用户名: 密码: 验证码:
本质安全型开关电源基础理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于数字矿山和感知矿山的实际需要,以及矿山物联网技术的发展,井下检测监控设备如本安型传感器、本安控制器等的数量大大增加,加大了对大功率本安电源的需求。因此,论文对本安型开关电源的基础理论进行研究,在此基础上提出了提高本安电源功率的方法,对大功率本安电源的设计与研究具有重要理论意义及实用价值。
     随着对本安电路的研究深入,新的研究对象与内容不断出现,为理顺其与原有系统的关系,融入原有系统的概念体系,论文针对本安防爆系统的结构体系在原有基础上进行了重新整理,由此引出一次本安电源、二次本安电源、前端保护模式、后端保护模式以及火花放电的自然放电模式和截止放电模式等概念,并对其结构、特性、等方面进行了详细的说明与探讨。
     建立了LC型和CL型复合电路自然放电模式时在开路与短路两种状态下的数学模型,并研究了不同电气参数下的火花能量及功率的变化规律,结合仿真得出:在振荡及非振荡情况下,增大电感量,火花电流、火花功率及火花能量都有所减小,并且延迟了火花电流达到峰值的时间,有利于提高安全性能,且大电感非振荡情况较振荡情况更有利于安全性能。另外,还分析了EC电路的火花放电特性,研究电源电势对火花放电的影响,并根据能量等效原则将其等效变换为一简单电容电路,便于应用现有的火花点燃曲线进行非爆炸性评价。
     基于数理推导的方法建立了电容电路及CL复合电路火花放电数学模型,研究截止放电模式下本质安全开关电路火花放电机理及规律,定量分析截止时间等电气参数对本安电路安全性能的影响。研究发现截止放电模式与自然放电模式在火花放电规律方面有显著的差异:对于电容电路,在自然放电模式下,火花能量最终达到稳态,稳态时火花放电能量与电容值的大小成正比;而在截止放电模式下,火花能量与电容值的大小近似成指数变化。随电容量趋于无穷大,火花放电能量趋向于一个稳态值。对于CL复合电路,在自然放电模式下,增加电感值,火花功率上升到最大值的时间延长,同时最大值减小,火花能量最终达到稳态,稳态时火花能量与电感量无关。而在截止放电模式下,增加电感值,火花功率最大值的时间不变,但最大值减小,火花能量随着电感值的增大而单调减小。最后采用实验验证的方式对本安特性分析研究的结论进行验证。
     通过分析影响火花放电能量的因素,提出了提高本安电源容量的方法,通过提高开关频率、缩短截止时间、采用虚拟软开关等方法提高本安电源功率。并将此方法应用到实际本安电源设计中,现已通过中煤科工集团上海研究院检测中心的认证。
     设计了一款适用于大功率本安电源的截流自恢复保护电路结构及实现方法,并选取反激式三电平拓扑研制了本安型开关电源样机,通过仿真及实验分析,该电源的各项指标均达到设计要求。
The actual needs of digital mine construction and the development of the mineinternet of things technology made the number of the underground detecting andmonitoring equipment such as intrinsically safe sensor and intrinsically safe controllergreatly increase. So demands for high power intrinsically safe power supply werestrongly proposed. Some research on basic theory of intrinsically safe switch powersupply was did in this thesis, and some approaches for improving the power wereproposed, which had important theoretical significance and practical value for thedesign of high power intrinsically safe switching power supply.
     With deep research for intrinsically safe circuits, new research objects andcontents emerged. In order to make clear of the relationship between these researchesand original system and integrate into original system concepts, structural system ofthe safety system based on the original was refreshed in this thesis. Some conceptssuch as primary intrinsically safe power supply, secondary intrinsically safe powersupply, front-end protection mode, back-end protection mode, natural discharge modeand cut-off discharge mode of spark discharge were proposed and their structures,characteristics and other aspects were described in detail.
     Mathematical models of CL compound circuit and LC compound circuit inopen circuit and short circuit under natural discharge mode were established and thechange law of spark discharge energy and power under different electrical parameterswas also researched in this thesis. From the simulation, it shows that, increasing theinductance value could reduce spark discharge current, spark discharge energy andpower, as well as the peak current time which is conducive to enhance the safetyperformance. Non-oscillatory situation under the bigger inductance value is moreconducive to safety performance than oscillatory situation. In addition, sparkdischarge characteristics of EC circuit and the effect resulting from power potential onspark discharge were analyzed in this thesis. Based on energy equivalent principle,EC circuit was equivalent to a simple capacitive circuit based on the principle ofenergy equivalent so as to make use of capacitance minimum ignition curve undernatural discharge mode to determine its security.
     Spark discharge mathematical models of capacitive circuit and CL compoundcircuit were established,and the mechanism and rules of intrinsically safe circuitspark discharge were studied under cut-off discharge mode,besides, the influence of the electrical parameters such as cut-off time on the intrinsically safe circuit’s safetyperformance was quantitatively analyzed. The study found that the regularity of thespark discharge was significantly different between the cut-off discharge mode andthe natural discharge one. For capacitive circuit, under natural discharge mode, thespark energy eventually reached a steady state, and the spark discharge energy insteady state was proportional to the capacitance value. While under cut-off dischargemode, the spark energy was approximately exponential to the capacitance value. Thespark discharge energy tended to a steady-state value with the capacitance valuetending to infinity. For the CL composite circuit, under natural discharge mode, thetime of spark power up to the maximum would be longer with the inductance valueincreased, and the maximum would decrease. The spark energy reached a steady stateeventually which has no relationship with the inductance value. But under cut-offdischarge mode, the time of spark power up to the maximum would not be changedeven the inductance value increased, and the maximum would decrease. The sparkenergy decreased monotonically with the increasing of the inductance value. Finally,experiments have been carried out to verify the conclusion of intrinsically safeperformance analysis.
     Through analyzing factors that affected the spark discharge energy, the methodswere given in this thesis such as increasing the switching frequency, shortening thecut-off time and using virtual soft-switching which could improve the capacity ofintrinsically safe supply. These methods were used in practical intrinsic safety powerwhich had been certificated by Shanghai Research Institute Test Center of China CoalTechnology&Engineering Group Corp.
     A cut-off self-recovery protection circuit structure which was suitable forhigh-power intrinsic safety power supply was designed, and the three-level flybacktopology was selected to design intrinsic safety switching power supply, which meetsthe designing requirements through the simulation and experimental analysis.
引文
[1]陈同宝,夏文刚,王彩燕.煤矿电气防爆技术基础[M].徐州:中国矿业大学出版社,2012.
    [2] PRESS. Hope fades for24Russian mine workers [N]. THE CANADIAN PRESS,2010.
    [3]国家标准起草小组.中华人民共和国国家标准GB3836.2-2010爆炸性气体环境用电气设备.第2部分:由隔爆外壳“d”保护的设备[S][M].北京;中国标准出版社.2011.
    [4]国家标准起草小组.中华人民共和国国家标准GB3836.4-2010爆炸性气体环境用电气设备.第4部分:由本质安全型“i”冶保护的设备[S][M].北京;中国标准出版社.2011.
    [5]刘树林,刘健.本质安全开关变换器[M].北京:科学出版社,2008.
    [6]国家标准起草小组.中华人民共和国国家标准GB3836.6-2004爆炸性气体环境用电气设备.第6部分:油浸型“o”[S][M].北京;中国标准出版社.2005.
    [7]国家标准起草小组.中华人民共和国国家标准GB3836.9-2006爆炸性气体环境用电气设备.第9部分:浇封型"m"[S][M].北京;中国标准出版社.2006.
    [8]国家标准起草小组.中华人民共和国国家标准GB3836.5-2004爆炸性气体环境用电气设备.第5部分;正压外壳型“p”[S][M].北京;中国标准出版社.2005.
    [9]徐建平.“防爆安全技术”讲座第3讲仪表防爆技术基础[J].自动化仪表,2008(05):73-78.
    [10]60079-11. Eletrical Apparatus for Explosive Gas Atmos-pheres: Intrinsic Safety “i”[S][J].International Standard,Third Edition,1991(01):09-12.
    [11]克拉夫钦克B C.安全火花电路[M].北京:煤炭工业出版社,1981.
    [12]张军国,牟龙华,孟庆海,等.电感性本质安全电路L/R的选择原则[J].安全与环境学报,2002(04):46-48.
    [13]李达,范新媛.本安防爆系统综述[J].石油化工自动化,2000(06):8-10.
    [14]徐建平.本质安全认证技术及其发展趋向[J].炼油化工自动化,1994(03):10-15.
    [15]徐建平.仪表本安防爆技术[M].北京:机械工业出版社,2002.
    [16] WALPOLE. Intrinsically Safe (IS) Active Power Supplies [J].2003(04):31-36.
    [17]催保春,王聪.本质安全电源电路理论综述[J].电源世界,2006(01):1-6.
    [18]张燕美,李维坚.本质安全电路设计[M].北京:煤炭工业出版社,1992.
    [19]郁继裳,顾永辉,邵昌棋,等.本质安全型设备及电路[M].北京:煤炭工业出版社,1990.
    [20] B.C.克拉夫钦克, B.A.邦达尔,杨洪顺,等.电气放电和摩擦火花的防爆性[M].北京:煤炭工业出版社,1990.
    [21] A.A.卡伊马科夫.矿用电气设备防爆原理[M].北京:机械工业出版社,1987.
    [22] GREENWOOD. Intrinsically safe power supply apparatus[P]: United States Patent,3,955,132. May4,1976.
    [23] G.ALLOP,E.GUENAULT. The minimum ignition current in relation to circuits constants [J].SMRE,1946(104):16-20.
    [24] D.W.WIDGITON. Ignition of methane by electrical arc discharge [J]. SMRE,1966(240):22-23.
    [25] ECKHOFF. Minimum ignition energy (MIE)--a basic ignition sensitivity parameter in designof intrinsically safe electrical apparatus for explosive dust clouds [J]. Journal of LossPrevention in the Process Industries,2002(4):305-310.
    [26] JOHANNSMEYER. On the ignition of explosive atmospheres by short durationsparking-when capacitive intrinsically safe circuits are discharged by short circuit [J]. ExMagazine,1989(12):61-67.
    [27]彭林.容性电路的本质安全防爆性[J].爆炸性环境电气防爆技术,1995(04):42-46+49.
    [28] H.D.GOELDNER, U.JOHANNSMEYER,F.SCHEBSDAT. Combination of on-linear andlinear intrinsically-safe circuits [J]. Ex Magazine,1990(12):11-21.
    [29] G.BITTENER. The ignition of explosive atmosphere by sparks in the frequency ranger of1KHz to10MHz [J]. PTB Translation,1976(86):26-30.
    [30] DILL,HAUKE. Intrinsic safety and high frequency-The ignition behaviour of electricalpower circuits at frequencies above d.c. level [J]. Gluc kauf-For schung shefter,2003(03):84-89.
    [31] K.KUMAR,D.CHANDRA. Reliability consideration in the use of intrinsically safe barriersfor instruments in coal mines [J]. Mining Technology,1991(03):35-38.
    [32]池田武弘,田代襄,刘延绪译.关于本质安全电路点燃极限值的考察[J].煤矿安全,1985(06):57-61.
    [33]孟庆海译.克服本安电路火花试验装置缺点采取的新方法及利用改进型装置得到的结果[J].电气防爆,1999(02):39-43.
    [34]商立群.本质安全火花试验装置及应用[J].煤矿安全,2002(05):3-4+42.
    [35]张军国,许允之.基于单片机控制的火花实验装置的研究[J].化工自动化及仪表,2006
    [36]张刚.对IEC60079-11标准中“Lo/Ro”公式的分析与建议[J].电气防爆,2001
    [37]刘树林.本质安全开关变换器基础理论及关键技术研究[D].西安;西安科技大学,2007.
    [38]刘树林,刘健.本质安全Boost变换器的非爆炸内部本质安全判据[J].煤炭学报,2008(06):
    [39]商立群.复杂电感电路在不同频率特性下本质安全性研究的技术实现[J].煤矿机电,2002(03):39-40.
    [40]商立群,贾文胜,施围.提高本质安全电感电路功率的方法[J].工矿自动化,2003(06):20-21.
    [41]孟庆海,牟龙华,王崇林,等.低能电弧放电瞬间的特性分析[J].西安科技学院学报,2002(01):56-58.
    [42]孟庆海,胡天禄.应用放电电流线性衰减模型评价电感性本质安全电路[J].煤炭学报,1999(04):82-85.
    [43]孟庆海,牟龙华.基于电流线性衰减模型分析低能电弧放电特性[J].煤炭学报,2001(04):12-13.
    [44]章良海.安全火花原理及应用[M].北京:煤炭工业出版社,1984.
    [45]王其平.电器电弧理论[M].北京:机械工业出版社,1991.
    [46]孟庆海,许允之,胡天禄.电感性本质安全电路电弧放电伏安特性分析[J].中国矿业大学学报,1999(04):79-81.
    [47]孟庆海,牟龙华,何学秋.电感性本质安全电路动态伏安特性参数的确定[J].中国矿业大学学报,2001(03):51-53.
    [48]孟庆海,牟龙华,王崇林,等.本质安全电路的功率判别式[J].中国矿业大学学报,2004(03):58-60.
    [49]孟庆海,牟龙华.电路本质安全性能计算机分析方法[J].西安科技大学学报,2004(04):500-502+515.
    [50]孟庆海,牟龙华.低能电弧放电模型比较分析[J].电气防爆,2002(09):201-202.
    [51]孟庆海,胡天禄,牟龙华.低能电弧放电时间与电路参数间的关系[J].电工技术学报,2000
    [52]孟庆海,胡天禄,牟龙华.本质安全电路低能电弧放电特性及参数[J].电工技术学报,2000(03):28-30+35.
    [53]刘建华.爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D],2008.
    [54] ROHL,WOLFGANG. Intrinsically safe power supply with a current regulator[P]: UnitedStates Patents,4,646,219. February24,1987.
    [55] GEUNS,GUY. Intrinsically safe power supply unit[P]: United States Patents,5,365,420.September17,1991.
    [56] GERLACH, UEHLKEN,JOHANNSMEYER. High-power intrinsic safety with "c-i-s"[J].Ex-Magazine,2004(06):66-67.
    [57] GERLACH,TH.UEHLKEN. New challenges with supply systems providing high power intype of protection Intrinsic Safety [J]. PTB-BAM-Kolloquium,2007(01):221-225.
    [58] C, D,FISHER. Power supply for an intrinsically safe circuit[P]: US.1984-03-20.
    [59] GERLACH, UEHLKEN,JUNKER. DART:The new dimension in intrinsic safety;proceedings of the Petroleum and Chemical Industry Conference Europe-Electrical andInstrumentation Applications, F,2008[C].
    [60]郭凤仪,李江文. KF1019矿用隔爆兼本安电源箱的设计与实现[J].阜新矿业学院学报,1994
    [61]陈向东.矿用本质安全电源[J].煤炭科学技术,1997(06):35-38.
    [62]陈向东.矿用本质安全电路中的浇封技术[J].煤矿开采,1996(03):31-33.
    [63]夏筱筠,冒益海,聂林,等.本质安全型电源[P]:中国, CN2665774.2004-12-22.
    [64]谢晓春,汪淳.增大本安电源容量方法的讨论[J].爆炸性环境电气防爆技术,1998.
    [65]柳玉磊,陈云碧.浅谈提高电路本质安全性能的常用措施[J].电气防爆,2007(01):3-4.
    [66] BOCKHORST,ZIMMERMAN. Intrinsically safe regulated power supply [M]. GooglePatents.1981.
    [67]钟久明. Buck-Boost变换器的本质安全特性分析及优化设计[D].西安;西安科技大学,2006.
    [68]杨银玲. buck及boost变换器的本质安全特性及优化设计[D].西安;西安科技大学,2005.
    [69]梁欢迎.本质安全型单端反激变换器的分析与设计[D].西安;西安科技大学,2008.
    [70]刘明亚.隔爆兼本质安全开关电源的研制[M].北京:中国矿业大学,1989.
    [71]张玉良.一种带备用电池多路输出的隔爆兼本质安全型开关直流稳压电源[J].煤矿自动化,1996(04):57-59.
    [72]王中扬. KFD-IA型井下分站电源箱的研制[J].煤炭工程师,1997(04):27-29+53.
    [73]俞优姝,李良光,王亚清,等.基于单端反激式本安电源的设计[J].煤炭技术,2011(01):39-41.
    [74]汪淳,王琦,于超龙.现场总线本安型防爆系统在煤矿自动化系统中应用的可行性分析[J].工矿自动化,2010(01):14-16.
    [75]刘晓强.本质安全型防爆直流开关电源及备用电源研究[D].北京;中国矿业大学(北京校区),2001.
    [76]李德俊,王聪,王俊.井下无变压器照明电源的实现[J].煤炭工程,2010(04):84-86.
    [77]李德俊,王聪,王俊.煤矿井下无工频变压器照明电源的探讨[J].煤炭科学技术,2010(001):76-80.
    [78] SHU-LIN, YI-BO,YUN-WU. Optimal design of inductance and capacitance of outputintrinsically safe Buck DC-DC converters; proceedings of the Industrial and InformationSystems (IIS),20102nd International Conference on, F10-11July2010,2010[C].
    [79]刘树林,刘健,杨银玲,等. Boost变换器的能量传输模式及输出纹波电压分析[J].中国电机工程学报,2006(05):119-124.
    [80]刘树林,刘健,陈勇兵. Boost变换器的输出纹波电压分析与最小电感设计[J].西安交通大学学报,2007(06):707-711+716.
    [81]于月森,伍小杰,戴鹏.一种矿用本安大功率LED驱动电源及设计方法[J].2012(03):
    [82]黎剑兵,谢楷,程仁杰.小型矿用本安型DC-DC隔离电源模块设计[J].煤炭科学技术,2011(06):75-77.
    [83]崔保春,王聪,戴颖,等.提高本质安全开关电源功率及安全火花电路的研究[J].苏州科技学院学报,2006(01):77-80.
    [84]王子平.本安防爆系统设计问题探讨[J].化工自动化及仪表,1993(04):29-35+69.
    [85] CAWLEY, DIMARTINO,FISHER. Power supply for an intrinsically safe circuit[P]: UnitedStates Patent,4438473. Mar.20,1984.
    [86]孟庆明.直流稳压电源过流保护分析的新方法[J].黑龙江商学院学报(自然科学版),1998(01):
    [87]王阳,刘长捷,姜永生.串联型稳压电源保护电路的改进[J].实验技术与管理,2000(06):43-46.
    [88]赵秀华,李永明,吕虹.触发截止型保护电路[J].湖南工程学院学报(自然科学版),2002(04):20-22.
    [89]李云胜.电源的截止型过流保护电路设计[J].实验科学与技术,2010(01):1-3+18.
    [90]付淑玲.可控硅保护式本安电源自动恢复装置[J].煤矿安全,2000(01):32-34.
    [91]克拉夫钦克, N.谢洛夫, A.T.叶雷金,等.安全火花电路[M].北京:煤炭工业出版社,1981.
    [92]王其平.电气电弧理论[M].机械工业出版社.2002.
    [93]高宁.矿井搜呼救系统的研究与设计[D];西安科技大学,2010.
    [94]井莉楠.本质安全电路电弧放电特性与非爆炸检测方法的研究[D];河南理工大学,2007.
    [95]左官芳.本质安全电路非爆炸检测方法研究[D];中国矿业大学,2007.
    [96]张庆奎.安全火花知识介绍二、安全火花电路防爆原理及设计原则[J].煤矿自动化,1983(01):40-46.
    [97]张庆奎.安全火花知识介绍三、安全火花电路防爆原理及设计原则(续)[J].煤矿自动化,1983(03):50-53.
    [98] WIDGINTON: HSE,1986.
    [99] WIDGINTON. Intrinsic safety reference curves: some recent considerations [M]. IET.1988:50-54.
    [100]杨洪顺.国外安全火花试验装置概况及其发展趋势[J].川煤科技,1981(01):39-48.
    [101]杨洪顺.安全火花型电气设备试验装置的研究[J].煤矿安全,1980(12):11-19.
    [102]杨洪顺.西安煤矿仪表厂MJC-100型电源箱防爆试验结果的分析[J].川煤科技,1981(02):22-25.
    [103]国家标准起草小组.中华人民共和国国家标准GB3836.4eqv IEC60079-11:1999[M].爆炸性气体环境用电气设备,第4部分:本质安全型“i”.北京;中国标准出版社.2010.
    [104]张冠生.电器学[J].1982(07):21-25.
    [105]孟庆海,牟龙华.本质安全电感电容复合电路电弧放电特性的研究[J].煤炭学报,2004(04):510-512.
    [106]张军国译.容性本安电路放电瞬时火花引燃爆炸性气体的研究[J].电气防爆,2001
    [107]张占松,蔡宣三.开关电源的原理与设计(修订版)[M].北京:电子工业出版社,2004.
    [108]伍小杰,于月森,戴鹏.矿用本安电源截流自恢复保护装置[P]:中国专利,200910261781.9.2010-07-07.
    [109]于月森,左东升,伍小杰,等.一种提高本安开关电源性能的方法及装置[P]:中国专利,201120248084.6.2011.
    [110]于月森,伍小杰,戴鹏.一种本安型大功率开关变换器输出短路保护装置及方法[P]:中国专利,201220092647.8.2012.-8-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700