the shear strength of interface between soil and root is the coupling of friction and adhesion of interface, and using Mohr-Coulomb criterion describes the shear strength of interface between soil and root, then the final limit anti-pull force formula of roots is derived.
     Based-on the root's stabilization mechanism of composite material, root can restrain crack and increase strength, the soil with root will consume more energy during shear failure as compared with the soil without root.If the consuming energy when roots pulled from the soil called pull-out power, the consuming energy when roots pulled broken called fracture power, crack propagation must overcome the pull-out power and fracture power of root before the soil damage under the principle of energy conservation and conversion. Using energy principle studied root's resistance cracking and enhancement action, then a calculating formula of shear strength Increment of one point in the composite of root and soil was educed. A theory is established that the shear strength Increment of one point mainly relates to root's area ratio、areal density、the ratio of length and diameter、tensile strength and the cohesion and friction coefficient between the roots and soil.Finally using the self-made direct shear apparatus the indoor direct shear test on the 300mm×300mm×300mm large-size soil samples with roots and without root done, through contrasting the shear strength of the soil samples with root with that without root obtained the shear strength increment value of the soil samples with root Contrasting the incremental value with the calculation results of calculation model on root enhancement, find the two very fit, the calculation model has been verified.
     The theory on root resistance crack and increasing soil strength and ductility was verified by the indoor and large-size in-situ direct shear test.
     1、An experiment of different confining pressures on root-soil composite and plain soil under the same conditions of soil water content and density was carried out by using shear test controlling shear rate 0.1mm/min.Four confining pressures of 100,200,300 and 400kPa were tested. Based on the experiment results, a relationship of shear strength and confining pressures between root-siol composite and plain soil as well as shear stress and shear displacement is established. Results show that:(1)the shear strength of root-soil complex in direct proportion to normal pressure, the shear strength of root-soil complex also is also consistent with mohr-coulomb law;(2) When the soil's moisture content and dry density is constant, with the root volume increasing the cohesion C of complex was significantly increased, internal friction angleφonly increased to some extent,but the effect was not obvious;(3)the fracture toughness of the soil with root is larger than the soil without root,root can increase the soil's ability of resistance shear; there is outstanding positive correlation between root volume and fracture toughness;(4) root can increase the slippage and displacement of soil when shear failure,can increase the soil's ductility, root volume ratio is the important factors affecting the soil's ductility, and there is outstanding positive correlation.
     2、In-situ direct shear tests on the undisturbed soil and four camphor root-soil compo-site systems are conducted at the foot of the Nan-Wang mountain. By comparing the shear streng-th and displacement of the soil without root and four soils with roots,the mechanical effects of the root system on slope protection can be evaluated. The results show that:(1)compared with the shear strength of soil without roots,the increasing amplitudes of the shear strengths of four soils with camphor roots are 35%,55%,64% and 78% respectively, the residual strength of soil also increased, the increasing amplitudes of the residual strengths of four soils with camphor roots are 50%,62.8%,71.6% and 77.8% respectively, the increasing amplitudes of the residual strength is higher; (2) the displacements in the intensity peak point of four soils with roots are 1.36 times,1.52 times,1.56 times and 1.72 times as that of the soil without root respectively, the soils with roots can withstand greater deformation before cut break, the root system increases the ductility of the soil; (3) the displacements at the strain-softening stage of four soils with roots are 1.4 times,1.675 times,1.825 times and 2.05 times as that of the soil without root respectively, the curve at the strain-softening stage of four soils with roots are more moderate compared with that of soil with-out roots,the reducing amplitude of the shear strengths of the soils with roots after the peak point is lower, the soil with roots can remain a high strength when a larger strain arising, so the ductility of the soil with roots increases; (4) The relations between the load and displacement of the root-soil composite systems and the undisturbed soil all show a linear relationship and almost coincide at the beginning stage of the shear process,a rounding curved relationship with the continuous increase of the shear, when approaching failure the curve of soil with roots are more moderate compared with that of soil without roots, so the ductility of the soil with roots increases.
     The experiment showed that various physical properties come out in the process of macroscopic shear destruction of root-soil complexity were consistent with the function mechanism analysis of soil reinforcement by roots.
     The formation of ecological protection must have two necessary conditions:①living plants;②combining with civil engineering or non-life plant materials. No living plants, slope protection by vegetation would be impossible to maintain, in order to achieve the vegetation effects, ecological effects and landscape effects of ecological protection as soon as possible, often combining with civil engineering or non-life plant materials.The paper introduces the slope protection technology with vegetation,and take the ecological protection of a soil slope within the first bid of Jingyi highway for example to introduced the application of hydraulic spraying and seeding technology.
     During engineering design of vegetation maintaining slope stability, landscape effect and function of improving environment should be fully considered after the vegetation engineering is put in Practice. Based on the principles of ecosystem ecology landscape ecology and restoration ecology,when selecting vegetation types of maintaining slope stability,the paper advanced that vegetation can meet with Protection requirement,On the other hand vegetation can be adapted to habitats of afforestation and cultivating grass,namely,can satisfy adaptable tree and grass for right soil, and with native plant-based, supplemented by introduction of alien plants.the slope plant communities configuration should follow:Shrub Grass combination, pioneer plant matched with medium-term plant and objective plants, Configuration density fit and the principles of landscape effects. Only according to the type of slope deformation, geological conditions, topography, soil character, slope angleand climatic conditions, targeted to select the appropriate plant and a reasonable allocation of communities in order to fully exert the action of slope protection, ecological restoration and landscaping.
     In order to scientifically and rationally evaluate the quality of slope protection by vegetation, and provide reference,theoretical and technical support for the engineering design of slope protection by vegetation, in the paper 13 important evaluation indexes were presented and constituted the quality evaluation system of slope protection by vegetation from the ecological effects, functional effects,landscape effects three aspects. The weight of each index was determined by means of the Analytic Hierarchy Process, using the fuzzy comprehensive evaluation method a fuzzy overall evaluation model of quality of slope protection by vegetation was established, thus a comprehensive quality evaluation system about slope protection by vegetation initially established. The comprehensive evaluation system was used in the comprehensive assessment of project quality of Jingyi expressway slope protection by vegetation, through its score of comprehensive evaluation we can see the overall quality of Jingyi expressway slope protection by vegetation superior. By comparative analysis we found that the evaluation results can basically get a reasonable explanation and be consistent with the actual situation.
引文
[1]夏汉平,敖惠修,刘世忠.香根草生态工程应用于公路护坡的效益研究[J].草业科学,2002,19(1):52-55.
    [2]舒翔,杜娟,曹映泓,等.生态工程在高速公路岩石边坡防护工程中的应用[J].公路,2001(7):86-89.
    [3]Coppin NJ,Richards IG(eds). Use of vegetation in civil engineering CIRIA[J].Butterworths, 1990,292.
    [4]赵志明,吴光,王喜华.工程边坡绿色防护机制研究[J].岩石力学与工程学报,2006,25(2):299-305.
    [5]吴积善,王成华,程尊兰.中国山地灾害防治工程[M].成都:四川科学技术出版社,1997.5-9.
    [6]周跃.Effects of the yunnan pine (pinus yunnanensis French) on soil erosion control and soil reinforcement in the Hutiaoxia gorge Southwest China:[D].University of Hull,1997.
    [7]程洪,李斌.香根草的技术应用[J].江西科学,1998,16(3):204-210.
    [8]Eliison,L,Coaldrake,J E. Soil-mantle movement in relation to forest clearing in Southeastern Quennsland[J].Ecology,1954,35(5):380-388.
    [9]Bishop,D.M.,Stevens,M.E.Landslides on logged areas in southeast Alaska. United States Forest Service Research Paper NOR-1.1964:18.
    [10]Greenway,D.R.Vegetation and slop stability.In:Anderson and Richards ed. Slop Stabity. New York John &Sons,1987.
    [11]Gray DH,Sotir RB.Biotechnical and soil Bioengineering,Slope Stabilization,A Practical Guide for Erosion Control.New York:John Wiley &Sons,1996.
    [12]王可均,李悼芬.植被固坡的力学分析[J].岩石力学与工程学报,1998,17(6):687-691.
    [13]Endo,T.,Tsuruta,T. The effect of tree roots upon the shearing strength of soil.Annual report of the Hokkaido Branch,Tokyo Forest Experiment station,Tokyo,Japan.1969, (18):168-179.
    [14]Manbeian,T. The influence of soil moisture suction,cyclic wetting and drying,and plant roots on the shear strength of a cohesive soil.University of California,at Berkeley,Calif. 1973.
    [15]Ziemer,R.R.Roots and stability of forested slopes. Publication No.132,Int. Assoc. of Hydrologic Sciences.1981:343-361.
    [16]Wu,T.H., Beal,P.E., Lan,C. In-Situ test of soil-root svstems. J. of Geotech. Engrg., ASCE. 1988,114(12):1376-1394.
    [17]杨亚川,莫永京,王之芳等.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996,1(2):31-38.
    [18]Waldron,L.J.,Dakessian,S.Soil reinforcement by roots,calculation of increased soil shear resistance from root properties[J].Soil Science.1981:132,427-135.
    [19]Waldron,L.J.The shear resistance of root-Permeated homogeneous and stratified soil.J. Soil Science Soc.Amer.1977:41,843-849.
    [20]Wu,T.H.,Meomber,R.M.,Erb,R,T.,etc. Study of soil-root interaction J. of Geotech. Engrg.,ASCE,1988,114(12):1351-1375.
    [21]阿比一时,岩本胜.树木根系在防止滑坡中的土力学作用(续)[J].中国水土保持,1989,(12):35-40.
    [22]解明曙.乔灌木根系固坡力学强度的有效范围与最佳组构方式[J].水土保持学报,1990,4(1):17-23.
    [23]解明曙.树木根系固坡土力学机制研究[J].水土保持学报,1990,4(3):7-11.
    [24]周跃,徐强,骆华松,等.乔木侧根对土体的斜向牵引效应—原理和数学模型[J].山地学报,1999,17(1):4-9.
    [25]周跃,骆华,徐强,等.乔木的斜向支撑效能及其坡面稳定意义[J].山地学报,2000,18(4):306-312.
    [26]郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学学报,2000,21(4):78-80.
    [27]朱珊,邵军义.根系黄土抗剪强度的特性[J].青岛建筑工程学院学报,1997,18(1):5-9.
    [28]李会科,王忠林,贺秀贤.地埂花椒林根系分布及力学强度测定[J].水土保持研究,2000,7(1):38-41.
    [29]代全厚,张力,刘艳军等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8-11.
    [30]Coutts MR 1987.Developmental process in tree root systems[J].Canadian Journal of Forest Researeh17:761-767.
    [31]Goodman,A.M., Crook,M.J.& Ennos, A.R.(2001)Anchorage mechanics of the tap root system of winter-sown oil seed rape(Brassica napus L.)Annals of Botany 87,397-404.
    [32]Nicoll BC,RayD(1996)Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol 16:891-898.
    [33]周跃,徐强,骆华松等.乔木侧根对土体的斜向牵引效应[J].山地学报,1999,17(1):10-15.
    [34]李铁军,李晓华.植被固坡机制的研究[J].水土保持科技情报,2004(2):1-3.
    [35]郝彤琦,谢小妍,洪添胜.滩涂土壤与植物根系复合体抗剪强度的试验研究[J].华南农业大学,学报,2000,21(4):78-80.
    [36]陈丽华,余新晓,宋维峰.林木根系固土力学机制[M].北京:科学出版社,2008.
    [37]朱清科,陈丽华,络华松等.乔木侧根对土体的斜向牵引效应[J].山地学报,1999,17(1):4-9.
    [38]陈丽华,余新晓,张东升等.整株林木垂向抗拉试验研究[J].资源科学,2004,26(增刊):39-43.
    [39]周跃,徐强,骆华松等.乔木侧根对土体的斜向牵引效应[J].山地学报,1999,17(1):10-15.
    [40]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [41]李晓华译,野久田稳郎,林拙郎等.由根系抗拉强度推算其固坡效果[J].水土保持科技情报,1999(1):25-28.
    [42]解明曙.林木根系固坡土力学机制研究[J].水土保持学报,1990,4(3)7-14.
    [43]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003,62-64.
    [44]程洪,张新全.草本植物根系网固土原理的力学试验探究[J].水土保持通报,2002,22(5):20-23.
    [45]王治国,张云龙,刘徐师等.林业生态工程学[M].北京:人民交通出版社,2003,106-111.
    [46]王可钧,李悼芬.植物固坡的力学简析[J].岩石力学与工程学报,1998,17(6):687-691.
    [47]代全厚,张力,刘艳军等.嫩江大堤植物根系固土护堤功能研究[J].水土保持通报,1998,18(6):8-1.
    [48]李勇,徐晓琴.草类根系对土壤抗冲性的强化效应[J].土壤学报,1992,29(3).
    [49]封金财,王建华.乔木根系护坡作用机理的研究进展[J].铁道建筑,2004(3).
    [50]李勇,武淑霞,夏侯国风.紫色土区刺槐林根系对土壤结构的稳定作用[J].土壤侵蚀与水土任持学报,1998,4(2):1-7.
    [53]塚本良则.樹木根系の崩壤防止効果に関する研究.東京農工大学農学部演留習报告,1987,(23).
    [54]邹战国.水力喷草技术在防治水土流失中的应用[J].水土保持通报,1993,13(4):51-55.
    [55]陈锡民.植草技术在路基边坡防护中的应用[J].路基工程,1999,(1):17-19.
    [56]昊长文,章梦涛,付奇峰.斜坡喷播绿化技术研究[J].中国水土保持,2000,(4):24-26.
    [57]章梦涛,付奇峰,吴长文.岩质坡面喷混快速绿化新技术浅析[J].水土保持研究,2000,7(3):65-66.
    [58]张俊云,周德培,李绍才.岩石边坡生态种植试验研究[J].岩石力与工程学报,2001,20(2):239-242.
    [59]周颖,曹映悦,廖晓谨等.喷混植生技术在高速公路岩石边坡和绿化中的应川[J].岩土力学,2001,22(3):353-356.
    [60]李绍才,孙海龙.我国岩石边坡植被护坡技术现状及发展趋势[J].资源科学,2004,26:61~66.
    [61]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2002:3-8.
    [62]Jordan,W.R.I I I., M.E.Gilpin & J.D.Aber. Restoration ecology:A Synthetic Approach to Ecological Research.Cambridge:Cambridge University Press,1987:1-342
    [63]Diamond,J. Reflections on goals and on the relationship between theory and Practice.In: W.R.I I I.Jordon, N.GilPin and J.Abereds. Restoration ecology:A Synthetic Approach to Ecological Research.Cambridge:Cambridge University Press,1987:329-336.
    [64]Jackson,L.L.,D.LoPoukine &D.Hillyard. Ecological restoration:a definition and comments[J].Restoration ecology,1995,3(2):71-75.
    [65]Cairns,J.Jr.ed.-Recovery and Restoration of Damaged Ecosystem services:Benefits supplied to human societies by natural,1997,387:253-259.
    [66]Margaren,F. Disneyland or native ecosystem:genetics and the restorationist. Restoration and Management Notes,1997,14(2):148-150.
    [67]Forman,R.T.T. Land Mosaics.Cambridge:Cambridge University Press,1995.
    [68]任海,彭少麟.恢复生态学导论[M].北京:科学出版社,2002,3-8.
    [69]仓田益二郎.绿化工程技术[M].顾宝衡译.成都:科技大学出版社,1983,20-23.
    [70]山寺喜成.恢复自然环境绿化工程概论—坡面绿化基础与模式设计[M].北京:中国林业出版社,1997.93-97.
    [71]安保昭.周庆桐译.坡面绿化施工法[M].北京:人民交通出版社,1988,46-57,134-142,106-109.
    [72]外狩麻子.坡面绿化的研究现状和展望[J].张玉玲译.水土保持科技情报,1999,(2):29-31.
    [73]姜志强,孙树林,程龙飞.根系固土作用及植物护坡稳定性分析[J].勘察科学技术,2005,(4):12-14.
    [74]姜志强,孙树林.堤防工程生态固坡浅析[J].岩石力学与工程报,2004,23(12):2133-2136.
    [75]封金财,王建华.植物根的存在对边坡稳定性的作用[J].华东交通大学学报,2003,20(5):42-45.
    [76]戚国庆,胡利文.植被护坡机制及应用研究[J].岩石力学与工程学报,2006,25(11):2220-2225.
    [77]宋云.谈植物固土的边坡稳定机理[J].森林工程,2004(5):51-52.
    [78]刘宗耀,杨灿文等.土工合成材料工程应用手册[M].第一版.北京:中国建筑工业出版社,1994.1-225.
    [79]Fukuoka M. Stability of Retaining Wall Reinforced by Continuous Fibers during Earth-quakes. In:Proc. of 4th Int. Conf. on Geotextiles and Geomembranes. Hague Holland, 1990,259-266.
    [80]莫海鸿,杨小平.基础工程[M].第一版.北京:中国建筑工业出版社,2003.240-241.
    [81]Schlsser F,Long NT. Recent results in French research on reinforced earth Journal of the construction division ASCE,1974,100(CO3):223-237.
    [82]Waldron L J. The shear resistance of root-permeated homogenous and stratified soil[J].Soil Science Society of America Journal,1977,41:843-849.
    [83]Gray D H,Al-Refeai T. Behaviour of fabric versus fiber-reinforced sand ASCE.J. Geotech. Engrg.,1986,112(8):804-820.
    [84]Robert R. Ziemer. Roots and the stability of forested slopes. Erosion and Sediment Transport in Pacific Rim Steep lands,I.A.H.S.Publ.No.132.Christchurch.1981:343-361.
    [85]周跃.植被与侵蚀控制.坡面生态工程基本原理探索[J].应用生态学报,1999,11(2):298-301.
    [86]卢肇钧,张惠明,陈建华等.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报,1992,14(3):1-7.
    [87]张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.9-12.
    [88]Fredlund D G, Morgenstern N R,Widger R A. The shear strength of unsaturated soils [J].Canadian Geot J.1978,15(3):313-321.
    [89]卢肇钧,吴肖茗,孙玉珍等.膨胀力在非饱和土强度理论中的作用[J].岩土工程学报,1997,19(5):20-26.
    [90]汤连生,王洋,张鹏程.非饱和豁性土粒间吸力测试研究[J].岩土工程学报,2003,25(3):304-307.
    [91]孟黔灵,姚海林,邱伦峰.吸力对非饱和土抗剪强度的贡献[J].岩土力学,2001,22(4):423-426.
    [92]高人,周广柱.辽宁东部山区几种主要森林植被类型的蒸腾作用[J].辽宁农业科学,2001(6):5-8.
    [93]张倬元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2):89-97.
    [94]Gray D H, Ohashi H. Mechanics of fiber reinforcement in sands[J].Journal of Geotechnical Engineering,ASCE,1983,109(3):335-353.
    [95]黄承逵.纤维混凝土结构[M].北京:机械工业出版社,2004,32-33.
    [96]赵国藩,彭少民,黄承逵等.钢纤维混凝土结构[M].北京:中国建筑工业出版1999.22-33.
    [97]蔡四维,蔡敏,王惠等.短纤维对基体微裂纹扩展的阻滞分析[J].复合材料学报,1995,12(3):101-107.
    [98]蔡敏,蔡四维.混凝土、纤维混凝土的1型断裂[J].工程力学,1999,16(4):54-58.
    [99]董振英,李庆斌.纤维增强脆性复合材料细观力学若干进展[J].力学进展,2001,31(4):555-580.
    [100]Le Pape Y,Sieffert J G. Application of thermodynamics to the global modeling of shallow foundations on friction material[J].International Journal of Numerical and Analytical Methods In Geomechanics,2001,25(14):1377-1408.
    [101]Stang H, Li Z, Shal S P. Pull out problem:Stress versus fracture mechanical approach[J]. Journal of Engineering Mechanics,1990,116(10):2136-2150.
    [102]Li Z J, Mobasher B,Shah S P. Characterization of interfacial properties in fiber reinforced cementitious composites[J].Journal of American Ceramic Society, 1991,74(9):2156-2169.
    [103]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992.76-77.
    [104]杨严川,吴永京,王芝芳.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,1996,1(2):31-38.
    [105]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2003.
    [106]赵丽兵,张宝贵,苏志珠.草本植物根系增强土壤抗剪切强度的量化研究[J].中国生态农业学报,2008,16(3):718-722.
    [107]胡夏嵩,李国荣,朱海丽等.寒旱环境灌木植物根-土相互作用及其护坡力学效应[J].岩石力学与工程学报,2009,28(3):613-620.
    [108]吴积善,王成华,程尊兰.中国山地灾害防治工程[M].成都:四川科学技术出版社,1997.200-212.
    [109]杨永红.东川砾石土地区植被固土护坡机理研究:[D].成都:西南交通大学,2006.
    [110]Tilman D and Doeing JA.Biodiversity and stability in grasslands[J].Nature,1994,367: 363-365.
    [111]Bask in Y. Eco system function of biodiversity[J].Biological Science,1995,44:657-660.
    [112]王白荪,彭少麟.植被生态学[M].北京:中国环境科学出版社,1997.286-287.
    [113]李绍才.坡面岩体-基质-植被互作的效应和金发草atpA耐寒基因的克隆:[D].成都:四川大学,2006.
    [114]吴云飞.黄塔(桃)高速公路隧道洞口景观设计研究:[D].成都:成都理工大学,2008.
    [115]施红.人居环境与植物景观[J].云南工业大学学报,1997,13(4):81-85.
    [116]贾致荣,张玮.公路边坡植被恢复质量评价指标及方法研究[J].水土保持通报,2008,28(1):115-118.
    [117]郝国文.基于文化传承与人性关怀的景观设计研究:[D].福建:福建农林大学,2006.
    [118]赵焕臣.层次分析法[M].北京:科学出版社,1986.3-5.
    [119]胡永宏,贺恩辉.综合评价方法[M].北京:科学出版社,2000.167-188.
    [120]王伯荪.植物群落学[M].北京:高等教育出版社,1987.
    [121]Gray D.H. Biotechnical stabilization of steepend slope, Transp.Res.rec.1995,(1474): 23-29.
    [122]孙书存,包维楷.恢复生态学[M].北京:化学工业出版社,2005.
    [123]杨春时.美学[M].北京:高等教育出版社,2004.
    [124]胥晓刚.高速公路路域生态恢复研究:[D].雅安:四川农业大学,2004.
    [125]李西.应用于植被护坡两种岩生植物土壤植被系统研究:[D].雅安:四川农业大学,2004.
    [126]王新洲.模糊空间信息处理[M].武汉:武汉大学出版社,2003.130-131.
    [127]李士勇.工程模糊数学及应用[M].哈尔滨:哈尔滨工业大学出版社,2004.101-108.
    [128]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003.
    [129]高民欢.高等级公路边坡冲刷理论与植被防护技术[M].北京:人民交通出版社,2005.
    [130]赵方莹,赵延宁.边坡绿化与生态防护技术[M].北京:中国林业出版社,2009.
    [131]杨纶标.模糊数学原理及应用[M].广州:华南理工大学出版社,2000.
    [132]谢季坚,刘承平.模糊数学方法及其应用[M].武汉:华中理工大学出版社,2000.
    [133]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700