用户名: 密码: 验证码:
水轮机调节系统模型及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力发电是我国电能供给的重要来源之一,在电网系统中担负着调频、调峰等重要角色,对保障电网频率电压的稳定、平衡电网负荷需求平衡,起到十分重要的作用。水力发电系统是一个包括水力系统、水轮发电机组、调速系统、励磁系统等子系统组成的复杂非线性大系统,其中水轮机调节系统调节性能的好坏是影响电网系统频率性能的重要因素之一,因此深入研究水力发电水轮机调节系统调节方式对于提高电力系统频率稳定质量、提高电力系统稳定性具有十分重要的现实意义。
     本论文以水电站水轮机调节系统为研究中心,以提高水轮机调节系统输出性能为研究目的,根据实际水电站水轮发电系统水工结构的不同,系统性地从模型分类、建模方法、控制策略三方面对水轮机调节系统提出了研究思路,对水轮机调节系统模型及控制策略等多个方面内容进行深入研究。
     全文共5章,各章节主要内容可归纳如下:
     第1章绪论:简要回顾国内外水电站水轮机调节系统模型及相关控制方法研究现状和研究进展,论述开展水电站水轮机调节系统模型及控制策略研究的必要性、重要性。针对目前实际运行水电站水轮机调节系统水力子系统水工结构的不同,提出本论文的主要研究内容。
     第2章水轮机调节系统模型分析:根据目前实际水轮机发电系统水力子系统的实际水工结构形式,以水力学中的连续性方程和能量守恒方程为基础,充分考虑流体瞬变流变化对水轮机发电系统的影响,系统提出分析建立了进水口-单压力管道-水轮发电机组(无调压室)水轮机调节系统模型、进水口-引水隧洞-调压室-压力管道-水轮发电机组(有调压室)水轮机调节系统模型和进水口-引水隧洞-调压室-一管多机水轮发电机组(一管多机)水轮机调节系统模型,并利用时域分析法和频域分析法对模型进行特性分析。
     第3章单压力引水管水轮机调节系统控制策略:根据实际运行水电站水力系统的不同水流特点,把单压力引水管(无调压室)水轮机调节系统划分为刚性水体水轮机调节系统和弹性水体水轮机调节系统。对刚性水体水轮调节系统模型,根据PID控制器便于掌握且易于工程实现等特点,针对刚性水体水轮机调节系统模型特点,应用尼科尔斯PID设计理论方法,建立了适用于该理论的水轮机调节系统控制结构,推导了简单易懂的PID控制参数调整规律。对弹性水体水轮机调节系统模型,结合鲁棒控制优异的抗干扰及抗参数摄动性能,设计H∞双回路鲁棒控制策略,设计了基于H∞鲁棒控制理论的双回路水轮机调节控制系统,有针对性地提高了水轮机调节系统控制性能。
     第4章有调压室水轮机调节系统控制策略:以进水口-引水隧洞-调压室-压力管道-水轮发电机组(有调压室)水轮机调节系统模型为研究对象,构建了有调压室水轮机调节系统5阶非线性模型和刚性水体有调压室水轮机调节系统模型。对所建立的5阶水轮机调节系统非线性模型,首次应用多性能指标非线性控制方法进行水轮机调节系统设计,实现了对模型全状态变量的监控,改善了系统的稳定性,扩展了多性能指标非线性设计方法在水轮机调节系统领域的应用。针对所建立的刚性水体效应下有调压室水轮机调节系统模型本身所具有的多干扰特点,应用现代鲁棒控制H。设计方法对水轮机调节系统进行设计,应用于系统的参数干扰和负荷干扰仿真结果表明了该方法对有调压室水轮机调节系统具有比较好的控制效果。
     第5章对全文所做的主要工作和取得的成果进行总结,提出未来有待进一步研究的内容。
Hydraulic power is the important power supply sourse in our country, it plays very important roles in power system such as frequency modulating, keeping the power system voltage in stable state and counterpoising the power system load in balance state.The hydraulic power system is a large complicated nonlinear system that includes hydraulic subsystem, hydro turbine generator unit subsystem, speed control subsystem, excitation control subsystem, among which, the performance of hydro turbine governor subsystem is one of important factors. So it has very important realistic significance that the hydro turbine governor system is particularly researched for improving the quqlity of power system frequency and stability.
     Tightly focusing on hydro turbine governor system, aiming at the output performance of hydro turbine governor system, according to different hydraulic structure of practical hydraulic power generator system, this paper has made deep research on several aspects of hydro turbine governor system model and its control strategy from the point of model category, modeling method and control strategy.
     The whole thesis consists of5chapters, each chapter of main contents can be summarized as follows:
     Chapter1introduction:A brief review has been given for current research status of the domestic and international hydro turbine governor system model and its control stategy theory. The necessity and fundamentality were discussed in this paper for carrying on the research of hydro turbine governor system model and its control strategy. The paper's main contents were put forward based on different hydraulic structure of practical hydraulic power generator system.
     Chapter2hydro turbine governor system model analysis:according to different hydraulic structure of practical hydraulic power generator system, combining with continuity equation and energy conservation equation of hydraulic thesis, detailedly considering the effect given by hydraulic transient flow, the hydro turbine governor system models of individual penstock(no surge), tunnel-surge-penstock-generator unit(with surge), common tunnel-individual penstock-generator unit (same tunnel multi-unit) were put forward systematically. Then the model characteristic was analysed by the method of time domain analysis and frequency domain analysis.
     Chapter3Individual penstock hydro turbine governor system control strategy: According to the different transient flow characteristic, the individual penstock hydro turbine governor system was classified as unelastic and elastic model. For unelastic model, the Nichols PID hydro turbine governor system control framework was established by appling the Nichols PID controller design method. The simple PID control parameters tunning rule was deducted. For elastic model, considering the excellent anti-interference and anti-parameter error ability of advanced robust control, the double loop H∞robust control scheme was proposed for elastic model. By use of the method, the system control performance was improved from the simulation results.
     Chapter4Hydro turbine governor system control strategy with surge:For tunnel-surge-penstock-generator unit(with surge) hydro turbine governor system, the5order nonlinear model was set up For the first time, the hydro turbine governor control system was designed by use of multi-index nonlinear control design method, all the model state variables could be controlled. The simulation results demonstrate that the method can effectively improve the system stabilities. According to multi-disturbance features of unelastic hydro turbine governor system, by use of H∞, robust control theory, a double-circuit robust control strategy for hydro turbine speed control system is proposed. The parameter and power system load disturbance simulation result demonstrate that H∞robust control design method has excellent control performance for hydro turbine governor system with surge.
     The5th chapter summarizes the main work of full text and achievements of the dissertation. Finally, the future research contents have been put forward.
引文
[1]卢强,梅生伟,孙元章.电力系统非线性控制(第2版)[M].北京:清华出版社,2008
    [2]陈乃祥.水利水电工程的水力瞬变仿真与控制[M].北京:中国水利水电出版社,2005
    [3]Kundur P.Power system stability and control.McGraw-Hill,Inc.1994.
    [4]Quiroga O D.Modelling and Nonlinear Control of Voltage Frequency of Hydroelectric Power Plants.Thesis Dissertation.University Plolitecnica de Catalunya,Barcelona. Spain,2000.
    [5]IEEE Working Group. Hydraulic Turbine and Turbine Control Models for System Dynamic Studies[J].IEEE Transaction on Power Systems,1992,7(1):167-179.
    [6]Fangtong Xu,Yonghua Li,Qijuan C.Study of the modeling of hydroturbine generating set.International IEEE/IAS Conference on Industrial Automuation and Control: Emerging Technologies,22-27, May,1995.p.644-647.
    [7]Qijuan C,Zhihuai Xiao.Dynamic modeling of hydroturbine generating set.IEEE International Conference on Systems,Man and Cybernetics,8-11 Oct.2000,p3427-3430.
    [8]Chang J,Bingwen Liu,Cai W.Nonlinear simulation of hydro turbine governing system based on neural network.IEEE International Conference on Systems,Man,Cybernetics, 1996.
    [9]常江,谢云敏.混流式水轮机神经网络模型非线性仿真.中国农村水利水电,2004年第6期:75-77.
    [10]赵林明,王海燕,何睿等.水轮机空化特性的人工神经网络模型.水利学报,2006,37(7):893-897.
    [11]童星,把多铎,杨京广.轴流转桨式水轮机特性神经网络三维模型.人民黄河,2009,31(6):100-101.
    [12]吴持恭.水力学(第3版)[M].北京:高等教育出版社,2006
    [13]常近时.水力机械装置过渡过程[M].北京:高等教育出版社,2005
    [14]陈家远.水力过渡过程的数学模拟及控制[M].成都:四川大学出版社,2008
    [15]郑源,张健.水力过渡过程[M].北京:北京大学出版社,2008
    [16]石刘宏幸,王文蓉,鞠小明.首尾直接连接的长隧洞梯级水电站引水发电系统水力过渡过程模型设计.四川大学学报(工程科学版),2004,36(1):24-27
    [17]巨江,刘菁,诸亮等.水电站引水-尾水管道系统水力过渡过程模型试验与计算[J].水力学报,2005,36(10):1165-1170
    [18]张加贝,金冠锋,束洪春.水力系统模型对水电站过渡过程影响研究[J].云南水力发电,2008,24(1):18-21
    [19]程远楚,赵洁,叶鲁卿等.水电机组水力系统和调速器控制规律对电力系统稳定的影响[J].武汉大学学报(工学版),2008,41(4):59-62
    [20]高慧敏,刘宪林.基于详细水机电模型的水电系统动态过程仿真析[J].系统仿真学报,2003,15(4):469-471
    [21]Huimin Gao,Chao Wang.Effect of detailed hydro turbine models on power system analysis.Power Systems Conference and Exposition,2006(PSCE'06).
    [22]李艳军,刘先林.考虑水力系统详细模型的电力系统暂态过程仿真[J].电网技术,2005,29(8):61-64
    [23]韩志勇,徐衍会,贺仁睦等.水轮机组与电网耦合对电网动态稳定的影响[J].电工技术学报,2009,24(9):166-171.
    [24]Jianbo Xin, Zhiyong Han,Renmu He.Effect of the coupling between hydraulic turbine set and power grid on power grid dynamic stability.International Conference on Sustainable Power Generation and Supply,2009(SUPERGEN'09).
    [25]徐晶,陈明.有调压室的水电站水力-调速系统稳定性[J].四川大学学报(工程科学版),2002,34(3):31-33
    [26]卫志农,陈剑光,潘学萍等.水机电系统相互作用研究[J].电力系统自动化,2000,24(24):26-29
    [27]潘学萍,鞠平,卫志农等.水力系统对低频振荡的影响[J].电力系统自动化,2002,26(3):24-27
    [28]潘学萍.水力系统与电力系统相互影响研究[J].电力自动化设备,2005,25(12):31-34
    [29].陈舟,陈寿孙,张中华等.水力系统模型对电力系统暂态稳定分析的影响[J].清华大学学报(自然科学版),1996,6(7):13-18
    [30]束洪春,张加贝.水机电耦合系统建模及暂态分析[J].电力系统自动化,2008,32(13):26-30.
    [31]Vournas C D.Second order hydraulic turbine models for multimachine stability studies. IEEE Transactons on Energy Conversion,1990,5(2):239-244.
    [32]De Jaeger E,Janssens N,Malflier B.Hydro turbine model for system dynamic studies.IEEE Transactons on Power Systems,1994,9(4):1709-1715.
    [33]Souza O.H,Barbieri N.Study of hydraulic transients in hydropower plants through simulation of nonlinear model of penstock and hydraulic turbine model. IEEE Transactons on Power Systems,1999,14(4):1269-1272.
    [34]Kishor Nand,Saini R P,Singh S P.Simulation of reduced order hydro turbine models to study its hydraulic transient characteristic.9th International Multitopic Conference(IEEE INMIC2005).
    [35]Bing Bai,Lixiang Zhang,Tao Guo, et al. Analysis of dynamic characteristics of the main shaft system in a hydro turbine based on ANSYS.Procedia Engineering, 12,31(2):654-658.
    [36]Yun Zeng,Lixiang Zhang,Tianmao Xu,et al.Building and analysis of hydro turbine dynamic model with elastic water column. Asia-Pacific Power and Energy Engineering Conference(APPEEC),2010.
    [37]Wei Li,Luigi Vanfretti.Development and implementation of hydro turbine and governor models in a free and open source software package.Simulation Modelling Practice and Theory,2012,24(1):84-102.
    [38]Wentao Feng,Jiandong Yang,Lian Duan.Influence of hydraulic turbine operation modes on the hydraulic vibration of pressurized conveyance system in hydropower station.2th International Conference on Mechanic Automation and Control Engineering(MACE),2011.
    [39]Paolo Pennacchi,Steven Chatterton, Andrea Vania.Modeling of the dynamic response of a Francis turbine.Mechanical System and Signal Processing.2012,29(1):107-119.
    [40]Bennett S.Development of the PID controllers.IEEE Control System Magazine,1993,13(6)
    [41]Paynter HM.A palimpsest on the electronic analog art.A.Philbrick Researches,Inc.Boston:Mass;1955.
    [42]Hovey LM.Optimum adjustment of hydro governors on Manitoba hydro system.AIEE Trans Power Apparatus and Systems 1962;81.
    [43]Leum M.The development and field excitation of a transistor electric governor for hydro turbines.IEEE Trans Power Appar Syst,1966;85
    [44]Chaudhry MH.Governing stability of a hydroelectric power plant.Water Power, 1970:11-27
    [45]Hagihara S,Yokota H,Goda K.Stability of a hydraulic turbine generating unit controlled by PID governor.IEEE Trans Power Apparatus and Systems,1979,98:2294-2298.
    [46]Phi DT,Bourque EJ,Thorne DH et al. Analysis and application of the stability limits of a hydro-generating unit.IEEE Trans Power Appra Syst,1981,100:3203-12.
    [47]Wozniak L,Bitz DJ.Load-level-sensitive gains for speed control of hydro generators.IEEE Trans Energy Conv,1988;3:78-84.
    [48]Wozniak L,Filbert TL. Speed loop cancellation governors for hydro generators Part I-Development.IEEE Trans Energy Conv,1988,3:85-90.
    [49]Murphy LD,Wozniak L,Whittemore TA.A digital governor for hydro generators.IEEE Trans Energy Conv,1988,3:780-4.
    [50]Elits LE,Schleif FR.Governing features and performance of the first 600 MW hydrogenerating unit at Grand Coulee.IEEE Trans Power Appra Syst,1977,96:457-66.
    [51]Thorne DH,Hill EF.Field testing and simulation of hydraulic turbine governor performance.IEEE Trans Power Appar Syst,1973(92):1183-1191.
    [52]Dhaliwal NS,Wichert HE.Analysis of PID governors in multimachine system. IEEE Trans Power Appar Syst,1978(97):456-463.
    [53]Wozniak L.A graphical approach to hydrogenrator tuning.IEEE Trans Energy Conv,1990,5:417-21.
    [54]Kamwa I,Lfebvre D,Loud L.Small signal analysis of hydro turbine governors in large interconnected power plants.Power Enggineering Society Winter Meeting IEEE,2002,1178-1183.
    [55]魏守平,卢本捷.水轮机调速器的PID调节规律.水力发电学报,2003(第4期):112-118.
    [56]Orelind G,Wozniak L,Medanic J,et al.Optimal PID gain schedule for hydro generators-Design and Application.IEEE Trans Energy Conv,1989(4):300-307.
    [57]Zhaohui LI,Malik OP.An orthogonal test approach based control parameter optimization and its application to a hydro-turbine governor. IEEE Trans Energy Conv,1997(12):388-393.
    [58]Lansberry JE,Wozniak L.Optimal hydro generator governor tuning with a genetic algorithm.IEEE Trans Energy Conv.1992,7:623-630.
    [59]ansberry JE,Wozniak L.Adaptive hydro generator governor tuning with a genetic algorithm.IEEE Trans Energy Conv.1994,9:179-183.
    [60]Kishor N,Singh M,Raghuyanshi A.S.Genetic programming approach for model structure determination of hydroturbine in close loop operation.IEEE Congress on Evolutionary Computaion 2007(CEC2007).
    [61]龚崇权,蔡维由,肖惠民.基于遗传算法的水轮机调节系统最有参数整定.电力系统自动化,2002,26(15):57-59.
    [62]南海鹏,王涛,余向阳.基于改进遗传算法的水轮机调速器参数优化.水利学报,2002,第10期:57-61.
    [63]南海鹏,罗兴,余向阳.基于遗传算法的水轮机智能PID调速器研究.水力发电学报,2004,23(1):107-111.
    [64]付维圣,刘昌玉,张明雄.水轮发电机组GA模糊控制器研究.电力系统自动化,2003,27(6):55-58.
    [65]杨小东,董宸,卢文华等.基于遗传算法的水轮发电机组调速系统参数辨识.继电器,2006,34(1):27-30.
    [66]刘志坚,束洪春,于继来等.一种满意控制的水轮机调速系统参数优化方法.中国电机工程学报,2009,29(20):99-104.
    [67]刘建业,郑玉森,张炳达.水轮机模糊调速器研究.控制理论与应用,1996,13(1):47-51.
    [68]田勇,沈祖诒.高精度模糊控制策略在水轮机调节系统中的应用.水利水电技术,2006,37(2):89-92.
    [69]袁小芳,王耀南.一种基于自组织模糊规则的水轮机调速器.微特电机,2006,第3期:32-34.
    [70]俞亚新,金波.一种模糊变系数PID控制器及其在水轮机调速器中的应用.中国机械工程,2007,18(8):912-915.
    [71]周泰斌,周建中,常黎.模糊控制在水轮机调节系统中的应用.电力系统及其自动化学报,2003,15(1):10-14.
    [72]王淑青,谭建军,刘辉等.自适应模糊控制器在水电机组控制中的应用.湖北工业大学学报,2005,20(6):4-6.
    [73]谭立新,刘觉民,黄鹏辉.一种基于FNNC-PID的水轮机调速系统控制方法.电气技术,2008,第七期:56-59.
    [74]包居敏,唐良宝.水轮机调节系统的模糊神经网络控制.计算机应用研究,2007,24(11):167-169.
    [75]Swasti R,Khuntia.Simulation study for automatic generation control of a multi-area power system by ANFIS approach.Applied Soft Computing,2012,12(2):333-341.
    [76]Kishor Nand.Zero-order TS fuzzy model to predict hydro turbine speed in closed loop operation.Applied Soft Computer,2008,8(7):1074-1084.
    [77]Kishor Nand, Singh S.P,Raghuvanshi A.S.Adaptive intelligent hydro turbine speed identification with water and random load disturbances.Engineering Applications of Artificial Intelligence,2007,20(6):795-808.
    [78]Salhi I,Doubabi S,Essounbouli N,et al. Application of multi-model with fuzzy switching to a micro hrdro electrical power plant.Eenewable Energy,2010,35(12):2071-2079.
    [79]常江,谢云敏.混流式水轮机神经网络模型非线性仿真.中国农村水利水电,2004,第6期:75-77.
    [80]赵林明,王海燕,何睿等.水轮机空化特性的人工神经网络模型.水利学报,2006,37(7):893-897.
    [81]童星,把多铎,杨京广.轴流转桨式水轮机特性神经网络三维建模.人民黄河,2009,31(6):100-101.
    [82]Kishor Nand,Singh S.P.Simulated response of NN based identification and predictive control of hydro plant.Expert System with Applications,2007,(32):233-244.
    [83]金波,俞亚新.一种自适应CMAC神经元网络控制器及其在水轮机调速器中的应用.控制理论与应用,2002,19(6):905-908.
    [84]王涛,杨晓萍,余向阳等.基于神经网络的水轮机调节系统子抗扰控制.水力发电学报,2006,25(3):125-129.
    [85]郭创新,梁年生,叶鲁卿.基于神经网络实现水轮机自学习PID调节.水力发电学报,1997,16(2):79-85.
    [86]王华强,周章海,杨滁光.基于神经元自适应PID控制的水轮机调节系统研究.合肥工业大学学报,2010,33(10):1497-1500.
    [87]曹程杰,莫岳平.基于现代智能控制技术的水轮机自适应工况PID调速器研究.电力系统保护与控制,2010,38(3):80-85.
    [88]袁晓辉,王乘,张勇传.粒子群优化算法在电力系统中的应用.电网技术,2004,28-19:14-18.
    [89]崔鹏程,陈明榜,向铁元.基于粒子群优化算法与混合罚函数法的最优潮流计算.电网技术,2006,30(增刊):191-194.
    [90]胡德峰,张步涵,姚建光.基于改进粒子群算法的多目标最优潮流计算.电力系统及其自动化学报,2007,19(3):51-57.
    [91]郑晓庆,高强.新型的融合优化算法及其在电力系统中的应用。天津理工大学学报,2012,28(1):27-30.
    [92]张智晟,董存,吴新振.基于量子粒子群优化算法的水电系统经济运行.电网技术,2009,33(18):68-72.
    [93]陈烨兴,罗云霞,周慕逊.弹性粒子群优化算法及其在水电优化调度中的应用.河海大学学报(自然科学版),2010,38(6):603-607.
    [94]方红庆.一种改进粒子群算法及其在水轮机控制器PID参数优化中的应用.南京理工大学学报(自然科学版),2008,32(3):274-278.
    [95]Hongqing Fang,Long Chen,Zuyi Shen.Application of a improved PSO algorithm to optimal tunning of PID gains for water turbine governor. Conversion and Managements 11,52(8):1763-1770.
    [96]Chaochun Li,Jianzhong Zhou.Parameters identification of hydraulic turbine governing system using improved gravitationaol search algorithm.Energy Conversion and Managements 11,52(3):374-381.
    [97]寇攀高,周建中,何耀耀等.基于菌群-粒子群算法的水轮发电机组PID调速器参数优化.中国电机工程学报,2009,29(26):101-106.
    [98]Jizhong Bai,Aigao Xie,Xinhua Yu, et al.Simulation model of hydraulic turbine speed control system and its parameters identification based on resilient adaptive particle swarm optimization algorithm.
    [99]赵海,宋纯贺,韩叙东等.模糊自适应控制算法在水轮机调速器建模中的应用.东北大学学报(自然科学版),2007,28(12):1701-1704.
    [100]Clifton L.Optimal governing of reaction turbines.Water Power Dam Const.1988:22-28.
    [101]Clifton L.Optimal governing of hign head turbines.Water Power Dam Constr.1989:46-50.
    [102]Smaili YA, Alouani AT. An H∞H governor/exciter design for a power system.1st IEEE Conference on Control Applications,1992,vo12,770-775.
    [103]张江滨,解建仓,焦尚斌.水轮机最优控制系统研究.水力发电学报,2004,23(4):112-116.
    [104]南海鹏,邵文权,罗兴.水位调节模式下水轮机调节系统调节参数最优配置.水力发电学报,2004,23(5):112-117.
    [105]唐正茂,解德.基于LOG/LTR方法的水轮机最优控制系统研究.大电机技术,2012,第4期:39-42.
    [106]Maltik OP,Zeng Y.Design of a robust adaptive controller for a water turbine governing system.IEEE Trans Energy conv,1995,10:354-359.
    [107]Ichtev A,Puleva T.Multiple-model adaptive control of hydro turbine generator with fuzzy TS models.Proceedings of 9th WSEAS International Conference on Fuzzy Systems,Sofia,2008.
    [108]Ruzhekov G,Slavow T,Puleva T.Modeling and implementation of hydro turbine power adaptive control based on gain scheduling technique.2011,16 International Conference on Inteligent Systems Application on Power Systems(ISAP2011).
    [109]Mohamad H,Abu Bakar AH,Ping HW,et al.An adaptive controller of hydro generators for smart grid application in Malaysia.2010 International Conference on Power System Technology.
    [110]乔俊飞,孙雅明,杜红卫.水轮发电机组的一种自适应调整方法.中国电机工程学报,2000,20(10):1-9.
    [111]张宵元,郑玉森,刘长胜等.水轮机参数在线辨识及调节器参数自整定.电力系统及其自动化学报,2000,12(2):16-18.
    [112]常乃超,刘峰,梅生伟等.水轮机导叶开度的自适应非线性输出反馈控制[J].中国电机工程学报,2008,28(17):87-91.
    [113]胡伟,范宗方,梅生伟.大型水轮发电机调速控制器的自适应控制.电力自动化设备,2004,24(8):1-4.
    [114]卢强,桂小阳,梅生伟等.大型发电机组调速器的非线性最优PSS.电力系统自动化,2005,29(9):15-19.
    [115]桂小阳,胡伟,刘峰.基于水轮发电机综合非线性模型的调速器研究.电力系统自动化,2005,29(15):18-21.
    [116]桂小阳,梅生伟,卢强.多机系统水轮机调速器鲁棒非线性协调控制.电力系统自动化,2006,30(3):29-33.
    [117]桂小阳,胡伟,卢强等.水轮机调速系统的非线性自适应控制.中国电机工程学报,2006,26(8):66-71.
    [118]凌代俭,沈祖诒.水轮机调节系统的非线性模型PID控制及其Hopf分叉[J].中国电机工程学报,2005,25(10):97-102
    [119]方红庆,沈祖诒,吴凯.水轮机调节系统非线性扰动解耦控制[J].中国电机工程学报,2004,24(3):150-155
    [120]孙立明,姜学智,李东海等.水轮机水门非线性控制器设计.电力系统自动化,2003,27(16):45-49.
    [121]李啸骢,程时杰,韦化等.非线性控制励磁控制中输出函数对系统性能的影响.电力系统自动化,2003,27(5):6-10.
    [122]李啸骢,程时杰,韦化等.具有多性能指标的汽轮发电机非线性综合控制.中国电机工程学报,2003,23(4);96-101.
    [123]李啸骢,程时杰,韦化等.一种高性能的非线性励磁控制.中国电机工程学报,2003,23(12):37-42.
    [124]李啸骢,程时杰,韦化等.输出函数在单输入单输出非线性控制系统设计中的重要作用.中国电机工程学报,2004,24(10):50-56.
    [125]李啸骢,程时杰,韦化等.输出函数在多输入多输出非线性控制系统设计中的重要作用.中国电机工程学报,2006,26(9):87-93.
    [126]Jiang J,Design of an optimal robust governor for hydraulic turbine generating units.IEEE Transactions on Energy Conversion,1995,10(1):188-194.
    [127]Eker I,Aydin IS.Governors for hydroturbines:new control schemes and robust designs.36th Universities Power Enggineering Conference(UPEC'2001),Power generation Part-3A,2001.
    [128]Eker I,Aydin IS.Robust cascade design of governors.36th Universities Power Enggineering Conference(UPEC'2001),Power generation Part-3A,2001.
    [129]Eker I,Aydin IS.Design of multi-loop multivariable cascade hydro governors.36th Universities Power Enggineering Conference(UPEC'2001),Power generation Part-3A,2001.
    [130]Eker I,Aydin IS.Design and performance requirements for improved governor control.4th International Energy congress(ITEC2001),2001.
    [131]Eker I,Tumay M.Robust multivariable-cascade governors for hydroburbine controls.Elect Engg,2002,84:229-237.
    [132]Eker I.Hydro-turbine models for robust governor designs in hydro-power generation.2nd International Conference on Responsive Manufacturing,2002,pp.609-613.
    [133]Eker I.The design of robust multi-loop cascaded hydro governors.Eng Comput,2004,20:45-53.
    [134]Eker I.Governors for hydro-turbine speed control in power generation:a SIMO robust design approach.Energy Conv Mgmt,2004,45:2207-2221.
    [135]Kishor Nand,Saini R P,Singh S P.A review on hydropower plant models and control[J]. Renewable and Sustainable Energy Reviews,2007,11(5):776-796.
    [136]Shengwei Mei,Xiaoyang Gui,Qiang Lu et.al.Dynamic extending nonlinear H∞ control and its application to hydraulic turbine governor. Science in China Series ErTechnological Sciences,2007,50(5):618-635.
    [137]孙郁松,孙元章,卢强等.水轮机调节系统非线性H。控制规律研究.中国电机工程学报,2001,21(2):56-65.
    [138]孙元章.电力系统鲁棒非线性控制研究.中国电机工程学报,1996,16(6):361-365.
    [139]吴杰康,孔繁镍.水电能源蓄能模型分析与计算.中国电机工程学报,2009,29(17):122-128.
    [140]孔繁镍,吴杰康.水电站水力发电模型.人民黄河,2009,31(12):116-118.
    [141]孔繁镍,吴杰康.水电站动态发电模型.广西大学学报(自然科学版),2009,34(6):797-802.
    [142]孔繁镍,吴杰康.水电站水力系统非线性动态模型仿真.系统仿真学报,2012,24(5):1072-1076.
    [143]VAN DE VEGTE,L. Feedback control systems. Prentice-Hall, Englewood Cliffs,New Jersey,1994.
    [144]Poulin E, Pomerleau A. Unified PID design method based on a maximum peak resonance specification. IEEE Proc-Control Theory Appl.1997,144(6):566-574.
    [145]胡寿松.自动控制原理(第五版)(M).北京:科学技术出版社,2011.
    [146]SCHEI T.S.Automatic tuning of PID controllers based on transfer function estimation. Automatical 994,30(9):1983-1989.
    [147]孔繁镍,李啸骢,吴杰康,郭壮志.基于尼科尔斯PID设计方法的负荷频率控制.中国电机工程学报,2012,32(22):79-85.
    [148]孔繁镍,吴杰康,李啸骢.水轮机尼科尔斯比例-积分-微分调速器设计.电网技术,2012,36(8):152-156.
    [149]梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用(M).北京:清华大学出版社,2008.
    [150]黄曼磊.鲁棒控制理论及应用(M).哈尔滨:哈尔冰工业大学出版社,2007.
    [151]孔繁镍,吴杰康.水轮机调速系统的H∞双回路鲁棒控制策略.电网技术,2011,35(8):212-217.
    [152]何占宾.基于微分几何理论的发电机非线性励磁控制的研究[D].保定:华北电力大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700