用户名: 密码: 验证码:
CVT混合动力系统再生制动综合控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车的再生制动是一个多目标条件下复杂系统的动态过程,进行混合动力汽车制动能量的最佳分配与综合控制,实现整车安全制动条件下最大程度的能量回收,是混合动力再生制动的关键技术和重要研究内容。
     论文以采用无级自动变速传动(CVT)的混合动力汽车为应用对象,以最大限度提高再生制动能量回收率为目标,以保证良好的制动性能为约束条件,系统研究了CVT混合动力汽车再生制动控制策略,进行了再生制动系统的理论建模、系统仿真、实验模拟和性能评价。主要工作内容如下:
     ①为满足制动能量最大化回收和整车安全制动要求,确定了全制动工况下制动力分配控制策略,在滑行制动和限速制动工况下,基于前轮不抱死条件优先采用电机再生制动、其次为发动机及摩擦制动,通过CVT速比控制,最大程度地实现制动能量回收;在减速制动工况下,采用定比例制动力分配控制策略,通过前轮制动压力协调控制,满足了整车制动力分配和高能量回收的综合要求。
     ②根据混合动力再生制动对镍氢电池组充电性能的要求,提出了综合考虑温升、温差、保护电压和保护电流等限制因素的电池组初始充电电流和可接受充电电流与功率的计算方法和分段恒流充电的最佳快速充电控制策略,进行了基于该控制策略的镍氢电池组快速充电的建模与仿真,验证了最佳快速充电控制策略的有效性。
     ③基于电机和电池组性能试验与分析,建立了电机和镍氢电池组的联合效率模型,获取了电机/电池联合工作的最佳效率曲线,确定了再生制动过程中CVT速比控制策略和夹紧力控制策略,为提高制动能量回收率奠定了基础。
     ④进行了CVT液压系统功率损失分析,提出了利用电动泵供油的功率匹配控制方法;进行了基于电动泵供油的CVT功率匹配控制的整车建模与仿真分析,结果表明,采用功率匹配控制,能大幅度减少系统流量损失,提高再生制动系统的综合效率和制动能量回收率。
     ⑤进行了混合动力汽车液压制动系统的设计,采用电液比例阀进行前轮制动压力的动态调节,实现工作模式下的压力协调控制和整车制动力分配;建立了AMESIM环境下的液压制动系统仿真模型,进行了电机再生制动和复合制动条件下的液压制动系统的性能仿真与分析,计算表明所设计的液压制动系统具有良好的静动态性能,具有较好的应用价值。
     ⑥研制了综合制动液压试验系统,该系统由前轮制动系统和后轮制动系统组成,利用高速开关阀、感载比例阀和行程模拟器,实现了不同制动模式下基于整车制动力分配控制策略的制动压力协调控制;进行了压力控制试验和前后轮压力分配试验,试验表明该系统具有良好的前轮压力响应特性和满意的制动力分配特性。
     ⑦研制了基于手动变速器MT和CVT的混合动力再生制动实验系统,能模拟混合动力汽车的制动过程,实现了电机再生制动、复合制动和摩擦制动三种制动模式和模式转换与控制;构建了基于DSPACE的硬件在环仿真平台,进行了MT和CVT混合动力再生制动系统性能试验与分析,验证了混合动力再生制动控制策略的正确性和有效性。
     论文对CVT混合动力系统再生制动进行了理论和试验研究,提出了实现高效能量回收和整车安全制动的再生制动策略和综合控制方法,研制了CVT混合动力再生制动试验系统和综合制动液压系统,进行了基于再生制动综合控制策略的试验与分析,仿真和试验结果验证了综合控制策略的正确性和有效性,为开发具有自主知识产权的CVT混合动力轿车奠定了基础。
Regenerative braking (energy recovery braking) of the hybrid electric vehicle is a multi-objective dynamic process of complex systems. The hybrid electric vehicle braking energy distribution and integrated control of the best, achieving energy recovery mostly under security of vehicle braking conditions, are the key technologies and important research contents of hybrid regenerative braking.
     Based on the CVT(Continuous Variable Transmission) hybrid electric vehicle, aiming at gaining the maximize regenerative braking energy recovery, considering the good braking performance, the paper studied on the regenerative braking control strategy of CVT system for hybrid electric vehicle, built the theoretical model, had the system and laboratory simulation, in the end ,made a performance evaluations. The main work as follows:
     ①In order to achieve the most braking energy recovery and to ensure the safety of vehicle braking requirements, this paper built the whole vehicle braking force distribution Control Strategy under the overall braking, in the taxiway speed braking and confined brake condition, the motor regenerative braking is prior to the engine regenerative braking and friction regenerative braking when the front-wheel can work normally. We can control the CVT ratio, then gain maximize energy recovery; in the slowdown braking condition, we adopted the proportion of braking force distribution control strategy, through control the front-wheel brake pressure to meet the vehicle braking force distribution and high-energy recovery.
     ②According to the hybrid regenerative braking on the nickel-metal hybrid rechargeable battery performance requirements, a comprehensive temperature rise, temperature difference value, protection voltage and protection current were considered, then the initial battery charge current and acceptable charging current or power calculating method were determined and built the best fast charging control strategy of multi-stage constant current charging, and then constructed the Ni-MH battery fast charging modeling and simulation was used to verify the control strategy right.
     ③Based on performance tests and analysis of motor and battery pack, a motor and nickel-metal hydride battery pack joint efficiency model was built, and gained the best curves of the electric / battery joint working efficiency, the CVT ratio control strategy and clamping force control strategy were built, so we can improve the regenerative braking efficiency based on those strategies.
     ④Having a CVT hydraulic system power loss analysis, the control strategy was proposed based on power matching of electric pump supplying oil ; The whole vehicle modeling and simulation based on the CVT power matching control were carried out, and the result showed that using matching power control system can significantly reduce the system flow losses and enhance the regenerative braking system, brake energy efficiency and the comprehensive recovery rate can be improved.
     ⑤Had a hybrid electric vehicle hydraulic braking system designed, using electro-hydraulic proportional valve for front-wheel brake pressure dynamic adjustment and achieved the pressure coordination control under the work model and the whole vehicle braking force distribution; built Hydraulic brake system simulation models using AMESIM, the motor regenerative braking and the composite brake hydraulic system performance simulation were finished, and the results showed that the design of the hydraulic braking system has good static and dynamic performance which have good application value.
     ⑥To develop a comprehensive hydraulic brake system, this system includes front wheel brake system and rear wheel brake system, by using the high-speed on-off valve, load sensing proportional valve and the trip simulator, to achieve a different mode brake pressure coordination control based on the whole vehicle braking force distribution; had conducted pressure control test and the front-rear wheels pressure distribution tests , and those tests indicated that the system had good front-wheel pressure response characteristics and satisfied braking force distribution characteristics.
     ⑦Developed the hybrid regenerative braking experiments system based on MT and CVT which can simulate the process of braking, and realized three models: the motor regenerative braking, composite braking and friction brake and those models conversion and control; DSPACE hardware in-the-loop simulation platform was constructed for the MT and CVT hybrid regenerative braking system performance tests and analysis to verify the hybrid regenerative braking control strategy to be accurate and effective.
     Theoretical and experimental researches about the CVT hybrid regenerative braking system had been studied in this paper, and the regenerative braking strategy and an integrated control were proposed which can achieve high energy recycling and safety brake, developed the CVT hybrid regenerative braking system and an integrated test Hydraulic brake system, test and analysis based on a regenerative braking comprehensive strategy were implemented, the simulation and testing verified the accuracy and effectiveness of the comprehensive control strategy, which laid the foundation for the independent intellectual property rights CVT hybrid vehicle development.
引文
[1]方景瑞.国内外混合动力汽车技术[J].拖拉机与农用运输车,2005(5):1-3.
    [2]徐阳,吴森.发展混合动力技术推动电动汽车产业化进程.武汉理工大学学报·信息与管理工程版. 2005,27(3):56~59
    [3]诸自强,黄毓琛,邹国棠等.陈清泉院士论文选集[C]:现代电动车、电机驱动及电力电子技术.北京:机械工业出版社,2005.9.
    [4]陈清泉,孙立清,电动汽车的现状和发展趋势[N].科技导报,2005, Vol.23(4):24-28.
    [5]北京2008年奥运会申办委员会.奥运行动规划. http://www.beijing-2008.org (12/22/2002)/(01/06/2003)
    [6]吴光强,鞠丽娟,罗邦杰.车辆混合传动系统开发现状与展望[J].汽车工程,1997, Vol.19(2):78-82.
    [7]广濑久士丹下昭二.电动车及混合动力车的现状与展望[J].汽车工程,2003, Vol.25(2):204-209.
    [8] http://www.fueleconomy.gov/feg/atv.shtml. 2005-12-15.
    [9]国务院发展研究副主任陈清泰,“中国汽车产业的潜力与外部发展环境问题”研讨会上的讲话,2004-1-5.
    [10]周凤起,周大地主编.中国中长期能源策略[M].中国计划出版社,1999.
    [11] Jefferson C M, Barnard R H. Hybrid vehicle propulsion. Southampton[M], UK: WIT Press, 2002.
    [12] Maine Department of Environmental Protection Bureau of Air Quality. Zero Emission Vehicle Study[R]. Technical Report, 2001.
    [13]田光宇,彭涛.混合动力电动汽车关键技术[J].汽车技术.2002 (01): 8-11.
    [14]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社.2002.
    [15] Antoni Szumanowski(波兰)原著,陈清泉、孙逢春著.混合电动车辆基础[M].北京:北京理工大学出版社.2001.
    [16] AN F, DECICCO J, ROSS M. Assessing the fuel economy potential of light duty vehicles[R]. SAE Paper No. 2001-01-FTT-31, 2001.
    [17] Hidehiro Oba, Akihiro Yamannaka, etc. Development of a Hybrid Powertrain System Using CVT in a Minivan[J]. Toyota Technical Review. 2002,Vol.51 No.2:52-57.
    [18] Chunho Kim, Eok Nam Goong, etc. Fuel Economy Optimiztion for Parallel Hybrid Vehicle with CVT[R]. SAE paper, 1999-01-1148:337-342.
    [19] Shuiwen Shen, Alex Serrarens, etc.Coordinated control of a mechanical hybrid driveline witha continuously variable transmission[J]. JSAE Review. JSAE 20014498,2001 :453-461.
    [20] Ulrich zoelch, Dierk schrode, Optimization method for rating the components of a hybrid vehicle[C].EVS14, 1997.
    [21] B.R.Hohn, etc.The autark hybrid: a universal powertrain concept for passanger cars[C]. 1944, International gear congress.
    [22] Michael Duoba, Henry Ng, Robert Larsen. Characterization and Comparison of two Hybrdi Elcctric Vehicles(HEVs)-Honda Insight and Toyota Prius[C]. SAE 2001-01-1335.
    [23] Honda CIVIC Hybrid.http:// www.honda.com, 2005.5.10.
    [24] Honda Insight IMA Modes of Operation.http:// www.insightcentral.net, 2005.2.11.
    [25] Honda insight/Toyota Prius Comparison: Hybrid Powertrain.http:// www.insightcentral.net, 2005.3.10.
    [26]舒真.日产“tino HYBRID”新型环保车[J].汽车维修与保养,2000(6):24.
    [27] Morita K. Automotive power source in 21st century[J]. JSAE Review, 2003, 24(1): 3-7.
    [28]王晓明,吴志新.混合动力电动汽车[J].世界汽车, 2004(1):30-32.
    [29] Isaya Matsuo, Takeshi Myiamoto. The Nissan Hybrid Vehicle[R]. SAEpaper,2000-01-1568.
    [30] Subaru Hybrid Carshttp://www.hybrid-vehicles.net/subaru-hybrid-cars.htm,2006-5-20
    [31]徐卫国.混合动力汽车的发展状况及前景初探[J].汽车科技. 2001(1):7-9.
    [32]岳东鹏,郝志勇,张俊智.混合动力电动汽车研究开发及前景展望[J].拖拉机与农用运输车.2004(2):1-4.
    [33]叶玲,杨志伟,李昆.混合动力电动汽车的发展[J].北京汽车. 2002(6):11-15.
    [34] http://www.hybrid.com/modules.php?name=Ford_Hybrid_Cars, 2005.2.19.
    [35] Lave, L. B. and H. L. MacLean (2002). An environmental-economic evaluation of hybrid electric vehicles: Toyota's Prius vs. its conventional internal combustion engine Control[C]. Transportation Research Part D 7(2): 155-162.
    [36] http://www.citroen.mb.ca/citroenet/html/x/xsaranewlook2.html, 2005.1.19
    [37] http://www.chinaev.org
    [38] http://www.21stcentury.co.uk/cars/ford_prodigy.asp
    [39] http://www.greenhybrid.com/compare/mileage/
    [40]张翔,赵韩,钱立军等.国内各主要单位电动汽车研发项目进展情况及主要产品介绍[J].汽车技术. 2004(5):42-44.
    [41]科技部863计划联合办公室.国家高技术研究发展计划(863计划)(能源技术领域电动汽车专项)指南.http//:ww.963.nro.cn(2001-10-22/2003-01-09).
    [42] Daxing Wang , Xin Zhang.The Development of Powertrain Control Unit (PCU) for Parallel Hybrid Electric Vehicle (PHEV) [C]. SAE. 2004-01-0575.
    [43] Feng An ,Danilo J. Santini. Mass Impacts on Fuel Economies of Conventional vs. Hybrid Electric Vehicles[R]. SAE. 2004-01-0572.
    [44] Powers W F, Nicastri P R. Automotive vehicle control challenges in the 21st century[J]. Control Engineering Practice 2000, 8(6): 605-618.
    [45] Toshifumi Takaoka,Osamu Harada.Highly efficient and super low emission hybrid vehicle.Toyota[J].Technical Review,2001,Vol.50 No.2 Mar.2001:33-38
    [46] Tatsuo Teratani,Kohjiro Kuramochi.Development of Toyota Mild-hybrid system (THS-M) [J].Toyota Technical Review,2002,Vol.52 No.1 Sep.2002:46-51
    [47] Sumiko Sekiguchi,Koichi Kondo,etc.Development of Electrical 4WD System for Hybrid Vehicles[J]. Toyota Technical Review. 2002,Vol.51 No.2 Mar.,2002:86-89
    [48] Koichi Fukuo,Akira Fujimura.Development of the ultra-low-fuel consumption hybrid car-INSIGHT[J]. JSAE Review. JSAE20014016,2001:95-103
    [49] Isaya Matsuo,Takeshi Miyamoto.The Nissan hybrid vehicle[C].SAE 2000-01-1568, 2000:1-9
    [50] Hidehiro Oba,Akihiro Yamanaka,etc.Development of a Hybrid Powertrain System Using CVT in a Minivan[J]. Toyota Technical Review.2002,Vol.51 No.2 Mar.74-79,2002:52-57
    [51] Y.Sasaki,A.Otomo and F.Kawahata,etc.Toyota Braking System for Hybrid Vehicle with Regenerating System[C]. EVS-14,Proceeding CD,1997
    [52] Masayuki Soga,Michihito Shimada and Jyun-Ichi Sakamoto,etc.Development of vehicle dynamics management system for hybrid vehicles :ECB system improved environmental and vehicle vehicle dynamic performance[J].JSAE Review23 (2002):98-106
    [53] Hiroatsu Endo, Masatoshi Ito and Tatsuya Ozeki.Development of Toyota’s transaxle for mini-van hybrid vehicles[J].JSAE Review 24 (2003): 109–116.
    [54] Yimin Gao , Liping Chen and Mehrdad Ehsani.Investigation of the Effectiveness of Regenerative Braking for EV ang HEV[R]. SAE1999-01-2910.
    [55] Michael Panagiotidis,George Delagrammatikas,etc. Development and use of a regenerative braking model for a parallel hybrid electric vehicle[R]. SAE 2000-01-0995.
    [56] Frank Wicks,Kyle Donnelly and Steinmetz Hall. Modeling regenerative braking and Storage for Vehicles[C]. Proceedings of the 32nd IECEC Energy Conversion Engineering Conference,7 Jul-1 Aug 1997: Honolulu, HI, USA,vol.3: 2030-2035
    [57] S.R.Cikanek and K.E.Bailey.Regeberative Braking System For Hybrid ElectricVehicle[C]. Proceedings of American conteol conference Anchorage,Ak. 2002.May8-10,
    [58] Morimasa Hayashida, Kazuyuki Narusawa and Yushi Kamiya.Energy regeneration ofCity Commuter-car By Ultracapaxitor and Battery[C]. EVS-15,proceeding CD,1998
    [59] Shuiwen Shen, Alex Serrarens,etc.Coordinated control of a mechanical hybrid drivelinewith acontinuously variable transmission[J].JSAE Review(2001) 453-461
    [60] Hoon Yeo, Talchol Kim ,Chulsoo Kim, and Hyunsoo Kim. Development of Regenerative Braking Hydraulic Module and HIL Simulator for Hybrid Electric Vehicle[C]. EVS-19,proceeding CD, 2002.
    [61] H. Yeo, D. Kim, S. Hwang and H. Kim, Regenerative Braking Algorithm for a HEV with CVT Ratio Control During Deceleration[C], International Continuously Variable and Hybrid transmission Congress. September 23-25, 2004.
    [62] Eiji Nakamura, Masayuki Soga, Akira Sakai, Akihiro Otomo and ToshikazuKobayashi. Development of Electronically Controlled Brake System for Hybrid Vehicle[R]. Toyota Motor Corporation, Society of Automotive Engineers.2002.1
    [63] H.Yeo and H.Kim, hardware-in-the loop simulation of regenerative braking for a hybrid electric vehicle[C], ProcInstn MechEngrs Vol. 216, part D: J Automobile Engineering, pp855-864. 2002.
    [64]李蓬,金达锋,罗禹贡等.轻度混合动力汽车制动能量回收控制策略研究[J].汽车工程. 2005 .Vol.27(5):570-574
    [65]罗禹贡,李蓬,金达锋等.基于最优控制理论的制动能量回收策略研究[J].汽车工程. 2006.Vol.28(4):356-360
    [66]耿聪,张欣,张良.混合动力电动公交汽车( HEB)再生制动的控制策略与性能仿真[J].高技术通讯.2004年8期:80-83
    [67]何仁,胡青训.带有制动能量再生系统的公共汽车制动过程[J].江苏大学学报自然科学版.2005Vol. 26 No. 5:389-392
    [68]何仁,胡青训.汽车制动能量再生的方法探讨[J].江苏大学学报自然科学版.2003Vol.24 No. 6:1-4
    [69]李玉芳,林逸,何洪文.电动汽车再生制动控制算法研究[J].汽车工程. 2007.Vol.29(11):1059-1062
    [70]邹广才,罗禹贡,边明远.并联式HEV制动能量回收控制策略的仿真研究[J].汽车技术. 2005年第7期:14-18,
    [71]孟秋红,郭京波.再生制动技术在汽车中的应用[J].天津汽车.2007年第3期:19-21
    [72]孟秋红,郭京波.汽车节能新技术-再生制动技术[J].汽车科技第2007年5期:7-10
    [73]陈庆樟,何仁,商高高.汽车能量再生制动模拟试验台设计[J].农业机械学报. 2008年4月第39卷第4期:15-17
    [74]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程. 2008.Vol.30(4):301-304
    [75]张毅,杨林,朱建新,冒晓建.电动汽车能量回馈的整车控制[J].汽车工程.2005 Vol.27No.1:24-27
    [76]王保华,张建武,罗永革.联混合动力客车再生制动仿真研究[J].汽车工程.2005 Vol.27 No.6:647-651
    [77]吴峻,李圣怡,潘孟春.再生制动的分析与控制[J].电工技术.2001年第12期:21-23
    [78]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报. 2005第27卷1期:116-120
    [79]郭金刚,王军平,曹秉刚.电动车最大化能量回收制动力分配策略研究[J].西安交通大学学报. 2008年5月Vol.42.№5:607-611
    [80]耿聪,刘溧,张欣.EQ6110混合动力电动汽车再生制动控制策略研究[J].2 2004 Vol.26 No.3:253-256
    [81]赵国柱.电动汽车再生制动稳定性研究[D].南京,南京航空航天大学, 2006. 13~21.
    [82]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社. 2005.1-50.
    [83]余志生.汽车理论[M].北京:机械工业出版社,1996.
    [84]刘惟信.汽车设计[M].北京:清华大学出版社,2001.
    [85]刘惟信.汽车制动系统的结构分析与设计计算[M].北京:清华大学出版社. 2004.
    [86]徐永康.汽车制动器[J].汽车实用技术,2004(1):48-49
    [87]刘占成,马小平.坡道行车与发动机制动[J].汽车运用,1997(5):13-16
    [88] J. y. Wong, Theory of Ground vehicles[M], Third Edition, 2001.
    [89]胡明辉.CVT轻度混合动力汽车能量管理策略研究.[D].重庆大学.2007.
    [90]叶明.基于机械自动变速的轻度混合动力传动系统综合控制研究.[D].重庆大学.2006.
    [91]詹迅.轻度混合动力汽车再生制动系统建模与仿真[D].重庆:重庆大学,2005.
    [92]邓涛.CVT混合动力汽车再生制动系统前前向建模与仿真.[D].重庆大学.2007
    [93]于俊伟.并联混合动力汽车传动系统建模及控制策略研究[D].武汉,武汉理工大学, 2005. 22~40.
    [94]陈飚.电动汽车前向仿真研究[D].武汉,武汉理工大学, 2005. 23~55.
    [95]张威.混合动力城市客车正向建模及仿真软件研究[D],吉林,吉林大学, 2005.7~32.
    [96] Hohn, B.R., Pinnekamp, B. and Forster, W. A Wide Ratio Range CVT for the Autark Hybrid Transmission[R], ISATA, Aachen 1994, pp. 613-620.
    [97]周云山.汽车电控系统理论与设计[M].北京:北京理工大学出版社, 1999.
    [98]张宝生,张伯英,周云山,王红岩.金属带式无级变速器液压控制系统的仿真[J].农业机械学报,2002,33(2):21
    [99]黄学锋.金属带式无级变速器电液控制系统的研究[D].吉林大学. 2003.
    [100]廖建.效率补偿后的金属带无级变速传动系统匹配控制系统[D].重庆:重庆大学,2005.
    [101]杨阳,秦大同,杨亚联等.车辆CVT液压系统功率匹配控制与仿真[J].中国机械工程.2006,7(4):426-430
    [102]吴光登,杨阳,秦大同,胡建军,杨亚联.CVT液压系统功率的匹配分析与仿真[J].汽车工程. 2004,26(6):705-709.
    [103]万健如,吴霖,李银惠.8098全数字直流双闭环PWM调速系统.天津大学学报[J],1998,31(5):677-678
    [104] Miguel Stefezza,Yasuhiro dote.Fuzzy neural position controller for servomotor [J].IEEE,1992,39(1):256-259
    [105]张晶,曾宪云.基于MATLAB/SIMULINK直流电机调速系统模糊控制的建模与仿真[J].大电机技术,2002,NO.3:12-15.
    [106]麻友良,陈全世.混合动力电动汽车用蓄电池不一致的影响分析[J].汽车电器, 2001(2),5 -7.
    [107]徐曼珍.新型蓄电池原理与应用[M].北京:人民邮电出版社.2005.
    [108]胡明辉.混合动力汽车NiMH蓄电池能量管理系统研究[D]重庆大学. 2003.
    [109]胡明辉,秦大同,舒红.混合动力汽车蓄电池的快速充电方法[J].重庆大学学报.2004. 27(11):1-3.
    [110] Corson D W. High power battery systems for hybrid vehicles[J]. Journal of Power Sources, 2002 105(2): 110-113.
    [111] Noboru Sato , Kazuhiko Yagi. Thermal behavior analysis of nickel metal hydride batteries of electric vehicles[J]. JSAE Review. 2000 : 208– 2091.
    [112] Ahmad A et al. Battery Thermal Models for Hybrid Vehicle Simulations[J]. Journal of Power Sources. 2002-11.
    [113] ADVISOR V3.2 Documentation.1-50.
    [114]付永领,祁晓野. AMESim系统建模和仿真[M].北京:北京航天航空大学出版社. 2006.6.
    [115]李玉贵,杨晓明,高学杰. PWM高速开关阀的静特性研究[J].太原重型机械学院学报,2002,23(1):68-71
    [116]张小军,凌宁,朱国伟,崔可润.新型高速开关阀的设计与研究[J].机床与液压,2001.6:88-89
    [117] dSPACE GmbH, Install and Configeration Documents for Release 4.0[Z]. Germany:dSPACE Gnbh. 2003.
    [118] dSPACE GmbH, Implementation Guide Documents for Release 4.0[Z]. Germany:dSPACE Gnbh. 2003.
    [119] dSPACE GmbH, Experiment Guide Documents for Release 4.0[Z]. Germany:dSPACE Gnbh. 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700