用户名: 密码: 验证码:
重组牛胰蛋白酶抑制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用基因重组技术构建了BPTI真核表达载体pPICZ/hsasp-bpti电转化毕赤酵母X-33后,筛选出稳定高效的分泌表达rBPTI的工程菌株。经SDS-PAGE、蛋白酶抑制实验、离子交换层析纯化及N-端氨基酸测序分析证明,白蛋白信号肽在毕赤酵母中成功地诱导分泌了具有正确N-端序列的rBPTI,与天然BPTI比较具有相同的理化性质和生物学活性。同时在80L发酵条件下,进行了rBPTI表达条件的优化,并建立一种适合于大规模纯化rBPTI的新方法。
    利用四氯化碳(CCl4)建立Wistar大鼠慢性肝损伤实验模型,证实rBPTI对实验性大鼠慢性肝损伤的保护作用。利用3.5 %的牛磺胆酸钠建立Wistar大鼠急性坏死性胰腺炎(ANP)模型,证实rBPTI对大鼠急性坏死性胰腺炎的治疗作用。说明在保护肝损伤和治疗急性胰腺炎方面,rBPTI具有和天然BPTI相同的药效学作用。
    本实验的创新之处在于:1)首次利用白蛋白信号肽在毕赤酵母中高效表达了rBPTI;2)建立了大规模发酵和纯化rBPTI的新方法;3)对比观察了rBPTI与BPTI对实验慢性肝损伤和实验急性坏死性胰腺炎的保护和治疗作用。
Bovine pancreatic trypsin inhibitor (BPTI,aprotinin for trade name) is apolypeptide of 58 amino acids with a molecular weight of 6510 dalton. BPTI is anatural non-specific serine protease inhibitor which can inhibit trypsin,chymotrypsin, kallikrein and plasmin etc.
    These years aprotinin is not limited to therapy of acute necrosispancreatitis(ANP), it has been widely used in arresting bleeding of blood duringcardio pulmonary bypass(CPB) cordis surgery, shock, asthma and gynecologicalillness etc. Aprotinin has become one of the important biochemicalpharmaceuticals for its protection for ischemic reperfusion injury of variousexperimental tissues such as liver, brain, and heart etc.
    However, the current aprotinin for commercial use was extracted frombovine organs such as lungs, pancreas etc. The complex manufacturing processbeyond to control led to impure components which were the major factors ofsevere clinical adverse effects. The source of starting material was limitedbecause of mad cow disease.Therefore, the clinical application of aprotinin wasconfined. On the other hand, with the continuous discovery for aprotininpharmacodynamics, increasing clinical application coverage and fast growingmarket demand, the only way to solve these problems will be the use of the gene
    engineering technology to produce recombinant BPTI(rBPTI).rBPTI has been reported to be expressed in E.coli, Saccharomyces cerevisiaeand Pichia pastoris, but there were some insurmountable flaws such as lowproductivity, incorrect folding and cleavage. Especially in Pichia pastoris, it wasfound that the Kex2 protease was not able to cleave off rBPTI to produce a correctN-terminal sequence "Arg-Pro-Asp" with signal peptide of alpha mating factor.Therefore, the expression system of rBPTI construction which structure iscompletely consistent with the natural BPIT(correct N-terminal and spatialconformation)and is stable, high-yield and easy to industrialized remains anunsolved problem for the production of rBPTI.On the basis of our original research on Pichia pastoris and human serumalbumin, we studied the production of rBPTI from the aspects of signal peptide,promoter, yeast strain and yeast preferred codons etc. At last, alpha mating factorsignal peptide was replaced by plasmid pPICZα with human serum albumin (HSA)signal peptide and Pichia pastoris expression systems was established that wasapplicable to industrialization. Additionally, rBPTI we produced was proved to bea secretory protein with a complete-modified natural structure and biologicalactivity. This research work included: ①Construction of vector pPICZ/hsasp-bpti,,transforming it into Pichia pastoris via electroporation and screening the highlevel strain. ② Purification of rBPTI and identification of the structure andbioactivity of rBPTI. ③Establishing a large-scale fermentation process of rBPTIin 80L fermentor and creating a new method to purify rBPTI. ④ Establishing thechronic liver injury model induced by carbon tetrachloride and observing theprotective effects of rBPTI on experimental chronic liver injury induced by
    carbon tetrachloride in rats in vivo. ⑤ Observation of therapeutic effects of rBPTIon acute necrosis pancreatitis in rats in vivo.1. Construction of Pichia pastoris expression system for rBPTI andcharacterization(1)Construction of rBPTI expression vector pPICZ/hsasp-bpti: Twooligonucleotides of hsasp were synthesized which had restriction endonucleasecohesive ends of BstBⅠ and XhoⅠ , and after two oligonucleotides annealingDNA fragment was ligated into vector pPICZα which was digested withBstBⅠ and XhoⅠ. The plasmid was named pPICZ/hsasp. bpti gene was obtainedusing specific cloning primers by PCR, then it was inserted into T vector. Afteridentification by endonuclease digestion assay, Xho I and Xba I target sites wereadded using expression primers by PCR. After identified by endonucleasedigestion assay and sequencing, the expression vector pPICZ/hsasp-bpti waslinearized and transformed into Pichia pastoris via electroporation.(2)Screening of the transformed Pichia pastoris: Transformed yeasts wereplated on YPD plates containing Zeocin to isolate Zeocin-resistant clones. Afterclones were cultured for 72 hours at 28℃ , 20 single clones were picked up. Thenthe genomic DNA of the transformed yeasts was extracted to perform PCR usingthe expression primers. Yeast clones tested positively by PCR were proliferatedand then rBPTI was induced with 0.5% methanol. The supernatant offermentation was identified by SDS-PAGE, inhibition activity to trypsin and highlevel strain BPTIS7 was screened.(3)Expression and identification of rBPTI: BPTIS7 was proliferated in 2Lculture at temperature 28℃ and rBPTI supernatant was purified with Mono S
    cation exchange chromatography and SourceTM30 RPC hydrophobicchromatography. Results showed that there was single band in SDS-PAGE andpurity was more than 95%. MS showed that molecule weight was 6508D andtheory value was 6511D. Amino acid sequencing suggested that the 15th Nterminal amino acid was identical with natural BPTI.2. Studies on large-scale fermentation and purification process of rBPTI(1)Studies on large-scale fermentation process of rBPTI: Pichia pastoris is amonocellular eukaryon which has many advantages as an expression host, and it'ssuitable for large-scale expression of the extraneous proteins. With theidentification of the bioactivities of the rBPTI, the large-scale fermentationprocess of rBPTI was explored. Studies were focused on pH value, culturemedium, resolved oxygen, methanol feed speed, initial biomass etc. The bestconditions for fermentation were found as follows: FM21 medium (including0.5% peptone), yeast biomass 220g·L-1, pH 3.3, DO between 25~30% and thesupply speed of methanol 8.5~9.0ml/h/L initial fermentation volume. Theconcentration of rBPTI in the broth could be reached 200mg·L-1.(2) A new method to purify rBPTI at large-scale: The fermentationsupernatant was purified with SP Sepharose XL cation exchange chromatographyand SourceTM 30 RPC hydrophobic chromatography, then the eluate was distilledto condense rBPTI. The purity could be more than 95% and the yield coefficientwas higher than 60%.3. Protective effects of rBPTI on chronic liver injuryThis study was carried out to observe the protective effect of rBPTI oncarbon tetrachloride-induced chronic liver injury in rats. The chronic injury
    fibrosis mice models were built using 40% carbon tetrachloride. rBPTI was givenat doses of small, medium and large and compared with hepatocytegrowth-promoting factors(HGF) which were used as controls . The levels of ALT,AST, TP, CHE, ALP, ALB, A/G, γ-GT, T-BIL,SA, Hyp were measured and thechange of hepatic histology was observed. Results showed that small, mediumand large doses of rBPTI compared with the control group decreased the values ofALT, AST,γ-GT, Hyp,T-BIL significantly (P < 0.01,P < 0.05) and increased thevalues of ALB,A/G,CHE significantly (P < 0.01,P < 0.05). There were nosignificant statistical difference of the changes of SA, ALP. The pathologicalchange of the small, medium and large doses group compared with the modelcontrol group were as follows: the structure of the hepatic phyllode was blurred,some liver cells were disintegrated and necrotic, there were moderately fatdenaturation in the central section of the hepatic sub-phylllode and some meetingsection, in the liver cells there were many visible different sized around vacuoles,the inflammation cells infiltrating and liver fibrosis were alleviated.4. Studies on therapeutic effects on rBPTI on experimental acute necrosispancreatitisThis study was to observe the therapeutic effect of rBPTI on acute necrosispancreatitis in rats. Acute necrosis pancreatitis was induced by injections of 3.5%sodium taurocholate into the main pancreatic duct of rats. Amylase and lipaseactivity were assayed and pathological changes were observed after treatmentwith rBPTI. Results showed that amylase and lipase were increased in modelsgroup. rBPTI markedly inhibited amylase, lipase activity and amelioratedpathological changes of acute necrosis pancreatitis. It indicated that rBPTI could
    suppress pathogenesis of acute necrosis pancreatitis in rats.To sum up, we expressed the rBPTI with correct N-terminal sequence inPichia pastoris with human serum albumin signal peptide;It was confirmed thatthe physiochemical character and bioactivity of rBPTI were identical with thenatural BPTI;we also built a new method for large-scale fermentation andpurification. We confirmed the protective effects of rBPTI on carbon tetrachloride-induced chronic liver injury in rats and the therapeutic effect of rBPTI on acutenecrosis pancreatitis in rats as well as natural BPTI. The current studies couldbuild theoretically and experimental foundation for research of rBPTI and thevalue of industry production were initially explored.
引文
1. Neurath H. Proteolytic processing and physiological regulation.Trends Biochem Sci,1989;14(7):268-271.
    2. 袁春华,梁宋平.Kunitz 型丝氨酸蛋白酶抑制剂结构与功能研究.生命科学研究,2003;7(2):110-115.
    3. Barbar E, Hare M, Makokha M ,et al. NMR-detected order in core residues of denatured bovine pancreatic trypsin inhibitor.Biochemistry, 2001;40 (32):9734-9742.
    4. Antuch W, Berndt KD, Chavez M, et al. The NMR solution structure of Kunitz-type proteinase inhibitors from the sea anemone anemonia Stichodactyla helianthus. Eur J biochem,1993;212(3):675-684.
    5. Hagihara Y, Shirali K, Nakamura T, et al. Screening for stable mutants with amino acid pairs substituted for the disulfide bond between residues 14 and 38 of bovine pancreatic trypsin inhibitor (BPTI).J Biol Chem,2002;277(52):51043-51048.
    6. Pritchar L,Dufton MJ. Evolutionary Trace Analysis of the Kunitz/BPTI family of proteins: Functional divergence may have been based on conformational adjustment. J Mol Biol,1999;285(4):1589-1607.
    7. Carlacci L. Prediction of a 12-residue loop in bovine pancreatic trypsin inhibitor: effects of buried water. Biopolymers,2001;58(4):359-373.
    8. Wlodawer A, Nachman J, Gilliland GL, et al. Structure of form Ⅲ crystals of bovine pancreatic trypsin inhibitor.J Mol Biol,1987;198(3):469-480.
    9. Wagner G, Braun W, Havel TF, et al, Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms, DISGEO and DISMAN. J Mol Biol,1987;196(3):611-639.
    10. Wagner G, Bruhwiler D, Wuthrich K, Reinvestigation of the aromatic side-chains in the basic pancreatic trypsin inhibitor by heteronuclear two-dimensional nuclear magnetic resonance [J].J Mol Biol,1987;196 (1):227-231.
    11. Berling R,Genell S,Ohlsson K.High-lose intraperitoneal aprotinin treatment of acue severe pancreatitis:a double-blind ransomized multi-center trial.J Gastroenterol, 1994;29(4):479-485.
    12. 黄瑞健,林乌拉,张小霓. 小剂量抑肽酶对体循环肺损伤保护机制的临床研究, 江苏临床医学杂志,2000;22(5):5-8.
    13. 束余生,朱秉智,勤建伟,等.抑肽酶对体外循环肺损伤保护机制的临床研究.江苏临床医学杂志,2000;4(1):7-10.
    14. 夏杰华,莫文起,陈秉学,等.大剂量抑肽酶对体外循环心内直视手术病人心肌的保护作用.临床麻醉学杂志,2000;16(9):433-434.
    15. 张光,肖红,廖力.抑肽酶对体外循环术中白细胞的影响.华西医学,2001;15(3):325-326.
    16. 易斌,陶国才,毕敏.肝癌常规切除术中抑肽酶的血液保护.中华麻醉学杂志,2003;23(6):408-411.
    17. 臧其威,陈广明.抑肽酶减少食管癌手术中出血.江苏医药,2001;27(3):215-216.
    18. 吴艳琴,熊俊成,黄贤明.急性高容量血液稀释及抑肽酶在宫颈癌根治术中的应用.浙江医学,2003;25(3):162-163.
    19. 杨金凤,董长生,王明德.抑肽酶用于宫颈癌广泛切除术中止血的临床研究.湖南医学,2001;18(2):88-90.
    20. 李滨滨,姜丽华,王国年.围术期应用抑肽酶减少脑肿瘤手术出血及脑水肿的临床研究.哈尔滨医科大学学报,2001;35(2):131-132.
    21. 孟令秋,吴江,周春亏.抑肽酶佐治脑出血的临床研究.中风与神经病学杂志,2003;20(3):233-234.
    22. 王艳梅,王雪杰,刘志海.抑肽酶治疗脑出血、脑水肿的临床观察.中国临床医药,2002;25:811-812.
    23. 柯广珍.抑肽酶在髋关节置换术中抑制出血的临床研究.成宁医学院学报,2002;16(3):194-195.
    24. 王震宇,徐志安.张镝.抑肽酶与透明质酸联合应用治疗骨性关节炎.中华综合医学,2003;4(1):33-35.
    25. 曹天生,刘瑞华,孙晓明.亚甲蓝和抑肽酶联合应用防止术后腹腔内粘连的试验观察.中国胃肠外科杂志,2000;3(4):238-239.
    26. 丁敏,王毓,江素君.美蓝及抑肽酶预防术后肠粘连的对比实验研究.中国普外基础与临床杂志,2002;9(3):175-176.
    27. 王志刚,穆秀芝,马红梅.抑肽酶治疗急性胃黏膜出血40例疗效观察.世界华人消化杂志,2000;8(5):19-20.
    28. 尹宝民,刘淑君.赵如焕.催产素联用静滴抑肽酶对剖宫术后出血的影响.国际医药卫生导报,2001;(12):45-46.
    29. 赵礼君,袁霞芳.抑肽酶在鼻内窥镜手术时的止血效果.浙江实用医学,2003;8 (3):161-162.
    30. 穆小东,栗兰凯,张鸿祥.抑肽酶在严重胸外伤中的应用.江苏医药,1999;25(9):708-709.
    31. 孙上云,吴远杰.国产抑肽酶在普通外科手术中的应用.暨南大学学报,2001;22(4): 116-119.
    32. Landis RC,Haskard DO,Taylor KM.New antiinflammatory and platelet-preserving effects of aprotinin. Ann Thorac Surg,2001;72(5):1808-1813.
    33. Ashraf S,Tian Y,Coman D,et a1.“Low-dose”aprotinin modifies hemostasis but not proinflammatory cytokine release. Ann Thorac Surg,1997;63(1):68-73.
    34. Gurevitch J,Barak J,Hochhauser E,et a1. Aprotinin improves myocardial recovery after ischemia and reperfusion.Effects of the drug on isolated rat hearts.J Thorac Cardiovasc Surg,1994;108(1):109-118.
    35. Bull DA,Connors RC,Albanil A,et al. Aprotinin preserves myocardial biochemical function during cold storage through suppression of tumor necrosis factor.J Thorac Cardiovasc Surg,2000;119(2):242-250.
    36. Grocott HP, Sheng H, Miura Y,et al. The effects of aprotinin on outcome from cerebral ischemia in the rat. Anesth Analg,1999;88(1):1-7.
    37. Mathias MA,Tribble CG,Dietz JF,et al.Aprotinin improves pulmonary function during reperfusion in an isolated lung mode1.Ann Thorac Surg,2000;70(5): 1671-1674.
    38. Porte RJ,Molenaar IQ,Begliiomini B,et al.Aprotinin and transfusion requirements in orthotopic liver transplantation:a multicenter randomised double-blind study. Lancet,2000;355(9212):1303-1309.
    39. Molennaar IQ,Begliomini B,Grazi GL,et al.The effect of aprotinin on renal function in orthotopic liver transplantation.Transplatation, 200l;7l(2):247-252.
    40. Madhala-Givon O, Hochhauser E, Weinbroum A,et al. The influence of aprotinin on myocardial function after liver ischemia-reperfusion.Isr Med Assoc J,2000;2(6):450-454.
    41. Molenaar IQ , Veldman M, Begliomini B , et al . Improved early graft survival in patients receiving aprotinin during orthotopic liver transplantation. Transplant Proc, 2001;33(1-2):1345-1346.
    42. Horl WH. Aprotinin and renal function in patients undergoing cardiac surgery.Br J Anaesth, 2000;84(1):3-5.
    43. Kaplowitz N, Mechanisms of liver cell injury. J Hepatol,2000;32(1 Suppl): 39-47.
    44. Patel T,Steer CJ,Gores GJ. Apoptosis and the liver:A mechanism of disease,growth regulation,and carcinogenesis.Hepatology,1999;30(3):811-815.
    45. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95(APO-1/Fas) signaling pathways. EMBO J,1998;17(6):1675-1687.
    46. 张均田.现代药理实验方法.北京:北京医科大学中国协和医科大学联合出版社,1998;10:1397-1398.
    47. Seino K, Kayagaki N, Bashuda H,et al. Contribution of Fas ligand to cardiac allograft rejection.Ins Immunol,1996;8(9):1347-1354.
    48. 卢林耿,王中民,张永祥,等.对四氯化碳所致大鼠肝脏损伤机制的研究.中西医结合肝病杂志,1996;6(2):24-26.
    49. 邹原,宫德正,孙丽鹃,等.肝细胞生长因子对四氯化碳损伤原代培养大鼠肝细胞的保护作用.Chin J Appl Physiol,1997;13(3):228-229.
    50. Bac DJ, Pruimboom WM, Mulder PG, et al. High interleukin-6 production within the peritoneal cavity in decompensated cirrhosis and malignancy-related ascites. Liver, 1995;15(5):265-270.
    51. Mesa ML, Carrizosa R, Martinez-Honduvilla C,et al. Changes in rat liver gene expression induced by thioacetamide: protective role of S-adenosyl-Lmethionine by a glutathione-dependent mechanism.Hepatology,1996;23 (3):600-606.
    52. 李青,李跃华,薛隆翠,等.丹参素对实验性肝细胞损伤的防护作用.中西医结合肝病杂志,1996;6(3):29-30.
    53. Popper H,Keppler D.Networks of hepatocellular degeneration and death. Prog Liver Dis.1986;8:209-235.
    54. 巫协宁.急性肝损伤的细胞学机制.国外医学,消化系疾病分册,1998;18 (1):14-16.
    55. 蒋莉,李跃华,戚晓红,等.丹参素对内毒素性肝损伤的防护作用及其机制的研究.中西医结合肝病杂志,1999;9(2):30-32.
    56. 任福龙,丛铮.醋氨酚大鼠肝细胞损伤及其机制的研究.药学学报,1993;25(6): 399-401.
    57. 陈爽,贲长恩,杨美鹃,等.芍药甙防治大鼠肝细胞体外损伤形态学及生物化学研究.中西医结合肝病杂志,1997;7(4):217-218.
    58. 张亚兵,李之清,张赤志.蛇葡萄根对ConA诱导小鼠肝损伤的防护作用.中西医结合肝病杂志,2000;10(1):26-28.
    59. Sheron N,Williams R. IL-8 as a circulating cytokine:induction by recombinant tumor necrosis factor-alpha.Clin EXP Immunol,1992;89(1):100 -103.
    60. 郭亚军.细胞生物学与肿瘤免疫学研究与进展.北京:军事医学科学出版社,2000;5:86-88.
    61. 谈景旺.细胞凋亡与肝细胞损伤.Foreign Medical Sciences Section Pathophysiology and Clinical Medical,1998;18(1):76-78.
    62. Deaciuc Ⅳ , Fortunato F, D Souza NB, et al. Modulation of caspase-3 activity and Fas ligand mRNA expression in rat liver cells in vivo by alcohol and lipopolysaaharide. Alcohol Clin Exp Res,1999;23(2):349-356.
    63. Rudolph KL, Chang S, Millard M, et al. Inhibiton of experimental liver cirrhosis in mice by telomerase gene delivery.Science,2000;287(5456): 1253-1258.
    64. 苏东,陶国才,李昆. 抑肽酶预防处理大鼠肝脏缺血再灌注损伤的实验研究.重庆医学, 2002;31(8):709-710.
    65. 李桂臣,刘永锋,张佳林等.蛋白酶抑制剂对大鼠肝缺血再灌注和原位肝移植后肝功能的保护作用,中华肝胆外科杂志,2000;6(6):455-457.
    66. 向道康,孙宗全,徐志娟等.抑肽酶对乙型病毒性肝炎患者体外循环术后凝血功能的影响.中国胸心血管外科临床杂志,2002;9(2):146-147.
    67. 易斌,陶国才,毕敏等.肝癌常规切除中抑肽酶的血液保护作用.中华麻醉学杂志,2003;23(6):408-411.
    68. Basu S. Carbon tetrachloride-induced lipid peroxidation:eicosanoid formation and their regulation by antioxidant nutrients.Toxicology, 2003;189(1-2):113-127.
    69. 王虹蛟,张馨木,常淑芳等.抑肽酶对小鼠急性肝损伤的保护作用.中国实验诊断学,2005;9:420-421.
    70. Marks CB, Vasser M, Ng P, Henzel W, et al. Production of native, correctly folded bovine pancreatic trypsin inhibitor by Escherichia coli. J Biol Chem,1986;261(16): 7115-7118.
    71. Nilsson B, Berman-Marks C, Kuntz ID, Anderson S. Secretion incompetence of bovine pancreatic trypsin inhibitor expressed in Escherichia coli. J Biol Chem,1991;266(5):2970-2977.
    72. Jansson M, Li YC, Jendeberg L,et al. High-level production of uniformly 15N-and
    13C-enriched fusion proteins in Escherichia coli.J Biomol NMR, 1996;7(2):131-141.
    73. Auerswald EA, Schroder W, Kotick M. Synthesis, cloning and expression of recombinant aprotinin. Biol Chem Hoppe Seyler,1987;368(10):1413-1425.
    74. Weissman JS,Kim PS.The pro region of BPTI facilitates folding.Cell,1992;71(5):841-851.
    75. 高捷,谭树华,吴梧桐. 抑肽酶基因的克隆和表达.药物生物术,2002;9(2):66-70.
    76. von Wilcken-Bergmann B, Tils D, Sartorius J, et al. A synthetic operon containing 14 bovine pancreatic trypsin inhibitor genes is expressed in E.coli.EMBO J,1986;5(12): 3219-3225.
    77. Ostermeier M, Georgiou G. The folding of bovine pancreatic trypsin inhibitor in the Escherichia coli periplasm. J Biol Chem,1994;269(33): 21072-21077.
    78. Zhan X, Schwaller M, Gilbert HF, at al. Facilitating the formation of disulfide bonds in the Escherichia coli periplasm via coexpression of yeast protein disulfide isomerase.Biotechnol Prog,1999;15(6):1033-1038.
    79. Chesshyre JA, Kraunsoe JA, Lowe G. Production of bovine pancreatic trypsin inhibitor homologues in Escherichia coli and their characterization. Biotechnol Appl Biochem,1995;22(Pt3):269-280.
    80. Fischer R, Drossard J, Emans N et al. Towards molecular farming in the future: Pichia pastoris-based production of single-chain antibody fragments. Biotechnol Appl Biochem,l999;30(Pt2):117-120.
    81. Shapiro RI, Wen D, Levesque M, et al. Expression of Sonic hedgehog-Fc fusion protein in Pichia pastoris.Identification and control of post-translational, chemical,and proteolytic modifications.Protein Expr Purif,2003;29(2):272-283.
    82. Parekh R, Forrester K, Wittrup D. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae.Protein Expr Purif,1995;6(4):537 -545.
    83. Parekh RN, Wittrup KD. Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae.Biotechnol Prog,1997;3 (2):117-122.
    84. Kowalski JM, Parekh RN, Wittrup KD. Secretion efficiency in Saccharomyces cerevisiae of bovine pancreatic trypsin inhibitor mutants lacking disulfide bonds is correlated with thermodynamic stability. Biochemistry, 1998;37(5):1264-1273.
    85. Arnold CE, Parekh RN, Yang W, et al. Leader peptide efficiency correlates with signal recognition particle dependence in Saccharomyces cerevisiae. Biotechnol Bioeng, 1998;59(3):286-293.
    86. Bannister SJ, Wittrup KD.Glutathione excretion in response to heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol Bioeng,2000;68(4):389-395.
    87. Rakestraw A, Wittrup KD. Contrasting secretory processing of simultaneously expressed heterologous proteins in Saccharomyces cerevisiae.Biotechnol Bioeng, 2005;65(6)374-378.
    88. Vedvick T, Buckholz RG, Engel M, et al. High-level secretion of biologically active aprotinin from the yeast Pichia pastoris. J Ind Microbiol,1991;7(3):197-201.
    89. Panuwatsuk W, Da Silva NA. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol Bioeng,2003;81(6)712-718.
    90. Panuwatsuk W, Da Silva NA. Evaluation of pKD1-based plasmid systems for heterologous protein production in Kluyveromyces lactis.Appl Microbiol Biotechnol, 2002;58(2):195-201.
    91. MacKenzie DA, Kraunsoe JA, Chesshyre JA,et al. Aberrant processing of wild-type and mutant bovine pancreatic trypsin inhibitor secreted by Aspergillus niger.J Biotechnol,1998;63(2):137-146.
    92. 耿学军,常伟勤,范伟全等.抑肽酶在转基因烟草中的表达.中国实验诊断学,2005;9:282-284.
    93. 杨莉莉,贺巾超,马杰等.PHOⅠ信号肽在毕氏酵母中引导分泌表达天然N-端rBPTI.吉林大学学报(医学版),2005;31(6):830-832.
    94. Sambrook J,Russell D W等著;黄培堂主译。分子克隆实验指南(第三版),北京,科学出版社,2002年出版.
    95. 卢圣栋主编,现代分子生物学实验技术(第二版). 北京,中国协和出版社,1999年出版.
    96. 齐 杰,王丽萍,方 锐等.胰酶的小肽类抑制剂的研究.高等学校化学学报,1999;5 (20):25-30.
    97. Frank D,Stephan T,Hannekore D.Expression and functional characterization of the mammalian intestinal peptide transporter Pep T1 in the methylotropic yeast Pichia pastoris.Biochem Biophys Res Commun,1997;232(3):656-662.
    98. Higgins DR, Cregg JM.Introduction to Pichia pastoris.Methods Mol Biol, 1998;103:1-15.
    99. Clare JJ,Romanos MA,Rayment FB,et al.Production of mouse epidermal growth factor in yeast:high-level secretion using Pichia pastoris.Gene,1991;105 (2):205-212.
    100. Sreekrishna K, Brankamp RG, Kropp KE, et al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris.Gene, 1997;190(1):55-62.
    101. Cregg JM, Cereghino JL, Shi JY, et al. Recombinant protein expression in Pichia pastoris.Mol Biotechnol,2000;16(1):23-52.
    102. Brennan SO, Peach RJ, Bathurst IC, et al. Specificity of yeast KEX2 protease for variant human proalbumins is identical to the in vivo specificity of the hepatic proalbumin convertase. J Biol Chem,1990;265 (35):21494-21497.
    103. Brennan SO, Peach RJ. The processing of human proinsulin and chicken proalbumin by rat hepatic vesicles suggests a convertase specific for X-Y-Arg-Arg or Arg-X-Y-Arg sequences.J Biol Chem,1991;266(32):21504-21508.
    104. Barr FA, Leyte A, Mollner S, et al. Trimeric G-proteins of the trans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules.FEBS Lett,1991;294(3):239-243.
    105. Steinner DF, Smeekenes SP, Ohagi S, et al.The new enzymology of precursor processing endoproteases. J Biol Chem,1992;267(33):23435-23438.
    106. Min Li ,Lu Yi Li ,Xiu Shan Wu. Cloning and functional expression of a synthetic gene encoding Huwentoxin2 Ⅰ,a neurotoxin from the Chinese bird spider.Toxicon, 2000;38(2):153-162.
    107. Brunel L,Neugnot V,Landucci L,et al. High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris.J Biotechnol, 2004;111(1):41-50.
    108. 汪家政,范明主编,蛋白质技术手册(第一版).北京, 科学出版社, 2000年出版.
    109. 张振龙,李津. 国外医学预防、诊断、治疗用生物制品分册, 2003;26(2):61-63.
    110. Cereghino JL, Cregg JM.Heterologous protein expression in the methylotrophic yeast Pichia pastoris.FEMS Microbiol Rew,2000;24(1): 45-66.
    111. Clare JJ, Rayment FB, Ballantine SP, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene.Biotechnology,1991;9(5):455-460.
    112. Hasslacher M,Schall M,Hayn M,et al.High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts.Protein Expr Purif,1997;11(1):61-71.
    113. 贺巾超,杨莉莉,马杰等. rhKPI/AβPP大规模发酵及纯化工艺.吉林大学学报(医学版), 2006;32 (2): 278-281.
    114. Cregg JM,Vedvick TS,Raschke WC,et al. Recent advances in the expression of foreign genes in Pichia pastoris.Biotechnology,1993;11(8):105-119.
    115. 李海军, 彭淑牖, 刘颖斌, 等. 甘氨酸对急性坏死性胰腺炎鼠血和胰腺组织中TNF-α、IL-1β、IL-6、IL-8和IL-10的影响. 中国病理生理杂志 ,2006;22(2):239-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700