用户名: 密码: 验证码:
钢铁联合企业煤气资源合理利用及优化分配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁生产过程是复杂的铁—煤化工过程,洗精煤、高炉喷吹用煤等含碳能源经过转换、回收、使用等环节直到最终二氧化碳排放形成能量流,推动铁素流从天然资源到钢铁产品的转换,其中,碳素流是能量流的主体。煤气是碳素流的主要组成部分,是钢铁联合企业中重要的二次能源,占企业能源消耗总量的30%左右。所以,正确地认识钢铁联合企业中煤气供需关系的变化规律,科学地规划、实施煤气的生产、储存、分配和利用,特别是富余煤气的缓冲使用策略,对优化利用钢铁联合企业的煤气资源,降低吨钢能耗、减少二氧化碳排放都有十分重要的意义。论文系统地研究了钢铁联合企业煤气的生产与利用及煤气的供需关系变化规律;建立了煤气资源在若干用能设备上的优化分配以及富余煤气在煤气柜与自备电厂锅炉等缓冲用户的动态优化分配数学模型,为钢铁联合企业煤气合理利用、优化分配提供理论依据和分析工具。主要研究内容如下:
     (1)根据典型高炉—转炉生产流程碳素流的输入、转换、耗散和排放过程,剖析了炼铁、炼焦和炼钢等生产工艺及高炉煤气、焦炉煤气和转炉煤气的回收与利用。从原燃料条件、热工操作、回收工艺及空气(煤气)预热、物料热装热送等方面分析了影响煤气回收与利用的各种因素。论述了钢铁联合企业煤气富余的原因以及富余煤气的发电方式,分析了热电联产的节能效果,提出富余煤气利用的基本原则,并展望了焦炉煤气制氢、生产甲醇和直接还原铁等再资源化途径。
     (2)建立了钢铁联合企业煤气供需预测模型,对回收量、需求量和富余量的预测表明,影响企业吨钢煤气产率、吨钢煤气燃耗及煤气富余量的因素主要是各工序的单位煤气产率、单位煤气燃耗和钢比系数。研究了钢铁联合企业煤气供需关系变化规律,提出煤气回收与利用水平的评价指标,主要有煤气回收率、煤气在用能设备的热能转换效率、煤气热电转换效率和煤气综合利用率;分析了煤气回收与利用对吨钢综合能耗的影响,研究结果表明,降低企业吨钢综合能耗的措施主要有:①采用蓄热式燃烧、空气(煤气)预热等技术提高煤气的利用效率,降低用能设备单位煤气消耗;②采用干法除尘等技术完善回收工艺,增加煤气回收率;③采用燃气—蒸汽联合循环发电机组高效利用富余煤气,提高煤气热电转换效率;④建设能源管理中心,提高煤气管理水平,减少或消除煤气放散损失。分析了钢铁联合企业富余煤气利用与“只买煤不买电”能源模式的相互关系,探讨了不同规模钢铁联合企业的煤气利用和“只买煤不买电”模式的实现方案。
     (3)研究了钢铁联合企业用能设备煤气的互换性和合理热值问题,根据煤气在不同设备上使用效率存在差异,用燃料利用系数与用能设备燃料改变前后的单位燃耗为基本参数,以用能设备能源需求、工艺要求、能源介质平衡等为约束条件建立了钢铁联合企业煤气优化分配模型,旨在对企业自产煤气进行最优分配,使能源消耗量最小。研究表明,煤气的替换不能简单按照不同煤气等价热量进行,而应该综合考虑煤气的数量和质量;合理热值的确定将煤气与用能设备的热工操作参数紧密结合,降低了加热过程中的传热火用损失;单品种煤气应优先使用,余量再并网,以减少高炉煤气、焦炉煤气混合过程的火用损失及管道、混合加压设备的投资费用。本文提出的煤气优化分配模型为钢铁联合企业制定长、中、短期煤气规划,确定最佳煤气使用方案,进行计划预测和系统分析提供了有利工具。
     (4)引入惩罚函数方法,建立了富余煤气在煤气柜与自备电厂等缓冲用户的动态优化分配模型。该模型充分发挥了煤气柜、自备电厂锅炉对富余煤气的缓冲作用,提高煤气发电效率,使企业煤气放散或不足量最小。同时,改变了以往煤气柜只起保安作用、富余煤气利用以牺牲发电设备的效率为代价的做法。研究结果表明:根据自备电厂锅炉的容量、效率和使用燃料的种类,使煤气在若干效率不同的锅炉间得到合理分配且煤气柜的柜位在安全范围内;过剩或不足的煤气量通过改变煤气柜、自备电厂锅炉等缓冲用户的缓冲量得到调整,充分、高效地利用了钢铁生产中的富余煤气资源并减少了煤气放散。
     (5)针对鞍钢和迁钢的实际生产情况和煤气资源供需状况,分别应用煤气优化分配模型和富余煤气在缓冲用户的动态优化分配模型。根据鞍钢不同的生产工况、部分工序设备改造后的煤气资源供需变化,给出了煤气资源优化分配、高效利用的指导方案。结果表明:鞍钢应用优化分配模型后,降低了各工序用能设备的煤气发热值和单位产品煤气消耗;同时,假设富余煤气全部用于发电,且热电效率为37%,可降低吨钢综合能耗37.59kgce/t钢;针对新1#3200m3高炉休风、1780热轧生产线检修、新四炼焦一座6m焦炉检修等生产工况下煤气的优化分配表明,鞍钢煤气系统节能还有很大潜力,在满足生产要求和自备电厂煤气缓冲的范围内,尚有8.32万m3/h的焦炉煤气外供;对迁钢富余煤气进行优化分配后,富余的煤气在煤气柜和自备电厂锅炉中合理调配,使锅炉在适当的时候变换燃料且煤气柜的柜位在安全范围内,充分利用煤气资源,减少煤气放散。
The process of steel producing is a typical iron-coal chemical process:the coal energy such as clean coal and coal for injection change to CO2 by conversion tache, recovery tache and using tache, producing iron and steel products based on consumption of iron ore and coal. And in this way the energy flow is formed, in which the coal flow is the main part. Byproduct gases is main parts in carbon flow, and the important secondary energy in iron and steel works, taking part of 30% in total energy consumption. So how to recognize the changing law of gas supply and demand relations in iron & steel complex, to plan the production, stock, distribution and utilization of gas, especially the buffer utilization strategy for the residual gas, for using the gas rationally, reducing the energy consumption per ton steel and CO2 emission is very meaningful. This paper studies the law of gas production and utilization, and that of gas supply and requirement; builds the gas optimization and distribution model for several energy using equipments; constructs the gas dynamic optimization and distribution model for the residual gas distribution between gas holders and boilers in the power plant. The models offer the theoretical basis and analyzing tools for the rational utilization and optimization distribution of gases. The main contents of this paper are as follows:
     (1) Tracking the conversion and dissipation process of carbon element flow in iron and steel production, the byproduct gases recovery and utilization analysis indicate that the carbon element flow change under the certain amount of the total carbon element flow in iron and steel manufacturing flow. The producing process and BFG, COG and LDG recovery and utilization are analyzed. The factors of influencing the gas recovery and utilization are indicated:original fuel condition; thermal operation conditions; recovery process; equipment levels; preheated combustion medium et al. The three modes of gases for power are expounded and the rules of residual gas utilization are put forward. Gas regeneration utilization and route are viewed.
     (2) Gas supply and demand forecasting model is established in iron and steel works, the factors influencing the gas generation, gas consumption and residual gas amount per steel are analyzed, unit gas generation and gas consumption per product and steel ration of each process take the dominating factors. The relation of gas supply and demand is analyzed and the evaluating indexes of gas recovery and utilization are put forward, such as gas recovery rate, gas thermal conversion efficiency, gas thermal-electricity conversion efficiency and gas integration utilizing efficiency. The influence of gas recovery and utilization on energy consumption per steel is analyzed and the measures of reducing energy consumption per steel of iron and steel works from gas utilization viewpoint is indicated:①reducing gas consumption of using energy equipments through improving gas utilizing efficiency by heat regenerative technique;②perfect the gas recovery process with dry dust technique;, increasing gas recovery ratio;③utilizing residual gas efficiently, enhancing gas thermal-electricity conversion efficiency with CCPP;④strengthening gas management level, decreasing or eliminating gas release loss by constructing EMC. The model of "Buying only coal and no purchasing electricity" is proved and the gas supply-demand model are analyzed in different steel scale iron and steel works under residual pressure and heat power levels.
     (3) Exchangeability of fuels in facilities and reasonable heat value of gases are studied in iron and steel works, and the byproduct gas utilization and distribution model for least energy consumption which is restricted by energy demand, process requirement and energy medium balance is set up based on fuel utilization coefficient and unit fuel consumption of fuel changeable, according to the difference of fuel using efficiency in different equipments. Gas quantity and quality are considered comprehensively in interchangeability of fuel gases; reasonable gas heat values makes gas utilization and equipment thermal operation parameter combine closely for decreasing the heat transfer exergy lose in the process of heating; the viewpoint of priority using single variety gas and remainder inputting gas net is put forward for reducing the exergy lose in mixing process of BFG and COG, investment charge of pipelines, mixing and pressurized station equipments. The model is feasible and available for making gas utilization plan of long, middle and short term and confirming optimal gas consumption project by improving the gas utilization efficiency and thermodynamics grade.
     (4) The residual gas dynamic distribution model in gas holder and power station is set up using punishing function, and the status of gas holder only for safety and reducing the efficiency of power station by using abundant byproduct gases is changed. The buffer by gas holder and boilers in power station improves gas and power utilization efficiency, and reduces gas emission. The efficiency, capacity and available fuel of boilers, surplus and deficient gas amount are adjusted by gas holder and power station, the gases resource is optimized and distribution, the gas emission is reduced.
     (5) The gas optimizing distribution model and residual gas optimizing utilization model are used in different iron and steel works-An steel works and Qian Steel respectively. The plans of gas utilization and optimizing distribution efficiently are put forward on the gas supply and demand conditions of different producing status. It is indicated that the gas heat values and gas consumption per ton product of different energy using equipments decrease. If the residual gas using for power and power efficiency is 37%, the energy consumption per steel will decrease 37.59 kgce/t steel. It is indicated that the potential of energy saving in the gases system of An Steel is very high when the blast furnace stops running, or 1780 rolling producing line is examined, or the 6m coke oven is examined. In the current status it is 83.2 thousand cubic meter per hour coke oven gas for sale under the producing demand and gas. Residual gas is optimizing distribution between gases holders and boilers in power station in Qian Steel. After optimization, the gas emission decreases and operation fee is saved when gas holder is in safety zone and fuels are changed in boilers correctly.
引文
1.殷瑞钰.冶金流程工程学[M],北京:冶金工业出版社,2004
    2.张寿荣.21世纪前期钢铁工业的发展趋势及我国面临的挑战[J],宏观经济研究,2008,(1):3-10
    3.美国钢铁学会L.卡瓦纳主编,韩静涛,王福明,等译.钢铁工业技术开发指南[M],北京:科学出版社,2000
    4.张寿荣.21世纪的钢铁工业及对中国的挑战[J],今日浙江,2001,(Z1):46-46
    5.李世俊.中国钢铁工业“十一五”发展趋势[C],全国能源与热工学术年会论文集,2006,湖南,33-72
    6.殷瑞钰,王晓齐,李世俊,等.中国钢铁工业的崛起与技术进步[M],北京:冶金工业出版社,2004
    7.殷瑞钰.世界钢铁工业的时代命题[J],冶金经济和管理,2000,(4):4-5
    8.新华网.国务院常务会审议并原则通过钢铁产业发展政策[新华网],2005,4,at URL http://news.xinhuanet.com/newscenter/2005-04/20/content_2855352.htm
    9.罗冰生.2008年中国钢铁产业形势报告会报道之一[我的钢铁],2007,12,at URL http://www.mysteel.com/gc/zhzx/hyjj/2007/12/03/081144,0,0,1690779.html
    10.张春霞,胡长庆,上官方钦,等.钢铁工业温室气体排放和减排措施[C],钢铁年会论文集,2007,成都,1-16
    11.王维兴.钢铁企业工序能耗和节能潜力[J],冶金管理,2005,(6)32-34
    12. Albert Thumann, P.E., C.E.M著,卫景彬,高季洪等译.能源工程基础[M],北京:能源出版社,1989
    13.曹清泉,刘芬宁.能源工程管理[M],杭州:浙江大学出版社,1992
    14.陆钟武.冶金热能工程导论[M],沈阳:东北大学出版社,1990
    15.李桂田.中日钢铁工业节能历程的比较[J],冶金能源,1998,17(1):3-10
    16.郑心穗.日本钢铁工业能耗和工序原料消耗状况及对我国节能工作的建议[J],冶金信息工作,1997,1:21-24
    17.吴溪淳,孟庆生.我国钢铁工业节能进展及今后展望[J],冶金能源,1991,10(2):1-9
    18.蔡九菊,赫冀成,陆钟武,等.过去20年及今后5年中我国钢铁工业节能与能耗剖析[J],钢铁,2002,37(11):68-73
    19.杜涛,蔡九菊.中国钢铁工业能源环境负荷分析及减负对策[J],中国冶金,2006,16(3):37-41
    20.蔡九菊,张春霞,齐渊洪.钢铁工业的能源节约与环境保护[C].2005年中国金属学会环保高级培训班(讲义).北京:2005
    21.张杭.钢铁产业发展政策[M],长春:吉林音像出版社,2005
    22.张春霞,胡长庆,严定鎏,等.温室气体和钢铁工业减排措施[J],中国冶金,2007,17(1):7-12
    23.殷瑞钰.中国钢铁工业的回顾与展望[J],鞍钢技术,2004,4:1-6
    24.单尚华,李春风.加快实施烧结烟气脱硫促进区域环境改善[J],中国钢铁业,2006,12:16-20
    25.殷瑞钰,张春霞.钢铁企业功能拓展是实现循环经济的有效途径[J],钢铁,2005,40(7):1-8
    26.费伟伟.六家中央企业联名发起倡议,创建资源节约型企业[中国新闻网],2004,11, at URL http://www.chinanews.com.cn/news/2004/2004-11-26/26/509950.shtml
    27.钱学森.论系统工程[M],湖南:湖南科技出版社,1982
    28. Geoffrey K. Sigworth. Fuel and energy conservation in the steel industry[J],1975,19-40
    29.徐寿波.广义节能[M],湖南:湖南人民出版社,1982
    30. Akimoto, K., Sannomiya, N., Nishikawa, et al. An optimal gas supply for a power plant using a mixed integer programming model[J], Automatica,1991,27(3):513-518
    31.陆钟武,周大刚.钢铁工业的节能方向和途径[J],钢铁,1981,16(10):63-66
    32.陆钟武.对我国冶金热能工程学科的任务和研究对象等问题的探讨[J],冶金能源,1984,3(3):1-5
    33.陆钟武.钢铁工业的流程结构与能源消耗[J],冶金经济研究,1994,(2):13-23
    34.陆钟武.我国钢铁工业吨钢综合能耗的剖析[J],冶金能源,1992,11(1):14-19
    35.陆钟武,蔡九菊.系统节能基础[M],北京:科学出版社,1993
    36.陆钟武,谢安国,周大刚.再论我国钢铁工业节能方向和途径[J],钢铁,1996,31(2):54-58
    37.陆钟武,蔡九菊,于庆波,等.钢铁生产流程的物流对能耗的影响[J],金属学报,2000,36(4):370-378
    38. Thomas F. Barnhart. Energy requirements for various steelmaking processes[C], Energy use and conservation in the metal industry, AIME annual meet,104th,New York, USA,1975,41-51
    39. Robert D.Doering. Modeling an energy management system for a large central energy plant complex[J], Industrial Engineering,1981,13(7):66-70
    40. Goutam Dutta, Robert Fourer. A survey of mathematical programming applications in integrated steel plants[J], Manufacturing Service & Operations Management,2001,3(4):387-400
    41. Phillip Elbling. Energy management systems metal industry perspective[C], Energy use and conservation in the metal industry, AIME annual meet,104th,New York, USA,1975,249-257
    42. W.R.Gray, J.D.Fekete, M.I.Tarkoff. A steel plant energy model[J],Iron and Steel Engineer,1974,54-59
    44.蔡九菊.鞍钢炼铁系统用能优化模型的研究及应用[D],东北工学院科研报告,1984
    45.马宏毅.杭州钢铁厂炼铁系统用能优化模型的研究[D],沈阳:东北工学院,1984
    46.吴永科.杭钢燃料系统优化分配模型的研究[D],沈阳:东北工学院,1984
    47.蔡九菊.钢铁企业系统节能决策模型的研究及其应用[D],沈阳东北大学,1986
    48.陈光.钢铁企业能源模型及其氧气系统动态仿真[D].沈阳:东北大学,2002
    49.王建军.钢铁企业物质流、能量流及其相互作用研究与应用[D].沈阳:东北大学,2008
    50. David L. Schroeder. Minicomputer control of fuel dispatching in steel plants[C], Energy use and conservation in the metal industry, AIME annual meet,104th,New York, USA,1975,237-248
    51. Y.Sakamoto, Y.Tonooka, Y.Yanagisawa. Estimation of energy consumption for each process in the Japanese steel industry:a process analysis[J], Energy Conversion & Management,1999,40:1129-1140
    52. Y June Wu, William Chung. Assessing the control of energy-related CO2 emissions with a dynamic energy process model[J],Energy,1997,22(7):693-704
    53. Mei Gong. Optimization of industrial energy system by incorporating feedback loops into the MIND method[J],Energy,2003,28:1655-1669
    54. Y.Sakamoto, Y.Tonooka. Estimation of CO2 emission for each process in the Japanese steel industry:a process analysis[J].International Journal of Energy Research,2000,24(7):625-632
    55. Mikael Larsson, Jan Dahl. Reduction of the specific energy use in an integrated steel plant—the effect of an optimization model[J], ISIJ International,2003,43(10):1664-1673
    56. Larsson M, Sandberg P, Dahl J, et al. System gains from widening the system boundaries:analysis of the material and energy balance during renovation of a coke oven battery[J], International Journal of Energy Research,2004,28:1051-1064
    57. Mikael Larsson, Chuan Wang, Jan Dahl. Development of a method for analysing energy, environmental and economic efficiency for an integrated steel plant[J], Applied Thermal Engineering, 2006,26:1353-1361
    58.冶金工业部钢铁司.冶金企业煤气的生产与利用[M],北京:冶金工业出版社,1987
    59.程鹏,潘宇林.钢铁厂高炉煤气回收利用的途径[J],冶金动力,1997,(3):57
    60.赵沛,蒋汉华.钢铁节能技术分析[M],冶金工业出版社,1999,11
    61.《中国钢铁工业五十年》编辑委员会.中国钢铁工业五十年径[M],冶金工业出版社,1999,57-58
    62. K. Nagahiro, T. Okazaki, M. Nishino. Activities and technologies for environmental protection at Nippon Steel:a perspective[J].Ironmaking and Steelmaking,2005,32(3):227-234
    63.蔡九菊,王建军,陆钟武,等.钢铁企业物质流与能量流及其相互关系[J],东北大学学报(自然科学版),2006,27(9):979-982
    64.王建军,蔡九菊,张琦,等.钢铁企业物质流、能量流及其对CO2排放的影响[J],环境科学研究,2008,21(1):189-193
    65.陈光,蔡九菊,于庆波,等.钢铁企业物流对能耗影响的分析[J],东北大学学报(自然科学版),2002,23(5):459-462
    66.于庆波,陆钟武,蔡九菊.钢铁生产流程中物流对能耗影响的计算方法[J],金属学报,2000,36(4):379-382
    67.唐新义.企业煤气平衡基本思路[J],冶金能源,2000,19(1):10-13
    68.黄乐天.梅钢煤气平衡初探[J],宝钢技术,2005,5:55-59
    69.孙贻公.对大型钢铁联合企业煤气平衡问题的探讨[J],钢铁,2003,39(6):59-61
    70.邓万里,陈伟昌.宝钢高炉煤气系统平衡实践[J],宝钢技术,2003,2:31-33
    71.韩明荣.优化煤气系统动态平衡[J],钢铁,2001,36(4):5-7
    72.蔡九菊.“九五”期间马钢煤气供需预测及煤气平衡对策的研究报告[D],东北大学内部资料,1996
    73. Markland, Robert. E, Analysis of steel mill fuel distribution using linear programming[C], Proceedings Annual Meeting of the American Institute for Decision Sciences,11th,New Orleans,1979, 373-376
    74. Robert E.Markland. Improving fuel utilization in steel mill operations using linear programming[J], Journal of Operations Management,1980,1(2):95-102
    75. Iwao HIGASHI. Energy balance of steel mills and the utilization of by-product gases[J]. Transactions ISIJ,1982,22:57-65
    76. Fukuda, K.; Makino, H.; Suzuki, Y.; et al. Optimal energy distribution control at the steel works[C]. IFAC simulation of control systems, Vienna, Austria,1986,337-342
    77. G.F.Bryant.Energy control in an integrated steelworks[J],1979,IEEE,274-279
    78. Sinha,G.P.,Chandrasekaran, B.S.,Mitter, N.,et al. Strategic and operational management with optimization at Tata steel[J], INTERFACES,1995,25,6-9
    79. Cho.C.H. Optimal boiler load allocation[J],Instrumentation Technology,1978,10:55-58
    80. Alberto Bemporad, Manfred Morari. Control of systems integrating logic, dynamics, and constraints[J], Automatica,1999,35:407-427
    81. Jeong Hwan Kim, Heui-Seok Yi and Chonghun Han. Plant-wide optimal byproduct gas distribution and holder level control in the iron and steel making process[J], Korean J. Chem. Eng.,2003,20(3):429-435
    82. J.H.Kim, H.-S.Yi, C.Han. A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron and steel making process[J],Trans IChemE,2003,81:1015-1025
    83. Heui Seok Yi, Chonghun Han. Industrial application of MILP-based simultaneous compensation to a large scale byproduct gases network in an iron and steel making plant[J], Ind.Eng.Chem.Res.,2004, 43:119-126
    84. Sinha,A.,Forbes,J.F.,Vermeer,P.J.,et al. Model-based real-time optimization of automotive gasoline blending operations[J], J. of process control,2000,10,43-48
    85. Kim J H, Han C. Short-term multiperiod optimal planning of utility systems using heuristics and dynamic programming[J], Industrial & Engineering Chemistry Research,2002,40:1928-1938
    86. Kim J H, Yi H S, Han C. Plant wide optimal byproduct gas distribution and holder level control in the iron and steel making process[J], Korean Journal of Chemical Engineering,2003,20(3):429-435
    87.陆钟武.火焰炉[M],北京:冶金工业出版社,1995
    88.蔡九菊,陆钟武.冶金企业能源模型总体结构[J],钢铁,1984,19(12):47-58
    89.翟庆国.本钢煤气系统优化研究[D],硕士论文,东北大学,1987
    90.李民军.本钢燃气系统优化分配问题的研究[D],沈阳:东北大学,1993
    91.赵立合,林秀贞,朱和杰,等.钢铁企业煤气系统优化管理模型及其应用[J],冶金能源,1994,13(6):10-13
    92.张建良,王好.钢铁企业煤气系统的优化利用模型[J],包头钢铁学院学报,2002,21(3):280-282
    93.李庆林.钢铁厂能源系统优化模型的研究[D],北京科技大学,1986
    94.胡长庆.物质流、能量流分析与新一代钢铁制造流程[D].北京:钢铁研究总院,2006
    95.任贵义.炼铁学[M],北京:冶金工业出版社,2004
    96.尹建威,孙国龙.高炉煤气燃烧发电的现状和展望[J],燃气轮机技术,2002,15(1):27-29
    97. M.Emre Ertem, Sabit Gurgen.Energy balance analysis for Erdemir blast furnace number one[J],Applied thermal engineering,2006,26:1139-1148
    98.吕佐周.冶金燃气[M],北京:冶金工业出版社,1986
    99.王筱留.钢铁冶金学(炼铁部分)[M],北京:冶金工业出版社,2004
    100.陶荣尧,朱锦明.宝钢高炉大喷煤冶炼的能耗结构及CO2排放量的变化[J],宝钢技术,2000,3:6-9
    101.严文福,郑明东.焦炉加热调节与节能[M],合肥:合肥工业大学出版社,2005
    102.吕佐周,王光辉.燃气工程[M],北京:冶金工业出版社,1999
    103.转炉工序能耗分析与预测研究课题组.宝钢250t转炉工序能耗分析与预测研究[D],东北大学内部资料,2001,沈阳
    104.孙贻公.转炉煤气回收利用系统介绍[J],工业炉,2004,26(5):31-33
    105.王爱华,蔡九菊,郦秀萍,等.转炉煤气回收分析及其提高措施[J],钢铁,2006,41(5):81-84
    106.刘凯,仵宗贤,李学海.LT干法除尘在120吨转炉中的应用[J],莱钢科技,2007,1:20-22
    107.山口武和,高橘正章,伊知地藤和,等.氧气顶吹转炉煤气回收系统及煤气的利用[J],钢铁厂节能文集[C].北京:冶金工业出版社,1982
    108.郦秀萍.高炉-转炉区段工艺技术界面热能工程分析[D].沈阳:东北大学,2005
    109.刘旭,孙明庆.钢铁厂燃用低热值煤气燃气-蒸汽联合循环发电装置探讨[J],钢铁技术,2003,3,37-44
    110. Peter Diemer, Hans-Jurgen Killich, Klaus Knop, et al. Potentials for utilization of coke oven gas in integrated iron and steel works[J].Stahl und Eisen,2004,124(7):21-30
    111.王太炎.焦炉煤气开发利用的问题与途径[J],燃料与化工,2004,35(6):1-3
    112.李俊岭,温浩,郭占成,等.二甲醚:钢铁厂剩余煤气化工利用的一种较好选择[J],钢铁,2001,36(12):66-69
    113.王岩.焦炉煤气变压吸附制氢工艺的应用[J],鞍钢技术,2000,(2):42-45
    114.汤学忠.热能转换与利用[M](第2版),北京:冶金工业出版社,2002
    115.《钢铁企业燃气设计参考资料》编写组.钢铁企业燃气设计参考资料[M],北京:冶金工业出版社,1978
    116.韩昭沧.燃料及燃烧[M],北京:冶金工业出版社,2004
    117.王秉铨.工业炉设计手册[M],北京,机械工业出版社,2004
    118.赵渭国,杜涛,王爱华.火焰炉设计[M],东北大学内部资料,2005
    120.国家自然科学基金委员会.钢铁工业生态化模式及其管理和评价体系[D],国家自然科学基金资助项目结题报告,2008
    121.杜涛.关于钢铁企业气体污染物减量化研究[D],沈阳,东北大学,2005
    122.张兴良.宝钢燃料系统优化初探[J],冶金动力,2001,3:19-22
    123.蔡九菊,王建军,陆钟武,等.钢铁企业物质流与能量流及其相互关系[J],东北大学学报(自然科学版),2006,27(9):979-982
    124. Andersen J P, Hyman B. Energy and material flow models for the US steel industry[J]. Energy, 2001,26:137-159
    125. Larsson M, Dahl J. Reduction of the Specific Energy Use in an Integrated Steel Plant----The Effect of an Optimization Model[J]. ISIJ Int.,2003,43(10):1664-1673
    126. Sakamoto Y, Tonooka Y, Yanagisawa Y. Estimation of energy consumption for each process in the Japanese steel industry:a process analysis[J].Energy Conversion & Management,1999,40(11):1129-1140
    127. Larsson M, Chuan W, Dahl J. Development of a method for analyzing energy, environmental and economic efficiency for an integrated steel plant[J], Applied Thermal Engineering,2006,26:1353-1361
    128. Andersen J P, Hyman B. Energy and material flow models for the US steel industry [J]. Energy,2001, 26:137-159
    129.马晓茜.燃气互换性与火焰稳定性研究[J],燃烧科学与技术,1996,2(1):46-53
    130. Glassman I. Combustion[M], New York:Academic Press,1977
    131.徐业鹏.从火用的观点探讨冶金工业节能的潜力和途径[C],中国金属学会热工与热能第二届年会论文集,1983,11-18
    132.常青青,炼铁系统的热力学分析及其多联产系统构建[D],北京,北京科技大学,2007
    133.潘华珊.论燃料利用的质与量[C],中国金属学会热工与热能第二届年会论文集,1983,4-10
    134.薛嘉庆.最优化原理与方法[M],北京:冶金工业出版社,1992
    135.运筹学教材编写组.运筹学[M],北京:清华大学出版社,1990
    136.S.P.勃雷达兰,A.C.哈克斯,T.L.曼内蒂.应用数学规划[M],机械工业出版社,1983
    137.江文德.钢铁企业能源动态平衡和优化调度问题研究和系统设计[D],浙江大学,2006
    138.M.Kojima, S.Mizuno, A.Yoshise. A primal-dual interior point method for linear programming. Progress in Mathematical Programming[M], Springer-Verlag, New York,1989:29-47
    139. Greg Ascfalk, et al. The interior point method for linear programming[M].IEEE Software, July,1992: 61-68
    140.张培强.MATLAB语言—演算纸式的科学工程技术语言[M],合肥:中国科学技术大学出版社,1995
    141.薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002
    142.湛志钢.煤粉/高炉煤气混烧对煤粉燃尽性影响的研究[D],华中科技大学,2004
    143.李淑敏,袁青.强化管理降低煤气放散率[J],冶金能源,2003,22(2):5-6
    144.魏海明.冶金能源管理系统的发展[J],宝钢技术,2007,5:28-31
    145.张荣静.提高锅炉掺烧煤气量降低锅炉动力煤消耗[J],冶金能源,2003,22(5):39-42
    146.盛德仁,陈坚红,李蔚,等.供热机组间热电负荷优化分配的研究[J],动力工程,2001,21(6):1560-1563
    147.野坂康雄,舒诒湘译.钢铁工业中的计算机控制[M],上海:上海科学技术出版社,1982
    148.杨轶,陈刚.煤粉和高炉煤气混烧锅炉燃烧问题的分析及改造[J],电站系统工程,2003,19(2):36-38
    149.安锦民,杨敏,贾文义,等.锅炉合理掺烧高炉煤气试验分析[J],内蒙古电力技术,2001,19 (5):11-12
    150.刘定平.低热值高炉煤气与煤粉混烧技术的探讨[J],热科学与技术,2003,2(1):74-7
    151.沈一平,顾顺波.220t/h煤粉锅炉掺烧高炉煤气技术的开发和应用[J],冶金能源,1999,(5):44-47
    152.娄马宝.高炉煤气燃气轮机发电—利用高炉煤气的好形式[J],上海汽轮机,2000(1):33~12.
    153.李俊涛,冯霄.供热机组的热电负荷分配[J],西安交通大学学报,2006,40(3):311-314
    154.谢金星.优化建模与LINDO/LINGO软件[M],北京:清华大学出版社,2005
    155.鞍钢、宝钢2005年能源平衡表
    156.鞍钢能耗分析及节能对策研究报告[D],科研项目报告,沈阳,东北大学,2006
    157.首钢迁钢公司2006年能源平衡表
    158.王立新,李新,许志宏等.钢铁厂煤气合理利用的探讨[J],过程工程学报,2001,1(2):193-196
    159.黄导.中国钢铁工业节能分析[J],中国能源,2004,26(5)13-15
    160.赵斌,胡友山.先进的钢铁工业节能技术及其应用前景[J],冶金能源,2004,23(3):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700