用户名: 密码: 验证码:
板带轧机工作辊温度场和热变形研究及其在热带钢连轧中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工作辊热变形是影响带材板形和断面质量的一个重要因素。随着轧制节奏的提高、轧制规格的拓展和市场需求的提高,轧辊热变形在生产实践中对带材板形和断面质量的影响已开始日益凸现出来。在热轧轧制过程中,由于轧辊热变形的影响因素多、边界条件复杂和许多物理常数很难精确测定,准确预报轧辊热变形已成为热轧板形和断面质量控制技术中的难点。本文以热轧板带轧机工作辊温度场、热变形及其复杂边界换热条件为研究对象,进行了深入的理论和工业实验研究。
     首先,采用控制容积平衡法建立圆柱体三维温度场内部和边界节点差分方程,使得边界节点的差分方程更加准确和符合物理实际。分析热轧工作辊温度场的复杂边界条件,考虑到温度场仿真模型求解的复杂性,建立板带轧机轧辊二维温度场有限差分模型。首次结合带钢跑偏建立轧辊热凸度修正模型,为提高板带轧机在线热凸度计算精度提供了一个新的方法。详细分析了轧辊热流输入输出关系及特征并进行合理的工程简化,采用改进的遗传算法——实数编码、新的适应度值标定和最优个体保存策略设计了遗传操作,建立适用不同轧机工作辊关键边界换热系数的遗传算法优化模型。应用上述两个模型,考虑压下规程、轧件规格、温度、轧制节奏、冷却水流量和分布等因素的影响,对宝钢1580热带钢连轧机工作辊的温度场和热凸度进行仿真计算和工业实验,得到了工作辊下机温度场、热凸度以及工作辊下机后空冷时的温度场和热变形变化曲线。计算值和实测值吻合良好,为生产实践中实现合理的辊型磨削提供了依据。在此基础上,定量地研究了各种轧制条件对工作辊热凸度的影响。
     其次,全面系统地分析了宝钢1580热连轧精轧机组工作辊下机辊型从中凸形状到中凹形状波动的形成机理,首次提出了可变宽度冷却思想。以工作辊温度场和热凸度计算模型为工具,对宝钢1580热连轧机组各种典型轧制规格的工作辊冷却水轴向分布进行优化。优化结果表明:根据产品规格采用不同的冷却制度,对轧辊热辊型波动有很大的改善作用。设计制造了可变宽度工作辊水幕冷却模拟试验系统,并在实验室进行原理性和可行性试验研究。试验结果表明:所设计的装置可以实现连续的层流水幕,沿辊身轴向能够进行宽度调整;在流量无干扰区域,可实现中部水流量大于边部水流量的预期效果。为进一步研究应用于生产实际的装置提供了重要的依据。
     最后,将辊系弹性变形模型、磨损模型、热凸度模型和金属变形模型相耦合,建立了热连轧机带钢横断面形状模拟系统。其仿真结果与实测结果吻合良好。分析了工作辊热变形对带钢横断面形状的影响,首次提出了轧制节奏过快会导致带钢边部反翘的结论。冷轧带钢钢卷边包严重影响带钢的板形和表面质量。在1220冷轧带钢厂对钢卷边包进行大量的工业调查并首次提出探索边包根源的实验方案。通过对实验结果进行系统分析可知:冷轧钢卷边包不是由冷轧带钢的板形不良引起的,而是由冷轧带钢存在边部局部高点,且边部局部高点厚度明显大于带钢中间厚度引起的,而带钢的楔形加剧了边包。根据工作辊热变形对带钢横断面的影响规律,在1450热轧生产线进行了降低轧制节奏的工业实验。实验结果证明上述推断的正确性,从而为冷轧钢卷边包缺陷的治理提供了重要依据。
The roll’s thermal deformation is an important factor for the strip shape and section quality. With the increase of rolling rhythm, the development of rolling specification and the increase of market demand, the influence of roll’s thermal deformation on the strip shape and section quality is becoming a problem in the productive practice. In the hot rolling process, it is an difficulty for strip shape and section quality control technology to accurately predict roll’s thermal deformation because the influence factors of roll’s thermal deformation are complicated, the boundary condition is intricate and many physical constants are hard to accurately measure. The roll’s temperature field, thermal deformation and complicated boundary heat exchange of hot strip rolling mill are selected as researching subject, closely theoretical study and industrial experiments are carried out.
     First, internal and boundary node difference equations of the cylinder’s three-dimensional temperature field are established by control volume balanced method, so that the boundary node difference equations are more accurate and according with the physical practice. The complicated boundary condition of hot rolling work roll’s temperature field is analyzed. With a view of the complexity to solve simulation model of temperature field, roll’s two-dimensional temperature field finite difference model of plate and strip mill is established. For the first time, combined with off tracking of the strip, modified thermal crown model of the roll is established, and it provides a new way for improving the computing accuracy of in-line thermal crown of plate and strip mills. The heat flow input and output of the roll are analyzed in detail and reasonably simplified. Genetic operation are designed by the improved genetic algorithm——real code, new calibration of sufficiency value and conservation of the best individual, and the optimization model of genetic algorithm about key boundary heat exchange parameters suitable for the roll of different mills is established. Considering the influence of screwdown regulations, rolled piece specification, temperature, rolling rhythm, flux and distribution of cooling water, the simulation and industrial experiments of temperature field and thermal crown of work roll are made in Baogang 1580 hot rolling mill by the above two models. The temperature field and thermal deformation curves of work roll after rolling and cooled in the air are attained and the computation values coincide better with the measured values. It provides a basis for the realization of appropriate roll shape grinding in the productive practice. Then, influence of rolling conditions on thermal crown of work roll was researched quantificationally.
     Second, the formation mechanics is systematically analyzed that thermal shape of work roll after rolling changes from the convexity to the concave in Baogang1580 hot rolling mill. The variable-width cooling idea is first put forward. The optimization is made for the axial distribution of cooling water of work roll corresponding to each typical rolling specifications in Baogang 1580 hot mill by the temperature field and thermal crown model. The optimization results indicate that the fluctuation of thermal roll shape is greatly improved by the cooling system determined by the product specification. The variable-width work roll’s curtain wall cooling analog experiment system is designed and manufactured, and the principle and feasibility experimental researches are made in the laboratory. Experimental results indicate that the designed devices can realize continuous laminar curtain wall, the adjustment in the roll axial direction, and the anticipated effect that middle flux is greater than the marginal flux in the no flux-disturbed area. It provides the important basis for further research on the device for the productive practice.
     At last, coupled the rolls deformation model, wear, thermal crown and the metal flow models, the strip cross section simulation system of hot tandem mill is established. The simulation and measured values coincide better. The influence of work roll thermal deformation on strip cross section is analyzed, and that faster rolling rhythm can cause marginal spring of strip is first brought forward. The side convex defect of strip coil of cold rolling seriously influences the shape and surface quality of the strip. On the basis of large quantity of field researches in 1220 cold rolling strip factory, experiment scheme is first brought forward for exploring the root of side convex of strip coil of cold rolling. The experiment results are systemically analyzed and can be known that the side convex of strip coil is not the result of the bad strip shape of strip coil of cold rolling, but the side local high spot of the strip, and that the thickness of side local high spot of the cold rolling strip is larger than the middle thickness, and that the wedge shape aggravates the side convex of cold rolling coil. Based on the influence of work roll thermal deformation on strip section, the industrial experiment of reducing the rolling rhythm is made in 1450 hot rolling production line. Experimental results indicate that the above deductions are correct. Then, it brings forward the important basis for the cure of the side convex defect of cold rolling coil.
引文
1王艳京,赵磊.中国钢材市场分析及2010年预测.冶金信息导刊, 2007, (4): 2-4
    2金琳.未来10年世界钢材需求前景分析.冶金管理, 2006, (1): 20-22
    3 Paolo Bobig, Roberto Borsi, Francesco Stella.高质量板带生产工艺和设备的创新发展趋势.冶金管理, 2003, (10): 49-51
    4胡秋.轧辊三维瞬态温度场的一种二维简化计算模型——400×1850铝板带冷轧机工作辊温度场与热变形数值模拟. [中南大学工学硕士学位论文]. 2002: 1-10
    5郭振宇.板带轧制过程工作辊温度场与热辊型研究. [燕山大学工学硕士学位论文]. 2004: 1-10
    6 X. M. Zhang, Z. Y. Jiang, A. K. Tieu, et al. Numerical Modeling of the Thermal Deformation of CVC Roll in Hot Strip Rolling. Journal of Materials Processing Technology, 2002, 130-131: 219-223
    7 Wang Xiaodong, Yang Quan, He Anrui, et al. Comprehensive Contour Prediction Model of Work Roll in Hot Wide Strip Mill. Journal of University of Science and Technology Beijing, 2007, 14(3): 240-245
    8 W. D. Bennon. Evaluation of Selective Coolant Application for the Control of Work Roll Thermal Expansion. ASME J. Eng. Ind.1985, 107: 146-152
    9 Lenard, John G. Predictive Capabilities of a Thermal Model of Flat Rolling. Steel Research, 1989, 60(9): 403-406
    10 B. Gecim, W. O. Winer. Study Temperature in a Rotating Cylinder Subject to Surface Heating and Convective Cooling. ASME J. Tribol, 1984, 106: 120-127
    11 S. Serajzadeh, A. Karimi Taheri, F. Mucciardi. Unsteady State Work-Roll Temperature Distribution During Continuous Hot Slab Rolling. International Journal of Mechanical Sciences, 2002, 44(12): 2447-2462
    12 Perez, R. L. Corral, R. Fuentes. Computer Simulation of the Thermal Behavior of a Work Roll During Hot Rolling of Steel Strip. Journal of Materials Processing Technology, 2004, 153-154: 894-899
    13 R. L. Corral, R. Colas, A. Perez. Modeling the Thermal and Thermoelastic Responses of WorkRolls Used for Hot Rolling Steel Strip. Journal of Materials Processing Technology, 2004, 153-154: 886-893
    14纪宏,徐国新.轧辊温度场数学模型研究.本溪冶金高等专科学校学报, 2000, 2(3): 39-41
    15昌先文.轧辊热凸度模拟系统的开发. [东北大学工学硕士学位论文]. 2005: 1-10
    16于辉,郭振宇,杜风山.板带热轧工作辊温度场的研究.河北冶金, 2004, (2): 16-18,59
    17 F. Unger. Neue Hütte. 1978, 23(11): 408-415
    18 Tseng, S. X. Tong, M. Raudensky. Thermal Expansion and Evaluation of Rolls in Rolling Process. Steel Research, 1996, 67(5): 188-199
    19 G. Schipper. Practical Method to Calculate Effects of Work Roll Cooling on Strip Shape and Crown. Ironmaking and Steelmaking, 1996, 23(1): 66-69
    20 E. J. Patula. Steady-State Temperature Distribution in a Rotating Roll Subject to Surface Heat Fluxes and Convective Cooling. Journal of Heat Transfer, 1981, 13: 36-41
    21 W. Y. D. Yuen. On the Steady-State Temperature Distribution in a Rotating Cylinder Subject to Heating and Cooling Over Its Surface. Journal of Heat Transfer, 1984, 106: 578-585
    22 W. Y. D. Yuen. On the Heat Transfer of a Moving Composite Strip Compressed by Two Rotating Cylinders. Journal of Heat Transfer, 1985, 107: 541-548
    23 Der-Form Chang. Thermal Stresses in Work Rolls During the Rolling of Metal Strip. Journal of Materials Processing Technology, 1999, 94(1): 45-51
    24 F. D. Fischer, W. E. Schreiner, E. A. Werner, et al. The Temperature and Stress Fields Developing in Rolls During Hot Rolling. Journal of Materials Processing Technology, 2004, 150(3): 263-269
    25 A. Tseng, S. X. Tong, S. H. Maslen. Thermal Behavior of Aluminum Rolling. Journal of Heat Transfer, 1990, 112: 301-308
    26王国栋.板形控制和板形理论.北京:冶金工业出版社, 1980: 380-438
    27 Z. C. Lin, C. C. Chen. Three-Dimensional Heat-Transfer and Thermal-Expansion Analysis the Work Roll During Rolling. Journal of Materials Process Technology, 1995, 49: 125-147
    28 J. W. Beesten. Automation of Tandem Mills. Iron and Steel Inst, 1973, 190(8): 22-28
    29 S. R. Wang, A. Tseng. Marco and Micro Modeling of Hot Rolling of Steel Coupled by a Micro Constitutive Relationship. Iron and Steelmaker, 1996, 15(9): 49-61
    30张绚丽,张杰,魏钢城,等.带钢热连轧机工作辊温度场及热辊形的理论与实验研究.冶金设备, 2002, 133(6): 1-3,15
    31姚玉玺,文成秀,杨玉东,等.1150初轧机轧辊温度场分析和冷却效应研究.重型机械, 1998(3): 16-19
    32郭剑波,连家创,涂月红.热带钢连轧机工作辊温度场和热凸度计算.燕山大学学报. 1998, 22(3): 255-258
    33 Yang Lipo, Peng Yan, Liu Hongmin. Two-Dimensional Transient Temperature Field of Finish Rolling Section in Hot Tandem Rolling. Journal of Iron and Steel Research, 2004, 11(4): 29-33
    34 Zhang Xuanli, Zhang Jie, Li Xiaoyan. Analysis of the Thermal Profile of Work Rolls in the Hot Strip Roll Process. Journal of University of Science and Technology Beijing, 2004, 11(2): 173-177
    35 Martha P. Guerreto, Carlos R. Flores, Antonino Perez, et al. Modeling Heat Transfer in Hot Rolling Work Rolls. Journal of Materials Processing Technology, 1999, 94(1): 52-54
    36 Guillermo García-Gil, Rafael Colás. Calculation of Thermal Crowning in Work Rolls from their Cooling Curves. International Journal of Machine Tools and Manufacture, 2000, 40(14): 1997-1991
    37 Anrui He, Jie Zhang, Chen Zhang, et al. Thermal Behaviors of Work Roll in Finishing Trains of Hot Rolling. Journal of University of Science and Technology Beijing, 2001, 8(1): 59-62
    38 Mohammad Abbaspour, Ahmad Saboonchi. Work roll Thermal Expansion Control in Hot Strip Mill. Applied Mathematical Modeling, 2007, (9): 1-18
    39 H. Sumi. A Numerical Model and Control of Plate Crown in the Hot Strip or Plate Rolling. Advanced Technology of Plasticity, 1984, 2: 1360-1365
    40杨利坡,刘宏民,彭艳,等.热连轧轧辊瞬态温度场研究.钢铁, 2005, 40(10): 38-41
    41杨利坡,刘宏民,彭艳.热连轧工作辊三维瞬态温度场数值模拟.燕山大学学报, 2004, 28(5): 380-383
    42杜风山,于辉,郭振宇.板带热轧工作辊温度场的研究.塑性工程学报, 2005, 12(2): 78-81
    43李俊洪,连家创,岳晓丽.热带钢连轧机工作辊温度场和热凸度预报模型.钢铁研究学报, 2003, 15(6): 25-28
    44陈宝官,陈先霖.用有限元法预测板带轧机工作辊热变形.钢铁, 1991, 26(8): 40-44
    45杜凤山,郭振宇,朱光明.多道次可逆轧机工作辊温度场及热辊型的研究. 2004, 4(2): 12-15
    46孔祥伟,李壬龙,王秉新,等.轧辊温度场及轴向热凸度有限元计算.钢铁研究学报, 2000, 12(12): 51-54
    47 Guo zhongfeng, Li Changsheng, Xu Jianzhong, et al. Analysis of Temperature Field and Thermal Crown of Roll During Hot Rolling by Simplified FEM. Journal of Iron and Steel Research, 2006, 13(6): 27-30,48
    48 Kong Xiaowei, Xu Jianzhong, Ye Hezhou, et al. FEM Calculation of Work Roll Temperature and Thermal Crown. J. Iron &Steel Res., Int. 2004, 14(4): 22-25
    49包仲南,陈先霖,张清东.带钢热连轧机工作辊瞬态温度场的有限元仿真.北京科技大学学报, 1999, 21(1): 60-63
    50 S. W. Hang. Finite Element Analysis of Temperatures, Metal Flow and Roll Pressure in Hot Strip Rolling. ASME Journal of Engineering for Industry, 1993, 115(8): 290-298
    51 Li Changsheng, Yu Hailiang, Deng Guanyu, et al. Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling. Journal of Iron and Steel Research, 2007, 14(5): 18-21
    52 Parke David M, Baker James L L. Temperature Effects of Cooling Work Roll. Iron and Steel Engineer, 1972, 49(12): 83-88
    53 R. Baskiyar. Finite Element Analysis of the Temperature Profile of Rolls. Steel Research, 2000, 71(4): 115-117
    54 Li C. S., Liu X. H., Wang G D. Three-Dimensional FEM Analysis of Work Roll Temperature Field in Hot Strip Rolling. Materials Science and Technology, 2002, 18(10): 1147-1150
    55李世烜.热辊型动态形成过程的机理研究——2800铝带热精轧机热辊型仿真研究. [中南工业大学工学博士学位论文]. 1996: 1-48
    56 Pierre Montmitonnet. Hot and Cold Strip Rolling Processes. Computer Methods in Applied Mechanics and Engineering, 2006, 195(48-49): 6604-6625
    57日本钢铁协会编.板带轧制理论与实践.王国栋,吴国良,等译.北京:中国铁道出版社, 1990: 201-202
    58 Malinowski Z, Lenard JG, Davies Me. A Study of the Heat-Transfer Coefficient as a Function of Temperature and Pressure. J Mater Proc Technol, 1994, 41(2): 125-142
    59 Chen BK, Thnompson PF, Choi SK. Temperature Distribution in the Roll-gap during Hot Flat Rolling. J Mater Proc Technol, 1992, 30(1): 1115-1130
    60 Sellars Cm. Computer Modeling of Hot-Working Process. Mater Sci Technol, 1985, 1(4): 325-332
    61 A.A. Tseng. Thermal Modelling of Roll and Strip Interface in Rolling Process. Part 1:Revies, Numer. Heat. Transfer, 1999, A35: 115-133
    62 A.A. Tseng. Thermal Modelling of Roll and Strip Interface in Rolling Process. Part 2:Simulation, Numer. Heat. Transfer, 1999, A35: 135-154
    63 C.O. Hlady, J.K. Brimacombe, I.V. Samarasekera. Heat Transfer in Hot Rolling of Metals. Met. Trans, 1995, B26: 1019-1027
    64 M.P. Guerrero, C.R. Flores, A. Pérez, et al. Modelling Heat Transfer in Hot Rolling Work Rolls. J. Mater. Process. Technol, 1999, 94: 52-59
    65李俊洪.板带轧机板形计算理论及其在宽带轧制中的应用研究. [燕山大学工学博士学位论文]. 2003: 47-70
    66 Vladimr B Ginzburg. Application of Coolfex Model for Analysis of Work Roll Thermal Condition in Hot Strip Mills. Iron and Steel Engineer, 1997, (11): 38-45
    67周燕,肖刚,胡秋.轧辊温度场热交换系数的一种简便确定方法.钢铁研究, 2002(2): 37-38
    68尹凤福,李谋渭,刘鸿飞,等.铝带轧机工作辊与冷却液之间换热特性的分析.冶金设备, 2002, (3): 9-11,30
    69尹凤福,李谋渭,朱启建,等.铝带箔轧机中对流换热特性影响因素的数值模拟.冶金设备, 2002, (5): 6-9
    70尹凤福,李谋渭,张少军. 1400F轧机工作辊与冷却液之间换热特性的最优值.北京科技大学学报, 2005, 27(4): 480-483
    71 C.G. Sun, S.M. Hwang. Prediction of Roll Thermal Profile in Hot Strip Rolling by the Finite Element Method. ISIJ Int, 2000, 40: 794-801
    72 S.M. Hwang, C.G. Sun, S.R. Ryoo. An Integrated FEM Process Model for Precision Analysis of Thermo-Mechanical Behaviors of Rolls and Strip in Hot Strip Rolling. Comp. Methods Appl. Mech. Eng., 2002, 191: 4015-4033
    73 Ahmad Saboonchi, Mohammad Abbaspour. Changing the Geometry of Water Spray on Milling Work Roll and its Effect on Work Roll Temperature. Journal of Materials Processing Technology, 2004, 148(1): 35-49
    74 Amnon Shirizly, John G. Lenard. The effect of Scaling and Emulsion Delivery on Heat Transfer During the Hot Rolling of Steel Strips. Journal of Materials Processing Technology, 2000, 101(1-3): 250-259
    75 C. Devadas, V. Samarasekara,. Heat Transfer during Hot Rolling of Steel Strip. Ironmak. Steelmak. 1986, 13(6): 311-321
    76 Sun CG, Yun CS, Chung JS. Investigation of Thermo-Mechanical Behavior of a Work Roll and of Roll Life in Hot Strip Rolling. Metal Master Trans A, 1998, 29A(9): 2407-2424
    77 A.A. Tseng, F.H. Lin, A.S. Gunderia. Rolling Cooling and Its Relationship To Roll Life. Met. Trans.1989, 20A: 2305-2320
    78 J.H. Beynon. Modelling the Boundary Conditions for Thermo-Mechanical processing——Oxide Scale Behaviour and Composition Effects. Model. Simul. Mater. Sci. Engrg, 2000, 8: 927-945
    79 M. Raudensky, J. Horsky, M. Pohanka. Optimal Cooling of Rolls in Hot Rolling. Journal of Materials Processing Technology, 2002, 125-126: 700-705
    80 E. Crisa, E. Donini, M. Rotti. Advanced Work Roll Cooling and Thermal Crown Control in the New Algoma Steel DSPC Finishing Mill. Iron and Steel Maker, 1999, 26(9):59-66
    81陈昌君.攀钢1450mm精轧机工作辊冷却装置改进.四川冶金, 2004, (3): 8-10
    82王薇,季安珊.轧辊冷却新技术在带钢热连轧机中的应用.冶金设备, 1995(3): 31-34
    83热带钢连轧机编写小组.热带钢连轧机.北京:机械工业出版社, 1976: 309-311
    84赵家骏.热轧带钢生产知识问答.北京:冶金工业出版社, 1993: 178-180
    85钱振声,高波.控制冷却用的几种喷流方式及使用效果.宽厚板, 2001, 7(5): 1-5
    86钱振声.鞍钢厚板厂控制冷却装置的改造方案.鞍钢技术, 1999, (11): 9-14
    87 Han Bin, Zhang Zhongping, Liu Xianghua, et al. Element Tracking Strategies for Hot Strip Laminar Cooling Control. J. Iron &Steel Res., Int. 2005, 12(3): 18-21, 27
    88谢海波,张中平,刘相华,等.层流冷却的前馈控制.钢铁研究学报, 2006, 18(3): 60-63
    89谢海波,徐旭东,刘相华,等.层流冷却过程中带钢温度场数值模拟.钢铁研究学报, 2005, 17(4): 33-35,50
    90 Auzinger D, Parzer F, Posch G. Process Optimization for Laminar Cooling. MPT International, 1996, (5): 68-70
    91 Auzinger D. Recent Development in Process Optimization for Laminar Cooling in Hot Strip Mills. Ironmaking and Steelmaking, 1996, 23(1): 84-87
    92 Henrich L, Holz R, Kneppe G. Physically Based Line Model to Meet Growing Demands in Temperature and Flexibility. Ironmaking and Steelmaking, 1996, 23(1): 79-81
    93 Lawrence W J, Macalister A F, Reeve P J. On Line Model and Control of Strip Rolling.Ironmaking and Steelmaking, 1996, 23(2): 74-78
    94杨固川.国产热带钢连轧机主要设备技术分析.冶金设备, 2003, (4): 26-31
    95高桥出云南,大番屋嘉一,大友朗纪,ほか.厚板直接烧入设备の开发.神户钢铁技报, 1988, 38(1): 71-74
    96曹建刚,麻永林,王宝峰,等.冷轧带钢轧辊温度场及其控制.金属成型工艺, 2001, 19(4): 11-14
    97高晓龙,魏明远.热带钢轧机新型轧辊冷却装置的研究与应用.鞍钢技术, 1996(12): 24-27, 32
    98金杯生,李庆新.热轧薄板辊温控制装置的研究.鞍钢技术, 1995, (5): 18-24
    99蔡晓辉,时旭,王国栋,等.控制冷却方式和设备的发展.钢铁研究学报, 2001, 13(6): 56-60
    100魏东明. RTC技术及其在唐钢超薄热带生产线上的应用.河北冶金, 2003, (3): 47-48
    101 Roy Jean Issa. Numerical Modeling of the Dynamics and Heat Transfer of Impacting Sprays for a Wide Range of Pressure. [University of Pittsburgh Doctor Paper]. 2003: 10-25
    102 Mark Bates, Santino A.Domanti, Peter Thomas. Hot Sprays and Strip Edege Shape Control. AISC Steel Technology, 2003: 1-20
    103杨红,苏海龙,张殿华.中厚板水幕冷却的控制系统.控制工程, 2002, 9(3): 26-28,37
    104甄立东,刘永利.水幕冷却系统在首钢秦板的应用.轧钢, 2005, 22(3): 31-32,42
    105秦国庆,熊晓明.钢板水幕冷却的分析.钢铁研究学报, 2000, 12(1): 63-66
    106李雪芹,刘永利.中厚板水幕控制冷却系统的开发.山东冶金, 2004, 26(增刊): 241-242
    107秦国庆,韩静涛.水幕冷却系统浅析.钢铁研究, 1999, (3): 20-23,59
    108赵玉刚,王钢.中厚板水幕冷却专家系统仿真实现.冶金自动化, 2004, (1): 51-54
    109翁中杰,程慧尔,戴华凎.传热学.上海:上海交通大学出版社, 1987: 1-5
    110施天谟.计算传热学.陈越南,范正乔,陈善年译.北京:科学出版社, 1984: 1-42
    111连家创.热轧板轧制压力的计算.重型机械, 1975, (1): 1-13
    112 W.R.D. Wilson, C.T. Chang, C.Y. Sa. Interface Temperatures in Cold Rolling. J. Mater. Shaping Tech, 1989, 6: 229-240
    113胡达超.带钢热轧时的跑偏与控制措施.重型机械, 2002, (5): 4-6
    114陈连生,连家创.热带钢连轧机精轧轧辊磨损计算理论.河北理工学院学报, 2001, 23(1): 24-28
    115 F.S梅里特.工程技术常用数学.丁仁,陈三平译.北京:科学出版社, 1978: 255-268
    116王登刚,刘迎曦,李守巨.二维稳态导热反问题的正则化解法.吉林大学自然科学学报, 2000, (2): 54-60
    117 Beck J C, Muiro D A. Combined Function Specification Regularization Procedure for Solution of Inverse Heat Conduction Problem. AAAA. J, 1986, (24): 180-185
    118 Weber C F. Analysis an Solution of the Ill-Posed Inverse Heat Conduction Problem. Int. J. Heat Mass Transfer, 1981, 24(11): 1783-1792
    119智会强.神经网络和遗传算法在导热反问题中的应用[河北工业大学工学硕士学位论文]. 2004: 27-72
    120 N. Chakraborti, B. Siva Kumar, V. Satish Babu, et al. Optimizing Surface Profiles During Hot Rolling: A Genetic Algorithms Based Multi-Objective Optimization. Computational Materials Science, 2006, 37(1-2): 159-165
    121 Shantanu Gupta, Rajiv Tiwari, Shivashankar B. Nair. Multi-Objective Design Optimization of Rolling Bearings Using Genetic Algorithms. Mechanism and Machine Theory, 2007, 42(10): 1418-1443
    122 M. Kadkhodaei, M. Salimi, M. Poursina. Analysis of Asymmetrical Sheet Rolling by a Genetic Algorithm. International Journal of Mechanical Sciences, 2007, 49(5): 622-634
    123 B. Rajeswara Rao, Rajiv Tiwari. Optimum Design of Rolling Element Bearings Using Genetic Algorithms. Mechanism and Machine Theory, 2007, 42(2): 233-250
    124 Xinhua Xu, Shengwei Wang. Optimal Simplified Thermal Models of Building Envelope Based on Frequency Domain Regression Using Genetic Algorithm. Energy and Buildings, 2007, 39(5): 525-536
    125 Renan Hilbert, Gábor Janiga, Romain Baron, et al. Multi-Objective Shape Optimization of a Heat Exchanger Using Parallel Genetic Algorithms. International Journal of Heat and Mass Transfer, 2006, 49(15-16): 2567-2577
    126张宇鑫,宋玉普,王登刚,等.基于遗传算法的混凝土一维瞬态导热反问题.工程力学, 2003, 20(5): 87-90,105
    127张宇鑫,宋玉普,王登刚.基于遗传算法的混凝土三维非稳态温度场反分析.计算力学学报, 2004, 21(3): 339-342,367
    128王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社, 2002: 1-86
    129孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999: 1-89
    130李敏强.遗传算法的基本理论与应用.北京:科学出版社, 2002: 399-400
    131包仲南,陈先霖,张清东,等.带钢热连轧机工作辊热磨辊的研究.钢铁, 1999, 34(9): 58-62
    132何安瑞,杨荃,张清东,等.热带钢轧机工作辊热磨制度.北京科技大学学报, 2002, 24(3): 306-308,312
    133连家创,刘宏民.板厚板形控制.北京:兵器工业出版社, 1996. 43-103
    134白振华,刘献东,李兴东,等.冷轧钢卷起筋量的测量及其影响因素的研究.钢铁, 2004, 39: 47-50
    135李俊洪,戚向东,连家创,等.热轧带钢局部高点对冷轧带钢板形的影响.钢铁, 2004, 39(6): 47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700