用户名: 密码: 验证码:
基于无线传感器网络的选择协作传输方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的传输技术,协作传输技术应用于无线传感器网络(WirelessSensor Network,WSN),能够有效发挥多用户分集的优势,提高网络传输的可靠性。在各种协作传输方法中,选择协作方法在执行时无需全部中继节点参与转发,只需选出一个最佳中继节点承担协作传输任务,便可以达到与全中继协作相同的分集效果,因此具有简便、高效、易与现有网络集成的优点,成为在无线传感器网络中实施协作传输技术的优先方法。但现有的选择协作传输方法,并未针对无线传感器网络的特征进行设计。为了满足传感器网络对低复杂度、低功耗、跨层设计等条件的需求,有必要对选择协作传输技术进行理论方法上的改进与优化,并探索优化后的性能。
     本文从无线传感器网络的特征和需求出发,按照建立系统模型、提出新方法、推导理论性能、进行仿真验证、开展实验测试的研究思路,对选择协作传输技术在无线传感器网络中的应用方法进行了深入探讨和系统性研究。
     首先,针对无线传感器网络的低复杂度需求,本文提出了一种基于反馈的轻量级选择协作传输方法。该方法不需要节点接收机具备合并接收能力,也不需要在协作时进行信道增益排序,从而进一步降低了选择协作方法的实现复杂度。同时,通过中断概率和分集复用权衡(Diversity Multiplexing Tradeoff,DMT)推导表明,轻量级方法能够突破传统选择协作方法在中继选择方面的局限,无需总是选取信道增益最大的节点作为最佳中继节点,只需从既能收到源节点的数据信息、又能接收到目标节点的反馈信息的中继节点中任选一个进行协作转发,就能够达到对应场景下的最优DMT性能,这一特性为选择协作传输方法建立了双重优化框架,扩大了系统选取中继节点的范围。作为示例,论文还提出了两种支持中继均衡的最佳中继节点选择策略,在保持最优DMT的基础上,实现了各个中继节点进行协作传输次数的均衡,延长了传感器网络的生存时间。
     接着,针对WSN的跨层设计特点,提出了一种适用于异构网络的基于事件关联的选择协作方法。对于由多种传感器组成的异构网络,当传感器之间的应用层存在事件触发关联时,当先活跃的传感器在完成自身传输后,利用物理层的协作传输方法,能够自动协助被触发的传感器的传输,从而提高后者传输的可靠性。通过将传感器之间应用层的关联与物理层的协作进行跨层联合优化,所提方法达到了最大分集增益。以此为基础,论文还提出了一种基于功率控制的节能型中继选择策略,在不降低系统分集增益性能的前提下,最大化的降低了协作能耗开销,满足了传感器网络对能量效率的需求。
     然后,针对WSN的多样化通信场景,提出了一种面向干扰和非正交传输场景的多点到单点选择协作方法。通过在汇聚节点采用连续干扰抵消接收方式,降低了干扰受限对传输性能的影响,并克服了反馈延迟问题。论文推导了干扰场景下选择协作方法的中断概率性能,并与已有方法进行了对比。结果表明,所提方法在使系统达到足够实用的可靠性的前提下,有效提升了系统的频谱利用效率。
     最后,针对协作传输实验平台匮乏的问题,构建和实现了一种基于无线传感器网络的改进型选择协作传输实验平台。设计了实验平台的架构,将选择协作传输方法应用到基于低速无线个域网媒体接入控制与物理层规范标准(WirelessMedium Access Control and Physical Layer Specifications for Low-Rate WirelessPersonal Area Networks,IEEE802.15.4)的无线传感器网络中。实验平台使用市售的普通无线传感器节点和开源协议栈进行组建,成本低,扩展性好。利用实验平台,通过详细的实验测试,对所提出的协作方法及其性能进行了实际验证。
     本文的研究工作,将协作传输技术与无线传感器网络密切结合起来,既完善了选择协作传输技术的基本方法,扩展了选择协作传输方法的应用范围,又提升了无线传感器网络数据传输的可靠性,有助于协作传输技术在无线传感器网络中的实际部署和广泛应用。
As a novel transmission strategy, cooperative transmission is suitable for wirelesssensor network (WSN) for its multi-user diversity and improved communicationreliability. Among various cooperative schemes, selection cooperation is an effectivecooperative method for its simplify and easy implementation. In this scheme, thecooperative transmission is performed only by one best relay node selected frommultiple relays and it achieves the full diversity gain. Therefore, selection cooperationbecomes a preferable cooperative scheme for WSN. However, it does not designed andoptimized for WSN initially, so it is significant to investigate improved selectioncooperation schemes and their performance for meeting the requirements of WSN,including low complexity, energy efficiency, and cross layer design.
     In this dissertation, considering the characteristics and requirements of WSN,following the steps of model building, scheme design, theoretical analysis, simulationresults, and experimental tests, we focus on the selection cooperation schemesoptimized for WSN.
     Considering the requirement of low complexity, we first develop a lightweightselection cooperation protocol with feedback. The scheme does not require the radio ofnodes to perform combining reception and channel sorting. So it reduces the complexitygreatly. Through outage probability and diversity-multiplexing tradeoff (DMT) analysis,we reveal an interesting fact that choosing any node that successfully receives themessage from the source and the feedback frame from the destination as the best relay,the protocol always achieves the optimal DMT. This result overcomes the limitation thatthe node with the maximum relay-destination channel has to be selected as the bestrelay for obtaining the optimal DMT in conventional selection cooperation schemes. Italso establishes a framework for obtaining multiple optimization objectives in selectioncooperation networks. As an illustrative example, we then develop two best relayselection methods for relay balance without sacrificing the full diversity order, whichhave remarkable balance effect and prolong the network life time.
     Next, using cross layer design principle, we propose a context-aware selectioncooperation scheme based on sensor relationship for heterogeneous networks. Weconsider a heterogeneous wireless sensor network consisting of different kinds ofsensors where the activities of one kind of sensors are designed to trigger by the other kinds of sensors. The prior transmissions of the inducing sensors make up the context ofthe transmissions of the following sensors. By exploiting the context information andthe transmission relation, in the proposed scheme, the inducing sensors can cooperatewith the following sensors after their own transmissions for improving thecommunication reliability of the latter nodes. Through performance analysis, we showthat the protocol achieves the full diversity gain with the cross layer optimization fromapplication layer to physical layer. We further develop an energy-efficient best relayselection method based on power control where the power consumption is minimizedwithout decreasing the full diversity order. The method fits the requirement of lowenergy consumption in WSN.
     For interferential scenarios in WSN, we proposed a non-orthogonal selectioncooperation scheme for multiple points to one point case. By using successiveinterference cancellation in the sink node, the effect of interference is reduced and thefeedback delay problem is solved. Through the outage probability analysis andcomparison, we show that the spectral efficiency is improved while the system stillkeeps acceptable transmission reliability.
     Finally, we establish and implement an improved selection cooperationexperimental platform based on WSN to address the issue of test bed for cooperativetransmission. The architecture of the platform is presented and the selection cooperationschemes are deeply integrated into the IEEE802.15.4standard (Wireless MediumAccess Control and Physical Layer Specifications for Low-Rate Wireless Personal AreaNetworks). The platform is built with commodity hardware of wireless sensors andopen-source protocol stack and has the advantage of low cost and flexibility. Based onthe experimental platform, the performance of proposed cooperative schemes in thisdissertation is verified by detailed tests.
     The work in this dissertation combines the cooperative transmission and the WSN.On one hand, it enhances the basic schemes of selection cooperation and extends itsapplication areas. On the other hand, it improves the transmission reliability of wirelesssensor networks and contributes to the practical deployment and applications ofselection cooperation in WSN.
引文
[1] J. N. Laneman, D. N. C. Tse, G. W. Wornell. Cooperative diversity in wireless networks:Efficient protocols and outage behavior [J]. IEEE Trans. Inf. Theory,2004,50(12):3062-3080.
    [2] J. N. Laneman, G. W. Wornell. Distributed space-time-coded protocols for exploitingcooperative diversity in wireless networks [J]. IEEE Trans. Inf. Theory,2003,49(10):2415-2425.
    [3] J. N. Laneman. Cooperative diversity in wireless networks: Algorithms and architectures [D].Cambridge: MIT,2002.
    [4] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity–Part I: System description[J]. IEEE Trans. Commun.,2003,51(11):1927-1938.
    [5] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity–Part II: Implementationaspects and performance analysis [J]. IEEE Trans. Commun.,2003,51(11):1939-1948.
    [6] T. E. Hunter, A. Nosratinia. Cooperative diversity through coding [A]. In: IEEE Proc. ISIT2002[C]. Switzerland: IEEE,2002.
    [7] A. Nosratinia, T. Hunter, A. Hedayat. Cooperative communication in wireless networks [J].IEEE Commun. Mag.,2004,42(10):68-73.
    [8] E. Beres, R. Adve. Selection cooperation in multi-source cooperative networks [J]. IEEETrans. Wireless Commun.,2008,7(1):118-127.
    [9] A. Bletsas, A. Khisti, D. P. Reed, A. Lippman. A simple cooperative diversity method basedon network path selection [J]. IEEE J. Sel. Areas Commun.,2006,24(3):659-672.
    [10] A. Bletsas, H. Shin, M. Z. Win. Outage-optimal cooperative communications withregenerative relays [A]. In: IEEE Proc. CISS2006[C]. Princeton: IEEE,2006.
    [11] A. Bletsas, H. Shin, M. Win. Cooperative communications with outage-optimal opportunisticrelaying [J]. IEEE Trans. Wireless Commun.,2007,6(9):3450-3460.
    [12] L. Zheng, D. N. C. Tse. Diversity and multiplexing: a fundamental tradeoff inmultiple-antenna channels [J]. IEEE Trans. Inf. Theory,2003,49(5):1073-1096.
    [13] K. Azarian, H. El Gamal, P. Schniter. On the achievable diversity-multiplexing tradeoff inhalf-duplex cooperative channels [J]. IEEE Trans. Inf. Theory,2005,51(12):4152-4172.
    [14] H. El Gamal, G. Caire, M. O. Damen. The MIMO ARQ channel: Diversity-multiplexing-delaytradeoff [J]. IEEE Trans. Inf. Theory,2006,52(8):3601-3621.
    [15] M. Yuksel, E. Erkip. Diversity-multiplexing tradeoff in half-duplex relay systems [A]. In:IEEE Proc. ICC07[C]. Scotland: IEEE,2007.
    [16] S. S. Ikki, M. H. Ahmed. On the performance of cooperative diversity networks with the Nthbest-relay selection scheme [J]. IEEE Trans. Commun.,2010,58(11):3062–3069.
    [17] R. Tannious, A. Nosratinia. Spectrally-efficient relay selection with limited feedback [J].IEEE J. Sel. Areas Commun.,2008,26(8):1419-1428.
    [18] A. Bletsas, A. Khisti, M. Z. Win. Opportunistic cooperative diversity with feedback and cheapradios [J]. IEEE Trans. Wireless Commun.,2008,7(5):1823-1827.
    [19] A. Bletsas, A. G. Dimitriou, J. N. Sahalos. Interference-limited opportunistic relaying withreactive sensing [J]. IEEE Trans. Wireless Commun.,2010,9(1):14-20.
    [20] D. S. Michalopoulos, G. K. Laragoammodos. Performance analysis of single relay selection inRayleigh fading [J]. IEEE Trans. Wireless Commun.,2008,7(10):3718-3724.
    [21] J. Yick,, B. Mukherjee, D. Ghosal. Wireless sensor network survey [J]. Computer networks,2008,52(12):2292-2330.
    [22] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E Cayirci. A survey on sensor networks [J].IEEE Commun. Mag.,2002,40(8):102-114.
    [23] P. Baronti, P. Pillai, VWC Chook, etc. Wireless sensor networks: A survey on the state of theart and the802.15.4and ZigBee standards. Computer communications [J],2007,30(7):1655-1695.
    [24] J. N. Al-Karaki, A. E. Kamal. Routing techniques in wireless sensor networks: a survey [J].IEEE Trans. Wireless Commun.,2004,11(6):6-28.
    [25] I. F. Akyildiz, T. Melodia, K. R. Chowdhury. A survey on wireless multimedia sensornetworks [J]. Computer Networks,2007,51(4):921–960.
    [26] I. Demirkol, C. Ersoy, F. Alagoz. MAC protocols for wireless sensor networks: a survey [J].IEEE Commun. Mag.,2006,44(4):115-121.
    [27] K. Romer, F. Mattern. The design space of wireless sensor networks [J]. IEEE Trans. WirelessCommun.,2004,11(6):54-61.
    [28] G. Campobello, A. Leonardi, S. Palazzo. Improving energy saving and reliability in wirelesssensor networks using a simple crt-based packet-forwarding solution [J]. IEEE/ACMTransactions on Networking,2012,20(1):191-205.
    [29] H. Cao, V. Leung, C. Chow, H. Chan. Enabling technologies for wireless body area networks:A survey and outlook [J]. IEEE Commun. Mag.,2009,47(12):84-93.
    [30]张希元,赵海,孙佩刚,徐久强,朱剑.无线传感器网络中以效率为中心的可靠通信机制研究[J].通信学报,2008,29(1):39-45.
    [31] N. A. Pantazis, D. D. Vergados. A survey on power control issues in wireless sensor networks[J]. Communications surveys and tutorials,2007,9(4):86-107.
    [32] W. Choi, G. Ghidini, S. K. Das. A novel framework for energy-efficient data gathering withrandom coverage in wireless sensor networks [J]. ACM Transactions on Sensor Networks,2012,8(4):36.
    [33] G. Anastasi, M. Conti, M. Di Francesco, A. Passarella. Energy conservation in wireless sensornetworks: A survey [J]. Ad Hoc Networks,2009,7(3):537-568.
    [34] W. Li, F. C. Delicato, A. Y. Zomaya. Adaptive energy-efficient scheduling for hierarchicalwireless sensor networks [J]. ACM Transactions on Sensor Networks,2013,9(3):33.
    [35] W. Ye, J. Heidemann, D. Estrin. An energy-efficient MAC protocol for wireless sensornetworks [A]. In: IEEE Proc. INFOCOM2002[C]. New York: IEEE,2002.
    [36] S. Ehsan, B. Hamdaoui. A survey on energy-efficient routing techniques with QoS assurancesfor wireless multimedia sensor networks [J]. Communications Surveys and Tutorials,2012,14(2):265-278.
    [37] S. D. Muruganathan, D. C. Ma, R. I. Bhasin, A. O. Fapojuwo. A centralized energy-efficientrouting protocol for wireless sensor networks [J]. IEEE Commun. Mag.,2005,43(3): S8-13.
    [38] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan. An application-specific protocolarchitecture for wireless microsensor networks [J]. IEEE Trans. Wireless Commun.,2002,1(4):660-670.
    [39]李文峰,沈连丰,胡静.传感器网络簇间通信自适应节能路由优化算法[J].通信学报.2012,33(3):10-19.
    [40]戴世瑾,李乐民.高能量有效性的无线传感器网络数据收集和路由协议[J].电子学报.2010,38(10):2336-2341.
    [41]沙超,王汝传,黄海平,孙力娟.基于生命期划分的无线传感器网络节能策略[J].通信学报.2010,31(4):1-7.
    [42] M. Ritesh, S. Cui, S. Lal, A. Goldsmith. Cross-layer design for lifetime maximization ininterference-limited wireless sensor networks [J]. IEEE Trans. Wireless Commun.,2006,5(11):3142-3152.
    [43] L. D. Mendes, J. JPC Rodrigues. A survey on cross-layer solutions for wireless sensornetworks [J]. Journal of Network and Computer Applications,2011,34(2):523-534.
    [44] S. Shakkottai, T. S. Rappaport, P. C. Karlsson. Cross-layer design for wireless networks[J]. IEEE Commun. Mag.,2003,41(10):74-80.
    [45] M. L. Sichitiu. Cross-layer scheduling for power efficiency in wireless sensor networks [A].In: IEEE Proc. INFOCOM2004[C]. Hong Kong: IEEE,2004.
    [46] L. Song, D. Hatzinakos. A cross-layer architecture of wireless sensor networks for targettracking [J], IEEE/ACM Transactions on Networking,2007,15(1):145-158.
    [47] H. Su, X. Zhang. Cross-layer based opportunistic MAC protocols for QoS provisionings overcognitive radio wireless networks [J]. IEEE J. Sel. Areas Commun.,2008,26(1):118-129.
    [48] W. Su, T. L. Lim. Cross-layer design and optimisation for wireless sensor networks[J]. International Journal of Sensor Networks,2009,6(1):3-12.
    [49] H. Kwon, T. H. Kim, S. Choi, B. G. Lee. A cross-layer strategy for energy-efficient reliabledelivery in wireless sensor networks [J]. IEEE Trans. Wireless Commun.,2006,5(12):3689-3699.
    [50] Y. Wang, M. C. Vuran, S. Goddard. Cross-layer analysis of the end-to-end delay distributionin wireless sensor networks [J]. IEEE/ACM Transactions on Networking (TON),2012,20(1):305-318.
    [51] F. Cuomo, A. Abbagnale, E. Cipollone. Cross-layer network formation for energy-efficientIEEE802.15.4/ZigBee Wireless Sensor Networks [J]. Ad Hoc Networks,2013,11(2):672-686.
    [52] M. S. Hefeida,, T. Canli, A. Khokhar. CL-MAC: A Cross-Layer MAC protocol forheterogeneous Wireless Sensor Networks [J]. Ad Hoc Networks,2013,11(1):213-225.
    [53]张玉鹏,刘凯,王广学.基于无线传感器网络的跨层拥塞控制协议[J].电子学报,2011,39(10):2258-2262.
    [54]王辛果,张信明,陈国良.时延受限且能量高效的无线传感网络跨层路由[J].软件学报,2011,22(7):1626-1640.
    [55] T. M. Cover, A. A. E. Gamal. Capacity theorems for the relay channel [J]. IEEE Trans. Inf.Theory,1979,25(5):572-584.
    [56] Y. Zou, Y. D. Yao, B. Zheng. Opportunistic distributed space-time coding for decode-and-forward cooperation systems [J]. IEEE Trans. Signal Process,2012,60(4):1766–1781.
    [57] K. H. Liu. On the performance of time-orthogonal incremental relaying based ondemodulate-and-forward with distributed channel access [J]. IEEE Trans. Veh. Technol.,2012,61(2):737–747.
    [58] M. Abouelseoud, A. Nosratinia.Opportunistic wireless relay networks: diversity-multiplexingtradeoff [J]. IEEE Trans. Inf. Theory,2011,57(10):6514-6538.
    [59] H. Wicaksana, S. H. Ting, Y. L. Guan,.X. G. Xia. Decode-and-forward two-path half-duplexrelaying: diversity-multiplexing tradeoff analysis [J]. IEEE Trans. Commun.,2011,59(7):1985-1994.
    [60] K. Sreeram, S. Birenjith, P. V. Kumar. DMT of multihop networks: end points andcomputational tools [J]. IEEE Trans. Inf. Theory,2012,58(2):804-819.
    [61] Y. Hu, K. H. Li, K. C. Teh. An efficient successive relaying protocol for multiple-relaycooperative networks [J]. IEEE Trans. Wireless Commun.,2012,11(5):1892-1899.
    [62] I. Krikidis, T. Charalambous, J. S. Thompson. Buffer-aided relay selection for cooperativediversity systems without delay constraints [J]. IEEE Trans. Wireless Commun.,2012,11(5):1957-1967.
    [63] H. C. Lu, W. Liao. Cooperative Strategies in Wireless Relay Networks [J]. IEEE J. Sel. AreasCommun.,2012,30(2):118-129.
    [64] Q. Li, K. H. Li, K. C. Teh. Diversity-multiplexing tradeoff of wireless communicationsystems with user cooperation [J]. IEEE Trans. Inf. Theory,2011,57(9):5794-5819.
    [65] A. Rueetschi, A. Scaglione. Do Cooperative Radios Collide [J]. IEEE Trans. Commun.,2012,60(4):1020-1032.
    [66] N. B. Mehta, V. Sharma, G. Bansal. Performance analysis of a cooperative system withrateless codes and buffered relays [J]. IEEE Trans. Wireless Commun.,2011,10(4):1069-1081.
    [67]江若宜,季薇,郑宝玉.无线传感器网络中协作通信的能耗优化方法研究[J].电子与信息学报,2010,32(6):1475-1479.
    [68]李国兵,朱世华,惠鏸.最佳中继协作通信系统的功率分配算法[J].电子学报,2008,36(10):1944-1948.
    [69]徐峰,岳殿武,严秋娜.基于机会中继和最大比合并下的协作通信系统[J].通信学报,2009,30(12):36-44.
    [70]张秋霞,仰枫帆,张顺外,罗琳.中继编码协作系统等效点对点传输模型的研究[J].通信学报,2012,33(12):100-107.
    [71]王俊波,曹哲,陈明,焦媛.无线并行放大转发中继传输中基于信噪比的功率分配研究[J].电子学报,2011,39(7):1663-1667.
    [72]李靖,葛建华,王勇,姚皓.有限反馈分布式预编码协作通信系统及性能分析[J].电子与信息学报,2010,32(4):799-804.
    [73] H. Wang, S. Yang, J. Lin. A distributed selection cooperation protocol with feedback and itsDMT in Nakagami-m fading channels [J]. IEEE Commun. Lett.,2009,13(11):844–846.
    [74] H. Wang, S. Yang, J. Lin, Y. Zhong, Single relay selection with feedback and power allocationin multisource multidestination cooperative networks [J]. IEEE Signal Process. Lett.,2010,17(12):997–1000.
    [75] H. Alves, R. D. Souza. Selective decode-and-forward using fixed relays and packetaccumulation [J]. IEEE Commun. Lett.,2011,15(7):707-709.
    [76] R. Nikjah, N. C. Beaulieu. Low complexity selection cooperation techniques usinginformation accumulation in dual-hop relaying networks [J]. IEEE Trans. Wireless Commun.,2011,10(5):1514-1526.
    [77] S. S. Ikki, M. H. Ahmed. Performance analysis of cooperative diversity with incremental-best-relay technique over Rayleigh fading channels [J]. IEEE Trans. Commun.,2011,59(8):2152-2161.
    [78] H. Wang, S. Ma, T. S. Ng, H. V. Poor. A general analytical approach for opportunisticcooperative systems with spatially random relays [J]. IEEE Trans. Wireless Commun.,2011,10(12):4122-4129.
    [79] K. Tourki, H. C. Yang, M-S. Alouini. Accurate outage analysis of incremental decode-and-forward opportunistic relaying [J]. IEEE Trans. Wireless Commun.,2011,10(4):1021-1025.
    [80] A. Ikhlef, D. S. Michalopoulos, R. Schober. Max-max relay selection for relays with buffers[J]. IEEE Trans. Wireless Commun.,2012,11(3):1124-1135.
    [81] M. D. Selvaraj, R. K. Mallik. Single-Relay Cooperative Diversity with Scaled SelectionCombining [J]. IEEE Trans. Commun.,2011,59(3):701-707.
    [82] M. Seyfi, S. Muhaidat, J. Liang. Amplify-and-forward selection cooperation over Rayleighfading channels with imperfect CSI [J]. IEEE Trans. Wireless Commun.,2012,11(1):199-209.
    [83] O. Amin, S. S. Ikki, M. Uysal: On the performance analysis of multirelay cooperativediversity systems with channel estimation errors [J]. IEEE Trans. Veh. Technol,2011,60(5):2050–2059.
    [84] B. Gedik, M. Uysal. Impact of imperfect channel estimation on the performance ofamplify-and-forward relaying [J]. IEEE Trans. Wireless Commun.,2009,8(3):1468–1479.
    [85] M. Seyfi, S. Muhaidat, J. Liang, M. Dianati. Effect of feedback delay on the performance ofcooperative networks with relay selection [J]. IEEE Trans. Wireless Commun.,2011,10(12):4161-4171.
    [86] H. A. Suraweera, T. A. Tsiftsis, G. K. Karagiannidis, A. Nallanathan. Effect of feedback delayon amplify-and-forward relay networks with beamforming [J]. IEEE Trans. Veh. Technol.,2011,60(3):1265-1271.
    [87] J. L. Vicario, A. Bel, J. A. Lopez-Salcedo, G. Seco. Opportunistic relay selection withoutdated CSI: outage probability and diversity analysis [J]. IEEE Trans. Wireless Commun.,2009,8(6):2872-2876.
    [88] H. A. Suraweera, M. Soysa, C. Tellambura, H. K. Garg. Performance analysis of partial relayselection with feedback delay [J]. IEEE Signal Process. Lett.,2010,17(6):531-534.
    [89] T. R. Ramya, S. Bhashyam. Using delayed feedback for antenna selection in MIMO systems[J]. IEEE Trans. Wireless Commun.,2009,8(12):6059-6067.
    [90] C. Xiao, N. C. Beaulieu. Node switching rates of opportunistic relaying and switch-and-examine relaying in Rician and Nakagami-m fading [J]. IEEE Trans. Commun.,2012,60(2):488-498.
    [91] V. N. Q. Bao, H. Y. Kong. Distributed switch and stay combining for selection relay networks[J]. IEEE Commun. Lett.,2009,13(12):914-916.
    [92] J. K. Cavers, P. Ho. Switching rate and dwell time in M-of-N selection diversity [J]. IEEETrans. Wireless Commun.,2007,6(4):1218-1223.
    [93] N. C. Beaulieu. Switching rates of selection diversity and switch-and-stay diversity [J]. In:IEEE Proc. ICC2008[C]. Beijing: IEEE,2008.
    [94] D. Michalopoulos, G. Karagiannidis. Two-relay distributed switch and stay combining[J]. IEEE Trans. Commun.,2008,56(11):1790-1794.
    [95] L. Cao, J. Zhang, N. Kanno. Multi-user cooperative communications with relay-coding foruplink IMT-advanced4G systems [A]. In: IEEE Proc. GLOBECOM2009[C]. Honolulu:IEEE,2009.
    [96] Q. Li, R. Q. Hu, Y. Qian, G. Wu. Cooperative communications for wireless networks:techniques and applications in LTE-advanced systems [J]. IEEE Wireless Commun.,2012,19(2):22-29.
    [97] D. Lee, J. Hong Lee. Outage probability of decode-and-forward opportunistic relaying in amulticell environment [J]. IEEE Trans. Veh. Technol.,2011,60(4):1925-1930.
    [98] H. Ding, J. Ge, D. B. da Costa, Y. Guo. Spectrally efficient diversity exploitation schemes fordownlink cooperative cellular networks [J]. IEEE Trans. Veh. Technol.,2012,61(1):386-393.
    [99] E. Liu, Q. Zhang, K. K. Leung. Relay-assisted transmission with fairness constraint forcellular networks [J]. IEEE Trans. Mobile Comput,2012,11(2):230-239.
    [100] K. Ma, Z. Liu, X. Guan. Joint relay selection and power allocation for cooperative cellularnetworks [J]. Wireless Personal Communications,2012,64(2):305-321.
    [101] D. N. Nguyen, M. Krunz. Cooperative MIMO in wireless networks: recent developments andchallenges [J]. IEEE Network,2013,27(4):48-54.
    [102]范建存,殷勤业,王文杰,冯昂.无线传感器网络中协作波束形成的能量有效性分析[J].通信学报,2008,29(11):145-151.
    [103]王绍青,聂景楠.无线传感器网络中增加协作传输及其能量效率研究[J].电子与信息学报,2010,32(3):759-762.
    [104] Y. Yuan, Z. He, M. Chen. Virtual MIMO-based cross-layer design for wireless sensornetworks [J]. IEEE Trans. Veh. Technol.,2006,55(3):856-864.
    [105] S. Cui, A. J. Goldsmith, A. Bahai. Energy-efficiency of MIMO and cooperative MIMOtechniques in sensor networks [J]. IEEE J. Sel. Areas Commun.,2004,22(6):1089–1098.
    [106] S. K. Jayaweera. Virtual MIMO-based cooperative communication for energy-constrainedwireless sensor networks [J]. IEEE Trans. Wireless Commun.,2006,5(5):984–989.
    [107] C. Buratti, A. Zanella. Multihop virtual MIMO systems with channel reuse in a poisson fieldof nodes [J]. IEEE Trans. Veh. Technol.,2011,60(5):2060–2069.
    [108] Z. Zhou, S. Zhou, J. H. Cui, S. Cui. Energy-efficient cooperative communication based onpower control and selective single-relay in wireless sensor networks [J]. IEEE Trans. WirelessCommun.,2008,7(8):3066–3078.
    [109] S. S. Ikki, S. A ssa. Multihop wireless relaying systems in the presence of cochannelinterferences: performance analysis and design optimization [J]. IEEE Trans. Veh. Technol.,61(2):566-573.
    [110] S. Ikki, S. Aissa. Regenerative cooperative diversity networks with co-channel interference:performance analysis and optimal energy allocation. IEEE Trans. Veh. Technol.,2013,62(2):896-902.
    [111] A. Forghani, S. Ikki, S. Aissa. Performance of Non-Symmetric Relaying Networks in thePresence of Interferers with Unequal Powers [J]. IEEE Wireless Commun. Lett.,2013,2(1):106-109.
    [112] S. S. Ikki. Dual-hop amplify-and-forward relaying in the presence of co-channel interference:performance study and system optimization [J]. IET Communications,2012,6(17):3036-3045.
    [113] L. Li, Y. Jing, H. Jafarkhani. Interference cancellation at the relay for multi-user wirelesscooperative networks [J]. IEEE Trans. Wireless Commun.,2011,10(3):930-939.
    [114] I. Krikidis, J. Thompson, S. McLaughlin, N. Goertz. Max-min relay selection for legacyamplify-and-forward systems with interference [J]. IEEE Trans. Wireless Commun.,2009,8(6):3016-3027.
    [115] A. Raja, P. Viswanath. Diversity-multiplexing tradeoff of the two-user interference channel[J]. IEEE Trans. Inf. Theory,2011,57(9):5782-5793.
    [116] E. Akuiyibo, O. Leveque. Diversity-multiplexing tradeoff for the slow fading interferencechannel [A]. In: IEEE Proc. IZS2008[C]. Zurich:IEEE,2008.
    [117] S. Sen, N. Santhapuri, R. Choudhury, S. Nelakuditi. Successive interference cancellation:carving out MAC layer opportunities [J]. IEEE Trans. Mobile Comput,2013,12(2):346-357
    [118] E. Larsson, E. Jorswieck. Competition versus cooperation on the MISO interference channel[J]. IEEE J. Select. Areas Commun.,2008,26(7):1059-1069.
    [119] S. P. Weber, J. G. Andrews, X. Yang, G. D. Veciana. Transmission capacity of wireless ad hocnetworks with successive interference cancellation [J]. IEEE Trans. Inf. Theory,2007,53(8):2799-2814.
    [120] P. Popovski, E. D. Carvalho. Improving the rates in wireless relay systems throughsuperposition coding [J]. IEEE Trans. Wireless Commun.,2008,7(12):4831-4836.
    [121] X. Jia, H. Fu, L. Yang, L. Zhao. Superposition coding cooperative relaying communications:outage performance analysis [J]. International Journal of Communication Systems,2011,24(3):384-397.
    [122] I. Krikidis, J. S. Thompson. Opportunistic relay selection in cooperative systems withdirty-paper coding [J]. IEEE Trans. Veh. Technol,2009,58(7):3322-3332.
    [123] S. S. C. Rezaei, S. O. Gharan, A. K. Khandani. Relay scheduling in the half-duplex Gaussianparallel relay channel [J]. IEEE Trans. Inf. Theory,2010,56(6):2668-2687.
    [124] S. Vakil, B. Liang. Cooperative diversity in interference limited wireless networks [J]. IEEETrans. Wireless Commun.,2008,7(8):3185-3195.
    [125] G. J. Bradford., J. N. Laneman. A survey of implementation efforts and experimental designfor cooperative communications [A]. In: IEEE Proc. ICASSP2010[C]. Dallas: IEEE,2010.
    [126] M. Knox, E. Erkip. Implementation of cooperative communications using software definedradios [A]. In: IEEE Proc. ICASSP2010[C]. Dallas:IEEE,2010.
    [127] H. Ajaz, O. Ihsan, U. Javed, M. A. Hafeez. Performance of real time cooperative MIMO usingan SDR platform [A]. In: IEEE Proc. ISCI2011[C]. Kuala Lumpur:IEEE,2011.
    [128] P. Murphy, A. Sabharwal, B.Aazhang. On building a cooperative communication system:testbed implementation and first results [J]. EURASIP J. Wireless Commun. Netw.2009:1-9.
    [129] P. Zetterberg, C. Mavrokefalidis, A. Lalos, E. Matigakis. Experimental investigation ofcooperative schemes on a real-time DSP-based testbed [J]. Journal on Wireless Comm. andNetworking,2009:1-15.
    [130] S. Valentin, H. S. Lichte, D. Warneke, T. Biermann, R. Funke, H. Karl. Mobile cooperativeWLANs–MAC and transceiver design, prototyping, and field measurements [A]. In: IEEEProc. VTC2008[C]. Calgary:IEEE,2008
    [131] A. Bletsas, A. Lippman. Implementing cooperative diversity antenna arrays with commodityhardware [J]. IEEE Commun. Mag.2006,44(12):33-40.
    [132] T. Korakis, M. Knox, E. Erkip, S. Panwar. Cooperative network implementation using opensource platforms [J]. IEEE Commun. Mag.,2009,47(2):134-141.
    [133] P. Liu, Z. Tao, S. Narayanan, T. Korakis, S. S. Panwar. CoopMAC: A cooperative MAC forwireless LANs [J]. IEEE J. Sel. Areas Commun.,2007,25(2):340-354.
    [134] G. J. Bradford, J. N. Laneman. An experimental framework for the evaluation of cooperativediversity [A]. In: Proc. CISS2009[C]. Baltimore:IEEE,2009
    [135] T. Andre, G. Brandner, N. Marchenko, C. Bettstetter. Measurement-based analysis ofcooperative relaying in an industrial wireless sensor network [A]. In: IEEE Proc.GLOBECOM2012[C]. Anaheim:IEEE,2012.
    [136] C. S. Cooper, B. Hagelstein, D. Franklin. Implementation of opportunistic cooperativediversity in an ad-hoc network using commodity hardware [A]. In: IEEE Proc. IWCMC2012[C]. Princeton: IEEE,2012.
    [137] B. Escrig. DMT optimal cooperative protocols with destination-based selection of the bestrelay [J]. IEEE Trans. Wireless Commun.,2011,10(7):2218-2227.
    [138] M. U. Ilyas, M. Kim, H. Radha. Reducing packet losses in networks of commodity IEEE802.15.4sensor motes using cooperative communication and diversity combination [A]. In:IEEE Proc. INFOCOM2009[C]. Janeiro: IEEE,2009.
    [139] M. U. Ilyas, M. Kim, H. Radha. On enabling cooperative communication and diversitycombination in IEEE802.15.4wireless networks using off-the-shelf sensor motes [J].Wireless Networks,2011,17(5):1173-1189.
    [140] J. Garcia-Luna-Aceves, M. Mosko, I. Solis, R. Braynard, R. Ghosh. Context-aware protocolengines for ad hoc networks [J]. IEEE Commun. Mag.,2009,47(2):142-149.
    [141] A. Wood, J. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, R.Stoleru. Context-aware wireless sensor networks for assisted living and residential monitoring[J]. IEEE Network,2008,22(4):26–33.
    [142] M. U. Ilyas, Moonseong Kim, H.Radha. Measurement based analysis and modeling of theerror process in IEEE802.15.4LR-WPANs [A]. In: IEEE Proc. INFOCOM2008[C]. Phoenix:IEEE,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700