用户名: 密码: 验证码:
Th17细胞在重症肌无力发病机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重症肌无力(myasthenia gravis,MG)和它的动物模型实验性自身免疫性重症肌无力(experimental autoimmune myasthenia gravis,EAMG)均为自身抗体介导的神经肌肉接头(neuromuscular iunction,NMJ)疾病,NMJ突触后膜烟碱型乙酰胆碱受体(acetylcholine receptor,AChR)是大多数病人自身抗体攻击的主要靶点。MG和EAMG的这些抗体的产生依赖于辅助T细胞(helper T cell,Th)和它们产生的细胞因子。Th17为一种新定义的Th类细胞,与自身免疫性疾病关系密切,为了明确Th17细胞在MG中的作用,本研究以EAMG模型和病人胸腺瘤组织为研究对象,采用免疫学和分子生物学技术,研究Th17细胞在MG发病中的作用,结果显示:自身反应性Th17细胞具有驱使EAMG致病性抗体产生的作用,并且MG病人的胸腺瘤组织高表达IL-17。本研究提示Th17细胞是导致MG的关键因素,可以作为免疫治疗的新靶点。
     初始T细胞分化成Th亚群需要固有免疫和适应性免疫系统相互作用,因此本研究首先探讨了单核细胞趋化蛋白-1(monocyte chemoattractantprotein 1,MCP-1,也称CC chemokine ligand 2,CCL2)在EAMG发病机制中的作用。CCL2在C57BL/6(B6)小鼠的脾和淋巴结表达增高,CCL2缺乏(CCL2~(-/-))小鼠抵抗EAMG诱导,CCL2~(-/-)小鼠血清抗AChR IgG、IgGl和IgG2a抗体水平与B6小鼠相似,但IgG2b水平明显减少,提示IgG2b水平低下是CCL2~(-/-)小鼠能抵抗EAMG诱导的原因。CCL2~(-/-)小鼠B细胞在体外增殖、分化成浆细胞、产生IgG抗体和迁移到次级淋巴器官的功能均正常,分泌IFN-γ(Th1)和IL-4(Th2)的CD4~+T细胞数量略少于B6鼠,但是分泌IL-17的CD4~+T细胞即Th17细胞却明显少于B6鼠,表明CCL2~(-/-)小鼠IgG2b水平的低下与Th17细胞数量不足有关。因此CCL2在EAMG发病中的作用是驱使Th17细胞的发生,之后Th17细胞辅助B细胞产生致病性IgG2b抗体介导NMJ传导功能阻滞,形成EAMG。
     继之的研究表明缺乏CCL2导致产生IL-6的CD11b~+单核细胞归巢障碍,从而影响AChR反应性Th17细胞的分化,揭示了CCL2驱使Th17发生的机制是通过聚集CD11b~+细胞归巢到次级淋巴器官产生IL-6来促使Th17细胞分化。IL-6缺乏(IL-6~(-/-))小鼠抵抗EAMG的诱导缘于体内Th17细胞分化障碍,说明IL-6促使体内Th17细胞的分化来介导EAMG发病。
     通过给EAMG小鼠直接注射IL-17进一步探讨Th17在MG发病机制中的作用。外源性IL-17可致B6小鼠EAMG特征加重并且抗AChR特异性IgG2b抗体水平明显升高。给IFN-γ缺乏(IFN-γ~(-/-))小鼠注射IL-17,可以诱导较严重的EAMG症状,说明是IL-17而不是IFN-γ更影响EAMG的形成,Th17细胞促进EAMG形成的作用不依赖于Th1细胞。对AChR有免疫性的供体小鼠的Th17细胞可介导受体重组活化基因1(recombinant active gene 1,RAG1)敲除(RAG1~(-/-))小鼠形成EAMG,IL-17缺乏(IL-17~(-/-))小鼠抵抗EAMG的诱导,进一步显示了Th17细胞在MG发病中的作用。
     为了检验Th17细胞在胸腺瘤合并MG发病机制中的作用,对行胸腺切除手术的27例胸腺瘤患者的相关资料进行了回顾分析,并将切除的胸腺瘤组织蜡块标本切片用免疫组化方法确定MCP-1、IL-17、IL-6细胞因子及CD11b~+和CD4~+细胞在胸腺瘤组织中的表达情况。结果显示越年轻的男性胸腺瘤患者越容易伴发MG,B1和B2型为主的胸腺瘤合并MG的可能性较大,而C型(恶性肿瘤)合并MG的可能性极小;Ⅱ型病理多表现为B1和B2型,越是良性的胸腺瘤越易发生MG,淋巴细胞型胸腺瘤易伴发MG;胸腺瘤合并MG的胸腺瘤组织高表达CCL2、IL-6和IL-17细胞因子及CD11b~+细胞和CD4~+细胞。
     总之,本研究可以得出以下结论:在EAMG发病机制中CCL2介导CD11b~+单核细胞归巢次级淋巴器官,产生细胞源性的IL-6促进自身反应性Th17细胞分化,之后Th17细胞作用于B细胞产生能与补体结合的高致病性抗AChR IgG2b抗体,导致NMJ传导障碍,形成EAMG。CCL2在调整产生IL-6的CD11b~+细胞、Th17细胞和B细胞之间相互影响中起重要作用,这些交互作用在自身抗体的形成和继之发展成EAMG是非常关键的,而且Th17辅助B细胞产生自身抗体不依赖于Th1。在胸腺瘤合并MG病人的研究中验证了这个机制,说明Th17细胞和其细胞因子IL-17在胸腺瘤合并MG的发病中有一定的作用,可能也会启动MG的自身免疫反应。
Myasthenia gravis(MG) and its animal model experimental autoimmune myasthenia gravis(EAMG) are autoantibodies mediated diseases of neuromuscular junctions.The nicotinic Acetylcholine receptors(AChR) at the postsynaptic membrane of neuromuscular junction are primary target for autoantibody attack in the majority of MG patients.Production of these antibodies in MG and EAMG are dependent of the cytokines produced by T helper (Th) cells.In order to understand the newly defined Th-17 cells in MG,we have used EAMG model as well as thymoma tissues from MG patients.Cellular immunology and genetic approaches in the thesis work have been combined.Autoreactive Th-17 cells drives pathogenic antibody production in EAMG have been identified.Further,IL-17 is highly expressed in thymoma tissues from patients with MG.Overal,these results reveal that IL-17 as a critical player for manifestation of muscular weakness and may serve as a target for novel immuno-therapy.
     Since differentiation of na(?)ve T cells into Th subtype requires interactions between innate and adaptive immune system prior to T cell activation.We first examined a chemokine CCL2(CC chemokine ligand 2,also named monocyte chemoattractantprotein 1,MCP-1) in development of EAMG.CCL2 expression was elevated in C57BL/6(B6) mice in lymph nodes and in spleen.CCL2-deficient(CCL2~(-/-)) mice is resistant to the development of EAMG. The level of serum anti AChR IgG,IgG1 and IgG2a in CCL2~(-/-)mice is similar to that of B6 mice,but IgG2b level is significantly reduced,indicating the possible reason of the resistance of CCL2~(-/-) mice to the development of EAMG is the reduced IgG2b level.CCL2 deficiency does not impair the capacity of B cells to proliferate,differentiate into plasma cells,release IgG antibodies and migration to the secondary lymphoid organs,the number of CD4~+T cells that secretes IFN-γ(Th1 cell) and IL-4(Th2 cell) in CCL2 mice is slightly less than that of B6 mice,but the number of CD4~+T cells that secretes IL-17 cells is significantly reduced in CCL2~(-/-) mice than that of B6 mice,implicating that reduced express of IgG2b in CCL2 mice is related with the reduced Th17 cells,implicating that reduced express of IgG2b in CCL2 mice is related with the reduced Th17 cells.The results show the role of CCL2 in the development fo EAMG,that is CCL2 drives Th17 cells priming,which assist B cells to produce pathological anit-AChR IgG2b,thus induce the functional blockage of neuromuscular junction(NMJ) and cause EAMG.
     Subsequent investigation reveals that lack of CCL2 lead impared homing of IL-6 producing CD11b~+ monocytes.Subsequently,differentiation of AChR-reactive Th17 cells compromised.Thus,The results revealed CCL2 recruited IL-6 producing monocyte drive Th17 cells.The resistance to EAMG in IL-6~(-/-) mice could derive from faulty development of Th17 cells secondary to IL-6 deficiency.This result indicates a role of IL-6 in the development of AChR-specific Th17 cells in vivo,which induces the development of EAMG.
     The role of IL-17 in the development of EAMG was further examined by direct injecting of IL-17 to EAMG mice.Exogenous administration of IL-17 to B6 mice EAMG model showed severe signs and specific anti AChR IgG2b level was marked elevated,as indicated by a lack of disease induction in IL-17-deficient mice.Treatment of IFN-γ~(-/-) mice with IL-17 eaqully exacerbate EAMG,indicating that the role for IL-17 is independent of IFN-gamma. The RAG1~(-/-) recipient mice transferred AChR-specific Th17 cells from B6 mice developed EAMG suggests the role of Th17 cells in the development of EAMG as indicated by a lack of disease induction in IL-17 deficient mice.
     Given the associations of thymoma with MG,it was next exmianed whether IL-17 is present in thymoma.A retrospective analysis of 27 cases of thymoma for whom thymectomy were performed.The immunohistochemical staining with antibodies to CCL2,IL-17,IL-6, CD11b~+ and CD4~+ was performed on the parafine-embedded sections of the 27 thymoma specimen.Younger patients and male patients are easy to be complicated with MG.B1 and B2 type thymoma were more likely to accompanied with MG,while the C-type(malignant tumor) has a very small possibility to do that.The more benign thymoma was,the easier MG occurred,and the possibility was high for lymphocytes thymoma to be accompanied by MG. CCL2,IL-6 and IL-17 cytokines,CD11b~+ cells and CD4~+ cells were over-expressed in thymoma tumor tissues in patients with MG accompanied by thymoma.
     Above all,this paper demonstrated that Inflammation and/or immunization recruits CD11b~+ mononuclear phagocytes to lymph nodes,a phenomenon that depends on CCL2.In the lymph nodes,those antigen presenting cells present the autoantigen to Th0 cells and make IL-6,which polarizes the Th0 cells toward a Th17 phenotype.The Th17 cells are then required as helpers for the production of high titer of pathogenic anti-AChR IgG2b antibodies from B cells.Those antibodies are the ultimate responsible for the block at the neuromuscular junction that leads to muscular weakness.The role of Th17 cells in the development of EAMG is not dependent on Th1 cell.We show that CCL2 can facilitate the cognate interactions among IL-6-producing CD11b~+ cells,autoreactive Th17 cells,and B cells.These interactions are critical in the genesis of autoantibodies and in the subsequent development of manifestations of diease.The evidence of that CCL2,IL-6 and IL-17 cytokines,CD11b~+ cells and CD4~+ cells were over-expressed in thymoma tumor tissues in patients with MG accompanied by thymoma.In the tumor tissues of thymoma accompanied with MG supports our prediction:Th17 cells have a role in B cell-mediated autoimmune diseases.In the tumor tissues of thymoma accompanied with MG,highly expressed IL-17 may also initiate the MG's autoimmune reactions.
引文
[1]吴江.神经病学[M].北京:人民卫生出版社,2005.
    [2]许贤豪.神经免疫学[M].北京:北京医科大学中国协和医科大学联合出版社,1993.
    [3]王维治.神经病学[M].北京:人民卫生出版社,2006.
    [4]Conti-Fine B M,Milani M,Kaminski H J.Myasthenia gravis:past,present,and future[J].J Clin Invest,2006,116(11):2843-54.
    [5]Pascuzzi R M.The history of myasthenia gravis[J].Neurol Clin.1994,12(2):231-242.
    [6]Keesey J C.Crisis in myasthenia gravis:an historical perspective[J].Muscle Nerve,2002,26(1):1-3.
    [7]Nastuk W L,Strauss A J,Osserman K E.Search for a neuromuscular blocking agent in the blood of patients with myasthenia gravis[J].Am J Med,1959,26(3):394-409.
    [8]Victor.Adams,Victor's Principles of Neurology(Seventh Edition)[M].北京:科学出版社.
    [9]Patrick J,Lindstrom J.Autoimmune response to acetylcholine receptor[J].Science,1973,180(88):871-2.
    [10]Rowland L P.Controversies about the treatment of myasthenia gravis[J].J Neurol Neurosurg Psychiatr[J],1980,43(7):644-659.
    [11]Soreq H,Seidman S.Acetylcholinesterase-new roles foran old actor[J].Nat Rev Neurosci,200,12(4):294-302.
    [12]Lindner A,Schalke B,Toyka K V.Outcome in juvenile-onset myasthenia gravis:a retrospective study with long-term follow-up of 79 patients[J].J Neurol,1997,244(8):515-520.
    [13]Furukawa Y,Yoshikawa H,Iwasa K et al.Clinical efficacy and cytokine network-modulating effects of tacrolimus in myasthenia gravis[J].J Neuroimmunol,2008,195(1-2):108-115.
    [14]Palace J,Newsom-Davis J,Lecky B.A randomized double-blind trial of prednisolone alone or with azathioprine in myasthenia gravis.Myasthenia Gravis Study Group[J].Neurology,1998,50(6):1778-1783.
    [15]Spring P J,Spies J M.Myasthenia gravis:options and timing of immunomodulatory treatment[J].BioDrugs,2001,15(3):173-183.
    [16]Tindall R S,Rollins,J A,Phillips J T et al.Preliminary results of a double-blind,randomized,placebo-controlled trial of cyclosporine in myasthenia gravis[J].N Engl J Med,1987,316(12):719-724.
    [17]Ponseti J M,Azem J,Fort J Met at.Benefits of FK506(tacrolimus) for residual,cyclosporin-and prednisone-resistant myasthenia gravis:one-year follow-up of an open-label study[J].Clin Neurol Neurosurg,2005,107(3):187-190.
    [18]Newsom-Davis J.Therapy in myasthenia gravis and Lambert-Eaton myasthenic syndrome[J].Semin Neurol,2003,23(2):191-198.
    [19]Samuelsson A,Towers T L,Ravetch J V.Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor[J].Science,2001,291(5503):484-486.
    [20]Gronseth G S,Barohn R J.Practice parameter:thymectomy for autoimmune myasthenia gravis(an evidence-based review):report of the Quality Standards Subcommittee of the American Academy of Neurology[J].Neurology,2000,55(1):7-15.
    [21]Jaretzki A,Steinglass K M,Sonett JR.Thymectomy in the management of myasthenia gravis[J].Semin Neurol,2004,24(1):49-62.
    [22]Lennon V A,Lindstrom J M,Seybold M E.Experimental autoimmune myasthenia(EAMG):A model of myasthenia gravis in rats and guinea pigs[J].J Exp Med,1975,141(6):1365-1375.
    [23]Fuchs S,Nevo D,Tarrab-Hazdai R et al.Strain differences in the autoimmune response of mice to acetylcholine receptors[J].Nature,1976,263(5575):329-330.
    [24]Berman P W,Patrick J.Linkage between the frequency of muscular weakness and locus that regulate immune responsiveness in murine experimental autoimmune myasthenia gravis[J].J Exp Med,1980,152(3):507-520.
    [25]Christadoss P,Lennon V A,Lambert E H et al.T and B Lymphocytes:Recognition and function[J].New York:Academic Press,1979.
    [26]Christadoss P,Poussin M,Deng C.Animal models of myasthenia gravis[J].Clin Immunol,2000,94(2):75-87.
    [27]许文华,韩莹莹,汪思应等.鼠源乙酰胆碱受体a亚基97-116肽段复制EAMG模型[J].中国神经精神疾病杂志,2006,32(2):179-187.
    [28]吴怀国,陈荣志,许文华等.乙酰胆碱受体a亚基125-147肽段制作实验性重症肌无力动物模型的研究[J].临床神经病学杂志,2006,19(5):369-375.
    [29]李保华,高波廷,徐金枝等.血清阴性和阳性重症肌无力被动转移动物模型的对比观察[J].脑与神经疾病杂志,2003,11(1):25-29.
    [30]黄志,徐秀娟.nAChR单克隆抗体建立重症肌无力被动转移小鼠模型的研究[J].第三军医大学报,2006,28(13):1397-1399.
    [31]Schonbeck S,Padberg F,Marx A et al.Transplantation of myasthenia gravis thymus to SCID mice[J].Ann N Y Acad Sci,1993,681:66-73.
    [32]Schonbeck S,Padberg F,Hohlfeld R et al.Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice.A new model of myasthenia gravis[J].J Clin Invest,1992,90(1):245-250.
    [33]Spuler S,Sarropoulos A,Marx A et al.Thymoma-associated myasthenia gravis.Transplantation of thymoma and extrathymomal thymic tissue into SCID mice[J].Am J Pathol,1996,148(5):1359 - 1365.
    [34]Gu D,Wogensen L,Calcutt N A et al.Myasthenia gravis-like syndrome induced by expression of interferon gamma in the neuromuscular junction[J].J Exp Med,1995,181(2):547-57.
    [35]Shi FD,Li H,Wang H et al.Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis:identification of regulatory cells[J].J Immunol,1999,162(10):5757-63.
    [36]郝志波,郭晨云,蘧艳峰等.基因疫苗pcDNA2AChRot211免疫小鼠建立重症肌无力动物模型[J].中国免疫学杂志,2006,22(3):216-225.
    [37]Dyrberg T,Petersen J S,Oldstone M B.Immunological cross-reactivity between mimicking epitopes on a virus protein and a human autoantigen depends on a single amino acid residue[J].Clin Immunol Immunopathol,1990,54(2):290-297.
    [38]Browning J L.B cells move to centre stage:novel opportunities for autoimmune disease treatmen[J].Nat Rev Drug Discov,2006,5(7):564-576.
    [39]Bendelac A,Bonneville M,Kearney JF.Autoreactivity by design:innate B and T lymphocytes[J].Nat Rev Immunol,2001,1(3):177-186.
    [40]Hashimoto T,Akiyama K,Robayashi N et al.Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects[J].Int Arch Allergy Immunol,2005,137 Suppl 1:51-4.
    [41]Linden A,Hoshino H,Laan M.Airway neutrophils and interleukin-17[J].Eur Respir J,2000,15(5):973-7.
    [42]Matusevicius D,Kivisakk P,He B et al.Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis[J].Mult Scler,1999,5(2):101-4.
    [43]Wong C R,Ho C Y,Li E K et al.Elevation of proinflammatory cytokine(IL-18,IL-17,IL-12)and Th2 cytokine(IL-4)concentrations in patients with systemic lupus erythematosus[J].Lupus,2000,9(8):589-93.
    [44]Drachman D B.Myasthenia gravis[J].N Engl J Med,1994,330(25):1797-1810.
    [45]Vincent A,Beeson D,Lang B.Molecular targets for autoimmune and genetic disorders of neuromuscular transmission[J].Eur J Biochem,2000,267(33):6717-6728.
    [46]Dedhia V,Goluszko E,Wu B et al.The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis[J].Clin Immunol Immunopathol,1998,87(3):266-275.
    [47]Li H,Shi F D,He Bet al.Experimental autoimmune myasthenia gravis induction in B cell-deficient mice[J].Int Immunol,1998,10(9):1359-1365.
    [48]Christadoss P.C5 gene influences the development of murine myasthenia gravis[J].J Immunol,1988,140(5):2589-2592.
    [49]Atzeni F,Doria A,Maurizio T et al.What is the role of rituximab in the treatment of rheumatoid arthritis?[J]Autoimmun Rev,2007,6(8):553-558.
    [50] Edwards J C, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases[J].Nat Rev Immunol, 2006, 6(5):394-403.
    
    [51] Sfikakis P P, Boletis J N, Tsokos G C. Rituximab anti-B-cell therapy in systemic lupus erythematosus:pointing to the future[J]. Curr Opin Rheumatol, 2005, 17(5):550-557.
    
    [52] Hauser S L, Waubant E.Arnold DL et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosisQ]. N Engl J Med, 2008, 358(7):676-688.
    
    [53] Dorner T,Lipsky P E. B-cell targeting:a novel approach to immune intervention today and tomorrow[J].Expert Opin Biol Ther,2007, 7(9):1287-1299.
    
    [54] Arkfeld D G. The potential utility of B cell-directed biologic therapy in autoimmune diseases[J]. Rheumatol Int,2008,28(3):205-215.
    
    [55] Looney R J, Srinivasan R. The effects of rituximab on immunocompetency in patients with autoimmune disease[J]. Arthritis Rheum, 2008, 58(1):5-14.
    
    [56] Martin F, Chan A C. B cell immunobiology in disease:evolving concepts from the clinic[J].Annu Rev Immunol,2006, 24:467-496.
    
    [57] Mauri C, Ehrenstein M R.The short history of regulatory B cells[J]. Trends Immunol, 2008, 29(1):34-40.
    
    [58] Dalakas M C.B cells in the pathophysiology of autoimmune neurological disorders:a credible therapeutic target[J]. Pharmacol Ther,2006,112(1): 57-70.
    
    [59] Carter R H. B cells in health and disease[J]. Mayo Clin Proc, 2006, 81(3):377-384.
    
    [60] Conti-Fine B M, Milani M,Wang W. CD4' T cells and cytokines in the pathogenesis of acquired myasthenia gravis[J]. Ann N Y Acad Sci, 2008,1132:193-209.
    
    [61] Tuzun E, Meriggioli M N, Row in J et al. Myasthenia gravis patients with low plasma IL-6 and IFN-gamma benefit from etanercept treatment[J]. J Autoimmun, 2005, 24(3):261-8.
    
    [62] Eng H, Lefvert A K, Mellstedt H et al.Human monoclonal immunoglobulins that bind the human acetylcholine receptor[J]. Eur J Immunol, 1987, 17(12):1867-9.
    
    [63] Hohlfeld R, Toyka K V,Heininger K et al. Autoimmune human T lymphocytes specific for acetylcholine receptor[J]. Nature, 1984, 310(5974) :244-6.
    
    [64] Morgutti M, Conti-Tronconi B M,Sghirlanzoni A et al.Cellular immune response to acetylcholine receptor in myasthenia gravis:II. Thymectomy and corticosteroids[J]. Neurology, Neurology, 1979, 29(5) :734-8.
    
    [65] Ahlberg R, Yi Q,Pirskanen R et al. Treatment of myasthenia gravis with anti-CD4 antibody:improvement correlates to decreased T-cell autoreactivity[J].Neurology,1994,44(9) :1732-7.
    
    [66] Wang Z Y, Karachunski P I,Howard J F et al. Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4 and CD8 cells[J]. Neurology, 1999, 52(3):484-97.
    [67]Kaul R,Shenoy M,Goluszko E et al.Major histocompatibility complex class Ⅱ gene disruption prevents experimental autoimmune myasthenia gravis[J].J Immunol,1994,152(6):3152-7.
    [68]Wang Z Y,Okita D K,Howard Jet al.T-cell recognition of muscle acetylcholine receptor subunits in generalized and ocular myasthenia gravis[J].Neurology,1998,50(4):1045-54.
    [69]Protti M P,Manfredi A A,Straub C et al.Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis[J].Proc Natl Acad Sci,1990,87(19):7792-6.
    [70]Kolls J K,Linden A.Interleukin-17 family members and inflammation[J].Immunity,2004,21(4):467-76.
    [71]Komiyama Y,Nakae S,Matsuki T et al.IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J].J Immunol,2006,177(1):566-73.
    [72]Romagnani S.Th1/Th2 cells[J].Inflamm Bowel Dis,1999,5(4):285-94.
    [73]Abbas A K,Murphy K M,Sher A.Functional diversity of helper T lymphocytes[J].Nature,1996,383(6603):787-93.
    [74]Sakaguchi S,Sakaguchi N,Asano M et al.Jmmunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155(3):1151-64.
    [75]蔡勇,刘玉兰.调节性T细胞研究进展及其临床应用前景[J].中国免疫学杂志,2008,24(08):766-封3.
    [76]Weiner H L.Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells[J].Immunol Rev,2001,182:207-14.
    [77]Mombaerts P,Iacomini J,Johnson R S et at.RAG-1-deficient mice have no mature B and T lymphocytes[J].Cell,1992,68:869-877.
    [78]Wang W,Ostlie N S,Conti-Fine B M et al.The susceptibility to experimental myasthenia gravis of STAT6-/- and STAT4-/- BALB/c mice suggests a pathogenic role of Thl cells[J].J Immunol,2004,172(1):97 - 103
    [79]Karachunski P I,Ostlie N S,Monfardini C et al.Absence of IFN-gamma or IL-12 has different effects on experimental myasthenia gravis in C57BL/6 mice[J].J Immunol,2000,164(10):5236-44.
    [80]Moiola L,Galbiati F,Martino Get al.IL-12 is involved in the induction of experimental autoimmune myasthenia gravis,an antibody-mediated disease[J].Eur J Immunol,1998,28(8):2487-97.
    [81]Yoshikawa H,Sato K,Edahiro Set al.Elevation of IL-12 p40 and its antibody in myasthenia gravis with thymomaEJ].J Neuroimmunol,2006,175(1-2):169-75.
    [82]Wang H B,Shi FD,Li H et al.Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis[J].Clin Immunol,2000,95(2):156-62.
    [83]Reyes-Reyna S M,Krolick K A.Chemokine production by rat myocytes exposed to interferon-gamma[J].Clin Immunol,2000,94(2):105-13.
    [84]Poea-Guyon S,Christadoss P,Le Panse R et at.Effects of cytokines on acetylcholine receptor expression:implications for myasthenia gravis[J].J Immunol,2005,174(10):5941-9.
    [85]Stegall T,Krolick KA.Myocytes respond to both interleukin-4 and interferon-gamma:cytokine responsiveness with the potential to influence the severity and course of experimental myasthenia gravis[J].Clin Immunol,2000,94(2):133-9.
    [86]Link H,Xiao BG.Rat models as tool to develop new immunotherapies[J].Immunol Rev.2001,184:117-28.
    [87]Poussin MA,Goluszko E,Franco JU et al.Role of IL-5 during primary and secondary immune response to acetylcholine receptor[J].J Neuroimmunol,2002,125(1-2):51-8.
    [88]Sassano P,Paparo F,Ramieri V et al.Interleukine-6(IL-6) may be a link between myasthenia gravis and myoepithelioma of the parotid gland[J].Med Hypotheses,2007,68(2):314-7.
    [89]张栩,孙兆林,丛志强.重症肌无力患者外周血单核细胞转化生长因子的变化[J].中华神经科杂志,1999,32(5):271.
    [90]Ostlie N S,Karachunski P I,Wang W et al.Transgenic expression of IL-10 in T cells facilitates development of experimental myasthenia gravis[J].Immunol,2001,166(8):4853-62.
    [91]Zhang G X,Xiao BG,Yu LY et al.Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR[J].J Neuroimmunol,2001,113(1):10-8.
    [92]Poussin M A,Fuller C L,Goluszko E et al.Suppressed clinical experimental autoimmune myasthenia gravis in bml2 mice is linked to reduced intracellular calcium mobilization and IL-10 and IFN-gamma release by acetylcholine receptor-specific T cells[J].J Neuroimmunol,2003,134(1-2):104-10.
    [93]BalasaB,Deng C,Lee J et al.Interferon gamma(IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice[J].J Exp Med,1997,186(3):385-91.
    [94]Zhang G X,Xiao B G,Bai X F et al.Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis[J].J Immunol,1999,162(7):3775-81.
    [95] Deng C,Goluszko E,Tuzun E et al.Resistance to experimental autoimmune myasthenia gravis in IL-6-deficient mice is associated with reduced germinal center formation and C3 production[J].J Immunol, 2002, 169(2):1077-83.
    
    [96]Huang D,Shi F D, Giscombe R et al. Disruption of the IL-lbeta gene diminishes acetylcholine receptor-induced immune responses in a murine model of myasthenia gravis[J].Eur J Immunol, 2001,31(1):225-32.
    
    [97] Balasa B, Deng C, Lee J et al. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis[J].J Immunol,1998,161(6):2856-62.
    
    [98] Ostlie N, Milani M, Wang W et al. Absence of IL-4 facilitates the development of chronic autoimmune myasthenia gravis in C57BL/6 mice[J].J Immunol,2003, 170(1):604-12.
    
    [99] Wang W,Milani M, Ostlie N et al.C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells[J].J Immunol, 2007, 178(11):7072-80.
    
    [100] Karachunski P I,Ostlie N S,Okita D K et al. Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4" epitope sequences of the acetylcholine receptor[J]. J Neuroimmunol,1999,95(1-2):73-84.
    
    [101] Milani M, Ostlie N, Wang W et al. T cells and cytokines in the pathogenesis of acquired myasthenia gravis[J]. Ann N Y Acad Sci, 2003, 998:284-307.
    
    [102] Infante-Duarte C,Horton H F, Byrne M C et al.Microbial lipopeptides induce the production of IL-17 in Th cells[J].J Immunol,2000, 165(11):6107-15.
    
    [103] Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J].Nat Immunol, 2005, 6(11):1133-41.
    
    [104] Harrington L E,Hatton R D, Mangan P R et al. Interleukin 17-producing CD4~+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol, 2005, 6(11): 1123-32.
    
    [105] Langrish C L, Chen Y, Blumenschein W M et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med, 2005,201(2):233-40.
    
    [106] Parish C R. Immune response to chemically modified flagellin. I. Induction of antibody tolerance to flagellin by acetoacetylated derivatives of the protein[J]. J Exp Med, 1971, 134(1): 1-20.
    
    [107] Parish C R. Immune response to chemically modified flagellin. II. Evidence for a fundamental relationship between humoral and cell-mediated immunity[J]. J Exp Med, 1971, 134(1): 21-47.
    
    [108] Coffman R L. Origins of the T(H)1-T(H)2 model:a personal perspective[J].Nat Immunol,2006, 7(6):539-41.
    [109] Mosmann T R, Cherwinski H, Bond M W et al.Two types of murine helper T cell clone.I. Definition according to profiles of lymphokine activities and secreted proteins[J].J Immunol, 1986,136(7):2348-57.
    
    [110] Coffman R L,Carty J A. T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma[J]. J Immunol, 1986, 136(3):949-54.
    
    [111] Cher D J, Mosmann T R. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones[J].J Immunol, 1987, 138(11):3688-94.
    
    [112] Mosmann T R, Coffman R L. TH1 and TH2 cells:different patterns of lymphokine secretion lead to ifferent functional properties[J]. Annu Rev Immunol,1989,7:145-73.
    
    [113] Billiau A,Heremans H, Vandekerckhove F et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma[J]. J Immunol,1988,140(5):1506-10.
    
    [114] Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage[J]. Nat Med,2007 13(2):139-45.
    
    [115] Voorthuis J A, Uitdehaag B M, De Groot CJ et al. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats[J]. Clin Exp Immunol,1990, 81(2):183-8.
    
    [116] Duong T T, Finkelman F D, Singh B et al.Effect of anti-interferon-gamma monoclonal antibody treatment on the development of experimental allergic encephalomyelitis in resistant mouse strains[J].J Neuroimmunol, 1994, 53(1):101-7.
    
    [117] Krakowski M,Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis[J].Eur J Immunol, 1996, 26(7):1641-6.
    
    [118] Tran E H, Prince E N, Owens T. IFN-gamma shapes immune invasion of the central nervous system via regulation of chemokines[J]. J Immunol,2000,164(5):2759-68.
    
    [119] Zhang G X, Gran B, Yu S et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta 2-deficient mice:IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system[J].J Immunol,2003,170(4):2153-60.
    
    [120] Bettelli E,Sullivan B, Szabo S J et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis[J]. J Exp Med, 2004, 200(1) :79-87.
    
    [121] Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J].Immunity, 2000, 13(5):715-25.
    
    [122] Kastelein R A, Hunter C A, Cua D J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation[J]. Annu Rev Immunol, 2007, 25:221-42.
    [123] Cua D J,Sherlock J,Chen Y et al.Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature,2003,421(6924):744-8.
    
    [124] Murphy C A, Langrish C L, Chen Y et al.Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation[J]. J Exp Med,2003,198(12):1951-7.
    
    [125] Aggarwal S,Ghilardi N, Xie M H et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17[J]. J Biol Chem,2003,278(3):1910-4.
    
    [126] Nakae S, Nambu A,Sudo K et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice[J].J Immunol, 2003, 171(11):6173-7.
    
    [127] Komiyama Y, Nakae S, Matsuki T et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis[J].J Immunol,2006,177(1):566-73.
    
    [128] Bush K A, Farmer K M, Walker J S et al. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein[J]. Arthritis Rheum, 2002, 46(3):802-5.
    
    [129] Hofstetter H H, Ibrahim S M, Koczan D et al. Therapeutic efficacy of IL-17 neutralization in murine experimental autoimmune encephalomyelitis[J].Cell Immunol, 2005, 237(2):123-30.
    
    [130] Basso AS, Cheroutre H,Mucida D. More stories on Th17 cells[J].Cell Res, 2009, 19(4):399-411.
    
    [131] Mangan P R.Harrington L E, O'Quinn DB et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090):231-4.
    
    [132] Bettelli E, Carrier Y, Gao W et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells[J]. Nature, 441(7090), 2006, 235-8.
    
    [133] Veldhoen M, Hocking RJ, Atkins CJ et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells[J]. Immunity,2006,24(2):179-89.
    
    [134] Nurieva R, Yang XO, artinez G et al.Essential autocrine regulation by IL—21 in the generation of inflammatory T cells[J]. Naturee, 2007, 448(7152):480-3.
    
    [135] Wan S, Xia C, Morel L IL-6 produced by dendritic cells from lupus-prone mice inhibits CD4~+CD25~+ T cell regulatory functions[J]. J Immunol, 2007, 178(1):271-9.
    
    [136] Okuda Y, Sakoda S, Fujimura H et al. IL-6 plays a crucial role in the induction phase of myelin oligodendrocyte glucoprotein 35-55 induced experimental autoimmune encephalomyelitis[J].J Neuroimmunol, 1999, 101(2) : 188-96.
    
    [137] Samoilova E B, Horton J L,Hilliard B et al.IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis:roles of IL-6 in the activation and differentiation of autoreactive T cells[J].J Immunol, 1998, 161(12):6480-6.
    [138] Korn T,Bettelli E,Gao W et al.IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature,2007,448(7152):484-7.
    
    [139] Kimura A, Naka T, ishimoto T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells[J]. Proc Natl Acad Sci, 2007104(29):12099-104.
    
    [140] Harrington L E, Hatton R D, Mangan P R et al. Interleukin 17-producing CD4' effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nat Immunol,2005,6(11):1123-32.
    
    [141] Irmler IM,Gajda M, Brauer R. Exacerbation of antigen-induced arthritis in IFN-gamma-deficient mice as a result of unrestricted IL-17 response[J]. J Immunol,2007,179(9):6228-36.
    
    [142] Ivanov I I,Zhou L, Littman D R.Ranscriptional regulation of Th17 cell differentiation[J].Semin Immunol,2007, 19(6):409-17.
    
    [143] Neufert C, Becker C, Wirtz S et al. IL-27 controls the development of inducible regulatory T cells and Th17 cells via differential effects on STATl[J].Eur J Immunol,2007,37 (7):1809-16.
    
    [144] Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17* T helper cells[J]. Cell, 2006, 126(6): 1121-33.
    
    [145] McGeachy M J,Cua DJ. Th17 cell differentiation: the long and winding road. Immunity[J]. J Immunity,2008,28(4):445-53.
    
    [146] Dong C.Th17 cells in development:an updated view of their molecular identity and genetic programming[J]. Nat Rev Immunol,2008,8(5):337-48.
    
    [147] Yang X O, Panopoulos A D, Nurieva R et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells[J].J Biol Chem, 2007, 282(13):9358-63.
    
    [148] Zhou L,Ivanov I I, Spolski R et al.IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J]. Nat Immunol, 2007,8(9):967-74.
    
    [149] Wong C K, Ho C Y, Li E K et al.Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus[J]. Lupus, 2000, 9(8):589-93.
    
    [150] Matusevicius D, Kivisakk P, He B, et al.Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis[J]. Mult Scler, 1999, 5(2):101-4.
    
    [151] Maini R N, Taylor P C, Szechinski J et al. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate[J].Arthritis Rheum, 2006,54(9):2817-29.
    [152] Fossiez F, Djossou O,Chomarat P et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines[J]. J Exp Med, 1996, 183(6):2593-603.
    
    [153] Szabo S J, Kim S T,Costa G L et al. A novel transcription factor, T-bet, directs Th1 lineage commitment[J].Cell, 2000, 100(6):655-69.
    
    [154] Bettelli E,Sullivan B,Szabo S J et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis[J]. J Exp Med, 2004, 200(1) :79-87.
    
    [155] Korn T, Reddy J, Gao W et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation[J]. Nat Med,2007, 13(4):423-31.
    
    [156] Weaver C T.Harrington L E, Mangan P R et al.Th17:an effector CD4 T cell lineage with regulatory T cell ties[J]. Immunity,2006,24(6) :677-88.
    
    [157] Francisco J,Quintana, Howard L et al. Environmental control of Th17 differentiation[J].Eur J Immunol,2009, 39:634-675.
    
    [158] Casey T, Weaver. Th17:The ascent of a new effector T-cell subset[J]. Eur J Immunol,2009,39:634 - 675
    
    [159] Bettelli E, Oukka M, Kuchroo V K. T(H)-17 cells in the circle of immunity and autoimmunity[J]. Nat Immunol, 2007, 8(4) :345-50.
    
    [160] Cytokine-modulated regulation of helper T cell populations[J]. J Theor Biol,2000, 206(4): 539-60.
    
    [161] Hashimoto T, Akiyama K, Kobayashi N et al. Comparison of IL-17 production by helper T cells among atopic and nonatopic asthmatics and control subjects[J]. Int Arch Allergy Immunol, 2005, 137 Suppl 1:51-4.
    
    [162] Nakae S, Nambu A,Sudo K et al. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice[J].J Immunol,2003,171(11):6173-7.
    
    [163] Bush K A, Farmer K M, Walker J S et al. Reduction of joint inflammation and bone erosion in rat adjuvant arthritis by treatment with interleukin-17 receptor IgG1 Fc fusion protein[J]. Arthritis Rheum, 2002, 46(3):802-5.
    
    [164] Bailey S L, Schreiner B, McMahon EJ et al. CNS myeloid DCs presenting endogenous myelin peptides preferentially polarize CD4* T(H)-17 cells in relapsing EAE[J].Nat Immunol, 2007,8(2) :172-80.
    
    [165] Hsu H C, Yang P, Wang J et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice[J].Nat Immunol, 2008, 9(2):166-75.
    
    [166] Takagi R, Higashi T, Hashimoto K et al. B cell chemoattractant CXCL13 is preferentially expressed by human Th17 cell clones[J].J Immunol,2008, 181(1):186-9.
    
    [167] Peter H H, Warnatz K. Molecules involved in T-B co-stimulation and B cell homeostasis: possible targets for an immunological intervention in autoimmunity[J]. Expert Opin Biol Ther, 2005,5 Suppl 1:S61-71.
    [168] Kalled S L. The role of BAFF in immune function and implications for autoimmunity[J]. Immunol Rev,2005,204:43-54.
    
    [169] Smith C A, Farrah T, Goodwin R G. The TNF receptor superfamily of cellular and viral proteins:activation, costimulation,and death[J]. Cell, 1994, 76(6):959-62.
    
    [170] Mackay F, Schneider P,Rennert P et al. BAFF AND APRIL:a tutorial on B cell survival[J].Annu Rev Immunol,2003,21:231-64.
    
    [171] Mackay F, Silveira P A, Brink R. B cells and the BAFF/APRIL axis:fast-forward on autoimmunity and signaling[J]. Curr Opin Immunol,2007, 19(3):327-36.
    
    [172] Martin F, Chan A C. B cell immunobiology in disease:evolving concepts from the clinic[J].Annu Rev Immunol,2006,24:467-496.
    
    [173] Ng L G.Sutherland A P,Newton R et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells[J].J Immunol,2004,173(2):807-17.
    
    [174] Cancro M P. Peripheral B-cell maturation:the intersection of selection and homeostasis[J]. Immunol Rev,2004,197:89-101.
    
    [175] Mackay F, Woodcock S A,Lawton P et al.Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations[J]. J Exp Med, 1999, 190(11):1697-710.
    
    [176] Pers J 0, Daridon C, Devauchelle V et al.BAFF overexpression is associated with autoantibody production in autoimmune diseases[J]. Ann N Y Acad Sci,2005, 1050:34-9.
    
    [177] Krumbholz M, Theil D, Derfuss T et al.BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma[J]. J Exp Med, 2005, 201(2):195-200.
    
    [178] Kim J Y, Yang Y, Moon J S et al. Serum BAFF expression in patients with myasthenia gravis[J].J Neuroimmunol, 2008, 199(1-2):151-4.
    
    [179] Sasaki Y, Derudder E, Hobeika E et al.Canonical NF-kappaB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation[J]. Immunity, 2006, 24(6):729-39.
    
    [180] Sen R. Control of B lymphocyte apoptosis by the transcription factor NF-kappa B[J]. Immunity, 2006, 25(6):871-83.
    
    [181] Gardam S,Sierro F, Basten A et al.TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor[J]. Immunity, 2008, 28(3):391-401.
    
    [182] He J Q,Zarnegar B, Oganesyan G et al. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency[J].J Exp Med, 2006, 203(11) :2413-8.
    
    [183] Oak J S,Fruman D A.Role of phosphoinositide 3-kinase signaling in autoimmunity[J]. Autoimmunity, 2007, 40(6):433-41.
    [184] Mackay F,Browning J L. BAFF:a fundamental survival factor for B cells[J]. Nat Rev Immunol,2002,2(7):465-75.
    
    [185] Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inf lammation[J]. Immunity,2008, 28(4) :454-67.
    
    [186] Li X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling[J]. Cytokine,2008,41 (2):105-13.
    
    [187] Baggi F, Ubiali F, Nava S et al.Effect of IgG immunoadsorption on serum cytokines in MG and LEMS patients[J]. J Neuroimraunol, 2008, 201-202:104-10.
    
    [188] Yao Z, Fanslow W C,Seldin M F et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor[J]. Immunity,1995, 3(6):811—21.
    
    [189] Patera A C, Pesnicak L, Bertin J et al. Interleukin 17 modulates the immune response to vaccinia virus infection[J]. Virology, 2002, 299(1):56-63.
    
    [190] Charo I F,Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation[J].N Engl J Med,2006,354(6):610-21.
    
    [191] Huang D R, Wang J, Kivisakk P et al. Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis[J]. J Exp Med, 2001, 193(6): 713-26.
    
    [192] Palframan R T, Jung S, Cheng G et al. Inflammatory chemokine transport and presentation in HEV:a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues[J].J Exp Med,2001, 194(9):1361-73.
    
    [193] Charo I F, Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation[J].N Engl J Med,2006, 354(6):610-21.
    
    [194] Lu B,Rutledge B J, Gu L et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice[J].J Exp Med,1998 187(4) :601-8.
    
    [195] Reyes-Reyna S, Stegall T, Krolick K A. Muscle responds to an antibody reactive with the acetylcholine receptor by up-regulating monocyte chemoattractant protein l:a chemokine with the potential to influence the severity and course of experimental myasthenia gravis[J].J Immunol,2002, 169(3):1579-86.
    
    [196] Tuzun E, Saini S S, Morgan B P et al.Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis[J]. J Neuroimmunol,2006, 181(1-2):29-33.
    
    [197] Klaewsongkram J, Yang Y, olech S et al. Kruppel-like factor 4 regulates B cell number and activation-induced B cell proliferation[J]. J Immunol,2007, 179(7):4679-84.
    [198] Hoyer B F, Moser K,Hauser A E et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W raice[J].J Exp Med,2004, 199(11):1577-84.
    
    [199] Liu R, Van Kaer L,La Cava A et al. Autoreactive T cells mediate NK cell degeneration in autoimmune disease[J].J Immunol, 2006, 176(9):5247-54.
    
    [200] Christadoss P. Immunogenetics of experimental autoimmune myasthenia gravis[J]. Crit Rev Immunol, 1989,9(4):247-78.
    
    [201] Shi F D, Bai XF, Li H L et al. Macrophage apoptosis in muscle tissue in experimental autoimmune myasthenia gravis[J].Muscle Nerve, 1998, 21(8):1071-4
    
    [202] Martin A P, Canasto-Chibuque C, Shang L et al. The chemokine decoy receptor M3 blocks CC chemokine ligand 2 and CXC chemokine ligand 13 function in vivo[J].J Immunol, 2006, 177(10):7296-302.
    
    [203] Flaishon L, Becker-Herman S,Hart G et al. Expression of the chemokine receptor CCR2 on immature B cells negatively regulates their cytoskeletal rearrangement and migration[J]. Blood, 2004 104(4):933-41.
    
    [204] Gu L, Tseng S, Horner R M et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1[J]. Nature, 2000, 404(6776):407-11.
    
    [205] Weaver C T.Harrington L E, Mangan P R et al.Th17:an effector CD4 T cell lineage with regulatory T cell ties[J].Immunity, 2006, 24(6):677-88.
    
    [206] Lohr J, Knoechel B,Wang J J et al. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease[J].J Exp Med, 2006, 203(13):2785-91.
    
    [207] Cooke A. Th17 cells in inflammatory conditions[J]. Rev Diabet Stud,2006, 441(7090):231-234.
    
    [208] Ghilardi N, Ouyang W. Targeting the development and effector functions of Th17 cells[J].Semin Immunol,2007,19(6):383-93.
    
    [209] McGeachy MJ, Bak-Jensen KS, Chen Y et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nat Immunol, 2007, 8(12):1390-7.
    
    [210] Rouvier E, Luciani MF, Mattei MG, et al.CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene[J]. J Immunol, 1993,150(12):5445-56.
    
    [211] Yao Z, Painter S L, Fanslow W C et al. Human IL-17: a novel cytokine derived from T cells[J]. J Immunol, 1995, 155(12) :5483-6.
    
    [212] Moseley T A, Haudenschild D R,Rose L et al. Interleukin-17 family and IL-17 receptors[J]. Cytokine Growth Factor Rev, 2003, 14(2):155-74.
    [213]Albanesi C,Scarponi C,Cavani A et al.Interleukin-17 is produced by both Th1 and Th2lymphocytes,and modulates interferon-gamma and interleukin-4-induced activation of human keratinocytes[J].J Invest Dermatol,2000,115(1):81-7.
    [214]Tartour E,Fossiez F,Joyeux I et al.Interleukin 17,a T-cell-derived cytokine,promotes tumorigenicity of human cervical tumors in nude mice[J].Cancer Res,1999,59(15):3698-704.
    [215]Takaya H,Andoh A,Makino J et al.Interleukin-17 stimulates chemokine(interleukin-8and monocyte chemoattractant protein-1) secretion in human pancreatic periacinar myofibroblasts[J].Scand J Gastroenterol,2002,37(2):239-45.
    [216]Shi F D,Flodstrom M,Kim S H et at.Control of the autoimmune response by type 2 nitric oxide synthase[J].J Immunol,2001,167:3000-3006.
    [217]Stockinger B,Veldhoen M.Differentiation and function of Th17 T cells[J].Curr Opin Immunol,2007,19:281-286
    [218]杜俊,杨丽,刘东戈.胸腺瘤WHO新分类与重症肌无力的关系[J].中国神经免疫学和神经病学杂志,2008,15(05):384-391.
    [219]Muller-Hermelink H K,Marx A.Pathological aspects of malignant and benign thymic disorders[J].Ann Med,1999,31 Suppl 2:5-14.
    [220]Kornstein MJ.Thymoma classification:my opinion[J].Am J Clin Pathol,1999,112(3):304-7.
    [221]Harris N L,Muller-Hermelink H K.Thymoma classification.A siren's song of simplicity[J].Am J Clin Pathol,1999,112(3):299-303.
    [222]Okumura M,Ohta M,Tateyama H et al.The World Health Organization histologic classification system reflects the oncologic behavior of thymoma:a clinical study of 273patients[J].Cancer,2002,94(3):624-32.
    [223]Okumura M,Miyoshi S,Fujii Y et al.Clinical and functional significance of WHO classification on human thymic epithelial neoplasms:a study of 146 consecutive tumors[J].Am J Surg Pathol,2001,25(1):103-10.
    [224]郭秀海,吴卫平,石怀银等.胸腺瘤病理分型与重症肌无力关系的研究[J].临床神经病学杂志,2002,15(3):151-153.
    [225]Buckley C,Douek D,Newsom-Davis Jet al.Mature,long-lived CD4~+ and CD8~+ T cells are generated by the thymoma in myasthenia gravis[J].Ann Neurol,2001,50(1):64-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700