用户名: 密码: 验证码:
固体氧化物燃料电池联合发电系统性能计算与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种高效低污染的新型能量转换装置。SOFC工作温度高(800~1000℃),可以使用多种燃料作为原料气;其能量转化率不受“卡诺循环”的限制,可达到50%~60%。另外,SOFC还具有寿命长、成本低、综合热电效率高等优点,有非常好的发展前景,很多国家都很重视对SOFC的研究开发工作。
     本文从SOFC的工作机理出发,利用电化学和热力学知识建立SOFC本体的能量平衡分析模型和(火用)分析模型。将SOFC组成以天然气为原料的带直接内部重整的SOFC发电系统,应用Visual Basic编程技术进行实例计算。结果表明:SOFC发电系统的发电效率和(火用)效率均可超过45%,优于传统的发电方式。影响SOFC性能的主要原因在于各种过电位的存在,其中欧姆过电位所占比重最大。因此应改进SOFC的结构和材料,提高电池工作电压,增加电池发电量。
     研究显示:由于SOFC的工作特点,其排气温度较高,有非常高的余热利用价值。因此本文将SOFC与传统的蒸汽轮机(ST)和燃气轮机(GT)分别组成联合发电系统,建立系统物理模型并进行性能分析计算。计算结果表明:SOFC-ST联合发电系统的发电效率可达58.933%,(火用)效率56.98%。SOFC-GT联合发电系统的能量利用率超过80%,(火用)效率高达70.263%,充分说明将SOFC与传统发电方式组成联合发电系统将是一种性能良好的发电方式。文中还研究了各种系统参数对系统性能的影响。减小SOFC的电流密度和提高燃料利用率有助于系统性能的提高;提高电池工作压力和原料进入电池的初温,均可提高系统发电效率和(火用)效率。
     本文利用能量系统的(火用)分析辨识法,找出SOFC-GT联合发电系统的薄弱环节为换热器和SOFC。以提高系统发电效率和(火用)效率为目标,文中提出两种SOFC-GT优化方案。经计算:方案一发电效率提高了8.61%,(火用)效率提高了4.79%;方案二发电效率提高了11.11%,(火用)效率提高了6.63%。系统性能确实得到改善。
     文中还研究计算了SOFC-ST-GT联合发电系统。结果表明:此SOFC-ST-GT系统的性能好于SOFC-ST系统,但比SOFC-GT发电系统略差。考虑到经济性问题,小容量机组不建议使用这种系统。
Solid oxide fuel cell (SOFC) is a new energy conversion device. Because of its highly efficiency, fuel adaptability and long term stability, the research and development of SOFC have been emphasized in many countries.
    Energy balance model and exergy analysing model of SOFC are established in this thesis. A SOFC power system, which is fed by natural gas, is calculated. Results show that the electrical efficiency and exergy efficiency of this power system can all exceed 45%. There are several sources that contribute to the irreversible losses in an operating SOFC. The performance of SOFC can be improved by improving SOFC structure and using advanced material.
    Owing to its working features, SOFC cannot convert all fuel. At the same time, SOFC has highly exit gas temperature. So SOFC can be combined with other power systems. In this paper, energy analysis and exergy analysis of hybrid power systems are given. A combined cycle system with SOFC and steam turbine can achieve an electrical efficiency of 58.933% and an exergy efficiency of 56.98%. For hybrid SOFC and gas turbine power system, the capacity usage ratio and exergy efficiency are, respectively, more than 80% and 70%. It can be find that decreasing the current density and increasing the fuel utilization of SOFC will improve the performance of system. In addition, the increase in operating pressure and inlet temperature of SOFC will increase the electrical efficiency and exergy efficiency of whole power system.
    Using exergy analysing identification, weak links of SOFC-GT power system can be find. In this paper, main weak links are heat exchanger and SOFC. In order to increase the electrical efficiency and exergy efficiency, two optimization schemes are researched. The electrical efficiency of first scheme is increased by 8.61% and exergy efficiency by 4.79%. For the second scheme, the electrical efficiency and exergy efficiency are increased respectively by 11.11% and 6.63%.
    At last, a SOFC power system combined both with steam turbine and gas turbine is calculated. Its performance is better than SOFC-ST power system, but not as good as SOFC-GT power system. Considering the investment cost, this system is not suggested when capacity is small.
引文
[1]马文会.固体氧化物燃料电池复合掺杂阴极材料的研究.昆明理工大学博士学位论文.2001,6-9
    [2]黄倬,屠海令,张冀强等.质子交换膜燃料电池的研究开发与应用.北京:冶金工业出版社,2000.3-4
    [3]伊亭,苏明.联合循环中高温燃料电池建模综述.华东电力,2001,9:1
    [4]梁丽萍,高荫本,陈诵英.燃料电池发电技术概述.煤炭转化,1995,Vol.18(No.4):1-4
    [5]熊一权.燃料电池发电技术.中国电力.1998,Vol.31(No.9):61-62
    [6]李瑛,王林山,燃料电池.北京:冶金工业出版社,2000
    [7]周运鸿.燃料电池.电源技术,1996,Vol.20(No.4):161-164
    [8]阿布里提·阿布杜拉,小宫山宏.新型高效率发电技术—燃料电池的发展现状和开发动向.电工电能新技术,2000,No.2:35-40
    [9]毕道治.中国燃料电池的发展.电源技术,2000,Vol.24(No.2):103-107[10].
    [10]孟黎清.燃料电池的历史和现状.电力学报,2002,Vol.17(No.7):1-2
    [11]吴忻.燃料电池及其发展概况.动力工程,2001,Vol.21(No.2):2-3
    [12]桂敏言.国外燃料电池发电技术现状及前景.东北电力技术,2001,(No.2):40-42
    [13]卢自柱.固体氧化物燃料电池阴极的制备及性能的研究.中国科学院硕士学位论文,2001.5:9-10
    [14]Bessette N F, George R A. Proc.of 2nd Inter. Fuel Cell Conference, Kobe, Japan. 1996:267
    [15]Stephen E V. Proc.of 2nd Inter. Fuel Cell Conference, Kobe, Japan. 1996:271
    [16]徐志弘,温廷琏,吕之奕.高温燃料电池阴极材料La(Sr)MnO_3的导电性能研究.无机材料学报,1994,Vol.9(No.4):489-492
    [17]江义,阎景旺,王世忠,于春英,李文钊.平板式氧化物燃料电池(SOFC)研制及性能考察.电化学,1997,Vol.3(No.2):308-313
    [18]Jiang Yi, Wang Shizhong, Zhang Yahong. Kinetic study of the formation of oxygen vacancy on lanthanum manganite electrodes. J. Electrochem. Soc., 1998, Vol. 145 (No.2): 373-378
    [19]江义.固体氧化物燃料电池最新发展动态.电化学,1998,Vol.4(No.4):358
    [20]马紫峰.固体氧化物燃料电池电催化过程研究,华南理工大学博士学位论文,1995
    [21]Kirill V.Lobachyov, Horst J.Richter. High efficiency coal-fired power plant of the future. Energy Conversion and Management, 1997, Vol.38 (No.15-17): 1693-1699
    [22]E Costamagna. The benefit of solid oxide fuel calls with integrated air pre-heater. Journal of Power Sources, 1997, Vol.69:1-9
    [23]Richard Fellows. A novel configuration for direct internal reforming stacks. Journal of Power Sources, 1998, Vol.71: 281-287
    [24]Ernst Riensche, Ulrich Stimming, Guido Unverzagt. Optimization of a 200 kW SOFC cogeneration power plant Part Ⅰ: Variation of process parameters. Journal of Power Sources, 1998, Vol.73:251-256
    [25]Ernst Riensche, Ulrich Stimming, Guido Unverzagt. Optimization of a 200 kW SOFC cogeneration power plant Part Ⅱ: Variation of the flowsheet. Journal of Power Sources,
    
    1998, Vol.71:306-314
    [26] Guo Xui-Mei, Kus Hidajat, Chi-Bun Ching. Simulation of a solid oxide fuel cell for oxidative coupling of methane. Catalysis Today, 1999, Vol.50: 109-116
    [27] K.Tanaka, C.Wen, K.Yamada. Design and evaluation of combined cycle system with solid oxide fuel cell and gas turbine. Fuel, 2000, Vol.79:1493-1507
    [28] S.H.Chan, H.K.Ho, Y.Tian. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. Journal of Power Sources, 2002, Vol. 109: 111-120
    [29] S.H. Chan, C.F. Low, O.L.Ding. Energy and exergy analysis of simple solid-oxide fuel-cell power plant systems. Journal of Power Sources, 2002, Vol. 103:188-200
    [30] Y. Inui, S. Yanagisawa, T. Ishida. Proposal of high performance SOFC combined power generation system with carbon dioxide recovery. Energy Conversion and Management, 2003 (No.44): 597-609
    [31] Prapan Kuchonthara, Sankar Bhattacharya, Atsushi Tsutsumi. Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. Journal of Power Sources, 2003, Vol.117:7-13
    [32] 王逊,张世铮,蔡睿贤.采用化学链式燃烧的燃料电池联合循环及其性能分析.工程热物理学报,1999,Vol.20(No.3)
    [33] 王逊,张世铮.采用化学链式燃烧器的固体氧化物燃料电池发电系统优化.工程热物理学报,2000,Vol.21(No.5)
    [34] 张海燕,钟志强,蒋安众,虞亚辉,于立军,李慧卿.燃煤的燃料电池联合循环发电系统拟定和热效率分析.锅炉技术,2001,Vol.32(No.2)
    [35] 贺天民,孙敬姝,吕拮,裴力,刘江,梁浩,苏文辉.高温固体氧化物燃料电池实验演示.物理实验,2000,Vol.20 (No.4):9-10
    [36] 江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展.化学进展,1997,Vol.9(No.4):387-396
    [37] 马紫峰.固体氧化物燃料电池的研究发展.电源技术,1993,Vol.17(No.3):29-34
    [38] 钟史明.燃气.蒸汽联合循环发电.北京:水利电力出版社,1995
    [39] 陈文威,李沪萍.热力学分析与节能.北京:科学出版社,1999
    [40] 程明一,阎洪环,石奇光.热力发电厂.北京:中国电力出版社,1998
    [41] 吴村真,张诗针,孙志坚.热力过程(火用)分析基础.浙江:浙江大学出版社,2000
    [42] 顾恒祥.燃料与燃烧.西安:西北工业大学出版社,1993
    [43] 李汝辉,刘德彰,李世武.能量有效利用.北京:北京航空航天大学出版社,1992
    [44] 许世森.燃料电池与燃气轮饥组成的一体化发电系统

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700