用户名: 密码: 验证码:
胸部爆炸伤致急性肺损伤的机理及其防治的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胸部爆炸伤是现代战争的常见伤型,其伤情复杂,死亡率高,是战时胸部外伤救治中的重点和难点。胸部爆炸伤致急性肺损伤乃至急性呼吸窘迫综合征是主要死亡原因之一。目前尚无胸部爆炸伤后致急性肺损伤机理及其防治方面的研究报道。本实验拟建立胸部爆炸伤致急性肺损伤动物实验模型,观察肺部损伤特点,从爆炸应激条件下信号转导相关分子的变化情况进一步探讨急性肺损伤的发生机理;同时观察了伤后早期应用地塞米松、山莨菪碱对肺功能的影响,探讨其预防急性肺损伤作用,为胸部爆炸伤后急性肺损伤的救治提供实验基础。研究内容共包括三部分,分述如下:
     第一部分:胸部爆炸伤致急性肺损伤动物模型的建立
     本部分实验拟建立胸部爆炸伤致ALI动物实验模型,观察肺部损伤特点,为进一步研究胸部爆炸伤后ALI的发病机理及防治措施提供稳定可靠的、符合ALI病理过程和临床特征的动物模型。实验采用健康白色家兔64只(第四军医大学实验动物中心提供),按爆炸源与致伤动物之间的距离(D),将其随机分为五组,A组:正常对照组8只;B组:D=5cm12只;C组:D=8cm12只;D组:D=12cm16只:E组:D=15cm12只。实验前家兔禁食6小时以上,采用3%戊巴比妥钠按30mg/kg剂量经耳缘静脉注射麻醉后,分别经右颈总动脉、颈外静脉向心方向插管,同时置心电图导线,采用8#瞬发电雷管作为爆炸源,将雷管固定于自制的致伤架上,采用蓄电池电起爆。动物左侧卧位固定于致伤架下,分布于其径向,均为右侧正对爆心,橡胶护具保护腹部及头部,雷管长轴与致伤动物右侧第五肋间平行,二者之间的垂直距离作为分组标准。致伤前5分钟开始用八道生理记录仪连续观察呼吸频率、外周动脉压、中心静脉压等生理学指标变化,并记录致伤后5、30min,1、3、6、
    
     一
     12、24 h各时间点的各生理指标变化;同时在致伤前及伤后以上各时间点,
     抽取动脉血标本进行动脉血气分析,计算肺泡-动脉血氧分压差P(A-a)0。;观
     察并记录动物的存活时间,统计各致伤组的24-4S小时内死亡率;在伤后不
     同时间点胸部X线透视检查,除全面观察肺门大小、形态、位置外,应特别注
     意比较两肺门、肺叶的密度有无异常变化;实验结束后立刻取肺组织,称湿
     重后置80aC烤箱中干燥24小时至干重恒定,计算肺水含量;取以上各时间点
     标本检测血清及支气管肺泡灌洗液中细胞因子 IL-6二L-8和 TNF a含量变化。
     结果:在 64只动物中共有 36只(56.3%)出现肺脏的破片伤,所有的
     动物*00%)均有不同程度的肺脏冲击伤,其中极重度伤14只,重度伤7只,
     中度伤 25只,轻度伤 10只。B组均为极重度损伤,平均肺出血实变的面积
     在80%以上,C、D组平均肺出血实变的面积分别为50%和30%左右,轻度
     伤动物绝大部分在E组,仅表现为单个肺叶的部分实变或散在的出血斑。根
     据各组肺脏冲击伤程度我们可以将B、C组归为重度爆炸伤组刀组归为中度
     爆炸伤组,而E组则归为轻度爆炸伤组;D组除1例动物瞬间死亡外,其余存
     活时间均超过 24h,较 B组、C组存活时间明显延长(P<0.of)。B组动物
     均为瞬间死亡,平均存活时间小干5分钟;C组动物存活均未超过12 h,平
     均存活时间小于6h,二例动物瞬间死亡。E组动物无早期死亡,均在6小时
     内各项生命指标恢复正常水平;各致伤组呼吸频率伤后smin内均较伤前明显
     加快(P<0刀1)。D组伤后lh呼吸频率达最高为87士10次/分,后有所下降,
     但伤后24 h仍未完全恢复至伤前水平(P<0刀5)。E组伤后5-10 ddn之内呼吸
     频率达最高,伤后3h内恢复至伤前水平(P>0刀5);各组随致伤距离的增加,
     肺水含量呈下降趋势,其中0组、E组较8组均有明显下降(P<0.05);B、C
     组伤后早期即可见明显斑片状和大片融合阴影,右肺较左肺明显,以肺门处为
     主,系严重肺出血所致刀组在伤后 12-24小时内主要表现为两肺纹理增重、模
     糊为主二4小时后肺内可出现斑片状甚至融合阴影多数是以右肺为主的两侧
     分布,少数只发生在右肺,48小时后两肺可广泛分布片状阴影;C、D组均表现
     -3-
    
     一
     为渐进性的呼吸性酸中毒,氧分压(PaO。)、氧饱和度(SaO。)均明显下降,
     伤后3Ormn较伤前有显著差别(P<0刀5),同时表现为肺循环明显的病理分流
     和无效通气(P;。。;Oz升高)。D组伤后30Inin时Paoz由伤前的108.5士
     14.60 nunHnunHg降至72.5士9.4InlnHg(尸<0*5),并呈持续下降趋势,伤后6h降
     至最低49.2士5.IInlnHg(P<0.of):D组伤后6h时SaOZ 由伤前的95.4士12.8
     %降至 75.4土 13.5%?
Chest explosive trauma is usual in modern war. It is the emphasis and difficulty in the treatment of explosive trauma because of its complexity and high mortality. Acute lung injury(ALI), even acute respiratory distress syndrome(ARDS) after chest explosive trauma is one of main causes of mortality in wartime. The study on the mechanism and treatment of ALI after chest explosive trauma has not been reported until now. The objectives of the present study are to establish the experimental model of ALI after chest explosive trauma, and to evaluate the expression alterations of signal transduction molecules under explosive stress condition, discuss their roles in mechanisms of ALI and potential possibility for NF K B P65 and P38 MARK as therapeutic targets for ALI/ARDS; at the same time, we investigate the influence of dexamethasone and anisodamine on the pulmonary function, discuss their roles in the prophylaxis and treatment of ALI, and provide experimental basis for the treatment of ALI after chest explosive trauma. There are three parts of the study.
    Part One. Establishment of animal model of ALI after chest explosive trauma.
    The objective of this part is to establish the stable experimental animal model of ALI after explosive trauma, investigate the
    
    
    
    characteristics of lung injury and provide basis for further study. 64 rabbits were divided into 5 groups randomly according to the distance between denotator and animal. Group A: normal control, 8 rabbits; B: D=5cm, 12 rabbits; C: D=8cm, 12 rabbits; D: D=12cm, 16 rabbits; E:D=15cm, 12 rabbits. The rabbits were fasted before experiment for at least 6 hours, and anesthetized by 3% pentobarbital sodium intravenous injection through auricular vein. Intubations through right carotid artery and external carotid vein and ECG conducting wires were settled. We used No. 8 denotators as explosive sources and exploded them electrically. The rabbits were fastened to the experimental shelf left lying position, the denotators were fastened to the shelf , too. The axis of denotators paralleled with the intercostal spaces. Physiologic index such as respiratory rate , peripheral artery pressure and central venous pressure were recorded continuously from 5 minutes before explosion; survival time of the animal, blood gas analysis and chest X-ray examination were done at the same time points; in addition to this, rate of lung water and the contents of IL-6, IL-8 and TNF a in plasma and BALF were detected. Results: There were 36 rabbits with lung fragment wounds in the whole 64 rabbits .All the rabbits had lung blast injury of different levels. We can call group B and C, D, E seriously injured groups, moderately injured group and slightly injured group respectively. The area of lung consolidation of group B and C was above 50%, while group D, about 30%. Survival time of group D was above 24 hours except for one immediate death after trauma. It was significantly longer than that of group B and C(p<0.01). All the rabbits in group E recovered in 6 hours after trauma; The respiratory rate raised significantly in 5
    
    
    minutes after trauma in each group(p<0. 01). It reached the height of 87?0 per minute in 1 hour in group D, then decreased, but could not recover in 24 hours. Rabbits in group E recovered in 3 hours after trauma(p<0. 05); Rate of lung water decreased with the increase of distance between denotator and animal. RLW of group D and E decreased more significantly than that in group D(p<0. 05); X-ray examination showed that there existed patch and fused shadows early after explosion because of pulmonary hemorrhage, and it was more serious in the right lung and hilus of lung than that in the left. But in group D, the changes above mentioned had not been found until 24 hours after trauma, patch shadow was all over the lungs after 48 hours. Gradual respiratory acidosis was found in group C and D, Pa02 and Sa02 decreased sharply after trauma; on the other hand .pathological shunt and invalid ventilation was characterized by the increase of P(A-a)02. Changes of inflammatory cyt
引文
1. Malhotra R,Peiest R,Bird MI.Role of L-selectin in lipopolysaccharide-induced activation of neutrophils.Biochem J 1996,320(pt2) :589-593.
    2. Kitchens RL,Munford RS.CD14-dependent internalization of bacterial lipopolysaccharide(LPS) is strongly influenced by LPS aggregation but not by cellular responses of LPS.J Immunol, 1998,160(4) : 1920-1928.
    3. Ingalls RR,Grlenbock DT. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide.J Exp Med,1995,181(4) :1473-1479.
    4. Muzio M,NatoIi G,Sccanis,et al. The human toll signaling pathway divergence of nuclear factor kappa B and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6(TRAF6) .J Exp Med,1998,187(12) :2097-2101.
    5. White MK, Baireddy V, Strayer DS, et al. Natural protection from apoptosis by surfactant protein A in type II pneumocytes. Exp Cell Res 2001 Feb 15;263(2) :183-192.
    6. Croston GE,Cao Z,Goeddel DV.NF-κB activation by IL-1 requires an IL-1 receptor-associated protein kinase activity.J Bio Chem,1995,270:16514-16517.
    7. Hauser CJ,Fekete Z, Livingston DH,et al. Integrated stimulation by CXC chemokines enhances PMN [Ca2+]i signaling in trauma and ARDS. Surgery 1999 Aug;126(2) :208-15.
    8. Hauser CJ, Jekete Z, Goodman ER, et al. CXCR2 stimulation primes CXCRl[Ca2+]i responses to IL-8 in human neutrophils. Shock 1999 Dec; 12(6) :428-37.
    9. Totani Y, Saito Y, Zshizaki T, et al. Leukotoxin and its diol induce neutrophil chemotaxis through signaltransduction different from that of fMLP. Eur Respir J 2000 Jan ;15(1) :75-9.
    10. Bulger EM, Maier RV. Lipid mediators in the pathophysiology of critical illness. Crit Care Med 2000 Apr ;28(4 suppl):N27-36.
    11. Zhao Y, Davis HW. Endotoxin causes phosphorylation of MARCKS in pulmonary vascular endothelial cells. J Cell Biochem 2000sep 7; 79(3) : 496-505.
    12. Geiser T, Jarreau PH, Atabai K, et al. Interleukin-lbeta augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol 2000 Dec;279(6) :L1184-1190.
    13. Wang HC,Zentner MD, Deng HT,et al. Oxidative stress disrupts glucocorticoid hormone-dependent transcription of the amiloride
    
    sensitive epithelial sodium channel alpha subunit in lung epithelial cells through ERK-dependent and thioredoxin-sensitive pathways. J Biol Chem 2000 Mar 24;275(12) :8600-9.
    14. Shanley TP, Vasi N, Denenberg A, et al. The serine/threonine phosphatase, PP2A:endogenous regulator of inflammatory cell signaling. J Immunol 2001 Jan 15;166(2) :966-972.
    15. Dunican AL,Leuenroch SJ, Grutkoski P,et al.TNF a-induced suppression of PMN apoptosis is mediated through IL-8 production. Shock 2000 sep;14 (3) :284-9.
    16. Hayashi R, Yamashita N, Matsui S, et al. Bradykinin stimulates IL-6 and IL-8 production by human lung fibroblasts through ERK and P38 MAPK dependent mechanisms. Eur Respir J 2000,sep;16(3) :452-8.
    17. Mantell LL, Lee PJ. Signal transduction pathways in hyperoxia-induced lung cell death. Mol Genet Metab 2000 sep-oct;71(1-2) :359-70.
    18. Lentsch AB, Ward PA. Activation and regulation of NF K B during acute inflammation. Clin Chem Lab Med, 1999,37(3) :205-208.
    19. Abraham E. NF κB activation. Crit Care Med 2000 Apr;28(4 suppl):N100-4.
    20. Said SI, Dickman KG. Pathways of inflammation and cell death in the lung:modulation by vasoactive intestinal peptide. Regul Pept 2000 sep 25;93(1-3) :21-29.
    21. Shanley TP, Vasi N, Denenberg A. Regulation of chemokine expression by IL-10 in lung inflammation. Cytokine 2000 Jul;12(7) :1054-64.
    22. Gutteridge JM, Mitchell J. Redox imbalance in the critically ill. Br Med Bull 1999;55(1) :49-75.
    23. Quinlan GJ, Chen Y, Euans TW, et al. Iron signaling regulated directly and through oxygen: implications for sepsis and the acute respiratory distress syndrome. Clin Sci(Colch) 2001 Feb;100(2) :169-182.
    24. Tavaf-Motamen H, Miner TJ,Starnes BW, et al. Nitric oxide mediates acute lung injury by modulation of inflammation. J Surg Res 1998 Aug;78(2) :137-42.
    25. Scuhyta MR, Terry PC, Elliot CG, et al. The adult respiratory distress syndrome: A report of survival and modifying factors. Chest ,1992,101:1074-1079
    26. Johnson KS, Bishop MH, Stephen CM, et al. Temporal patterns of radiographic infiltration in severely traumatized patients with and
    
    without adult respiratory distress syndrome .J Trauma,1994,36:644-650.
    27.黎鳌 主编,创伤后脏器功能不全,1999年12月第一版,36.河北科学技术出版社.
    28.王彦彬,蔺锡侯,周宁等.胸外伤并发急性呼吸衰竭的高危因素分析.中华创伤杂志,1998,14(1):16-18.
    29. Trupka A, Waydhas C, Hallfeldt KK, et al. Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma 1997,43:405-411.
    30. Svoboda P, Kantorova L, Ochmann J, et al. Dynamics of interleukin-1, 2 and 6 and tumor necrosis factor 2 in multiple trauma patients. J Trauma, 1994,36:336-340.
    31. Samy TS, Ayala A, Catania RA, et al. Shock, 1998,9(6):443-450.
    32. Guillou Pi. Kidney Int, 1998,53(suppl 66):S186-189.
    33.姚咏明,田惠民,王亚平等.Re型内毒素抗血清对实验性多器官功能衰竭的防护作用.中华外科杂志,1992,30:244.
    34. Bahrami S, Yao YM, Leichtfried G, et al. Monoclonal antibody to endotoxin attenuates hemorrhage-induced lung injury and mortality in rats. Crit Care Med, 1997,25:1030.
    35. Bahrami S, Yao YM, Shiga H, et al. Comparison of the efficacy of pentoxifylline and albifyllin(HWA138) on endotoxin-induced cytokine production, coagulation disturbances, and mortality. Shock, 1996,5:424.
    36.姚咏明.MODS的免疫治疗.见:盛志勇,胡森 主编,多器官功能障碍综合征.第一版,129-150.科学出版社.
    37. Angele MK, Smail N, Ayala A, et al. J Trauma, 1999;46(1): 34-41.
    38. Mathias W, et al. Crit Care Med 1998;26(8):1372-1379.
    39. Knaus WA, Harrell FE, LaBrecque JF, et al. Use of predicted risk of mortality to evaluate the efficacy of anticytokine therapy in sepsis. Crit Care Med, 1996,24:46.40. Abraham E, et al. JAMA1997;277:1531-1538.
    41. Napolitano LM, et al Arch Surg. 1994,129:1276.
    42. Soledad-Cepeda M, et al. Immunopharmacology, 1993;25:205.
    43. Yao YM, Bahrami S, Leichtfried G, et al. Significance of NO in hemorrhage-induced hemodynamic alterations, organ injury, and mortality in rats. Am J Physiol, 1996,270:H1616.
    44.梁继河,尹文,虎晓岷 等,山莨菪碱对创伤性急性肺损伤防治作用的实验研究.中华创伤杂志,1998;14(5):284-287.
    
    
    45. Weg JG, Balk RA, Tharratt RS, et al. Safety and potential efficacy of an aerosolized surfactant in human sepsis-induced adult respiratory distress syndrome. JAMA 1994 Nov 9;272(18):1433-8.
    46. Wiedemann HP. Surfactant and acquired lung diseases. J Lab Clin Med. 1996 Mar; 127(3): 239-41.
    47.毛宝龄,急性肺损伤的治疗.见:黎鳌 主编,创伤后脏器功能不全,第一版,72-79.河北科学技术出版社.
    48. Brown RO, et al. Pharmacotherapy. 1994; 14(3):314.
    49.刘又宁,陈良安,余森洋.机械通气与临床.第二版.北京:科学出版社,1998.355-365.
    50.朱蕾,钮善福.许可性高碳酸血症通气.国外医学呼吸系统分册,1998,18:214.
    51. Parker JC, Hemandez LA, Peevy KJ. Mechanisms of ventilator induced lung injury. Crit Care Med, 1993,21:131.
    52.Kang-Hoe Lee,Tow-Keang Lim.急性呼吸窘迫综合征,医学进展.1998,3:31.
    53. Tuxen DV. Permissive hypercapnic ventilation. Am J Respir Crit Care Med, 1994,150:870.
    54.Kang-Hoe Lee,Tow-Keang Lim.急性呼吸窘迫综合征,医学进展.1998,3:31.
    55.Fort P. 高频振荡通气在急性呼吸窘迫综合征中应用的研究.Crit Care Med,1997,25:937.
    56. Imanaka HK, Acmarek RM, Ritz R, et al. Tracheal gas insulfflation-pressure control versus volume controlventilation: a lung model study. Am J Respir Grit Care Med, 1996,153:1019.
    57.Hirschl RB.全部和部分液体通气疗法对ARDS的气体交换、肺顺应性和肺损伤的影响.Crit Care Med,1996,24:1001.
    58.Gauger PG.部分液体通气治疗幼儿ARDS病人的初步经验.Crit Care Med,1996,24:12.
    59.黎鳌 主编,创伤后脏器功能不全,1999年12月第一版,36.河北科学技术出版社.
    60.张向峰,梁瑛,杨京华,等.肺泡气-动脉血氧分压差在肺栓塞诊断中的应用及其影响因素分析.心肺血管病杂志,2000,19(3):161-163.
    61.花天放,编译。外伤病人的白介素-6——损伤的标志物还是炎症介质[J].国外医学创伤与外科基本问题分册,1997,18(3):161-164.
    
    
    62. Miller EJ, Kurdowska A, Nagao S, et al. A Synthetic peptide which specifically inhibits heat-treated interleukin-8 binding and chemotaxis for neutrophils[J]. Agents Actions, 1993,40(3/4):200-208.
    63. Feuerstein G, Rabinovici R. Importance of interleukin-8 and chemokines in organ injury and shock[J]. Crit Care Med, 1994,22(4):550-551.
    64.方国恩,华积德,沈炎明,等.肿瘤坏死因子在动物多器官损害中的变化及意义[J].中华创伤杂志,1996,12(1):39-40.
    65.石文芳,李卓娅,龚非为.TNFα的细胞毒效应及其信号传导[J].国外医学免疫学分册,1998,21(1):10-14.
    66.李兵仓,张良潮,陈志强等.某榴弹致伤绵羊后的破片伤与冲击伤.中华创伤杂志.1999;15(6):451-454.
    67. Huang JZ, Yang ZH, Wang ZG, et al. Study on characteristics of blast fragment combined injury in dogs. J Trauma, 1996, 40(3 suppl):s63-s77.
    68.刘震,李兵仓,王大田等.家兔模拟胸部爆炸伤模型的建立及早期死亡原因分析.第三军医大学学报 2000,22(4):328-330.
    69.张向峰,梁瑛,杨京华,等.肺泡气-动脉血氧分压差在肺栓塞诊断中的应用及其影响因素分析.心肺血管病杂志,2000,19(3):161-163.
    70.蔡文琴,王伯云主编.实用免疫细胞化学与核酸分子杂交技术.成都:四川科学技术出版社.1994:401-423.
    71.苏慧慈.原位杂交.北京:中国科学技术出版社.1994.
    72.蔡文琴,王伯云主编.实用免疫细胞化学与核酸分子杂交技术.成都:四川科学技术出版社.1994:72-75.
    73. Han J, Jiang Y, Li Z, et al. Activation of the transcription factor MEF2C by the MAP kinase P38 in inflammation. Nature 1997,386:296-299
    74. Wang XZ, Ron R. Stress-induced phosphorylation and activation of the transcription factor CHOP(GADD153) by P38 MAP kinase. Science 1996,272:1347-1349.
    
    
    75.ERK1/ERK2、P38 MAPK在肺挫伤复合内毒素血症早期所致肺炎症反应中的作用研究.第三军医大学博士学位论文,2001
    76. Lentsch AB, Ward PA. Activation and regulation of NF к B during acute inflammation. Clin Chem Lab Med, 1999,37(3):205-208.
    77. Abraham E. NF к B activation. Crit Care Med 2000 Apr;28(4 suppl):N100-4.
    78. Quinlan GJ, Lamb N, Tilley R, et al. Plasma hypoxanthine levels in ARDS: implications for morbidity.Am J Respir Crit Care Med,1997,155:479-484.
    79. Damas P, Ledoux D, Nys M, et al. Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 1992,215:356-362.
    80. Calandra T, Gerain J, Heumann D, et al. High circulating levels of interleukin-6 in patients with septic shock:evolution during sepsis, prognostic value, and interplay with other cytokines. Am J Med 1991,91:23-29.
    81. Moscovetz H, Shofer F, Mignott H ,et al. Plasma cytokine determinations in emergency department patients as a predictor of bacteremia and infectious disease severity. Grit Care Med 1994,22:1102-1107.
    82. Miller, Edmund J.A .synthetic peptide which specifically inhibits heat-treated interleukin-8 binding and chemotaxis for neutrophils. Agents Actions, 1993,40(3/4):200-208
    83. Feuerstein, Giora. Importance of interleukin-8 and chemokines in organ injury and shock. Crit Care Med 1994,22(44):550-551.
    84. Han J, Lee JD, Bibbs L, et al. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science ,1994,265:808-811.
    85. Lee JC, Laydon JT, McDonnell PC, et al. Identification and characterization of anovel protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372:739-746.
    86.梁继河,尹文,虎晓岷,等.山莨菪碱对创伤性急性肺损伤防治作用的实验研究,中华创伤杂志,1998,14(5):284-287.
    87.徐仁宝.体内的抗炎机制及其意义.生理科学进展,1994,25(4):305-308.
    88. Marx J. How the glucocorticoids suppress immunity. Science, 1995,270:232-240
    89. Herlaar E, Brown Z. P38 MAPK signaling cascades in inflammatory disease. Mol Med Today. 1999,5(lO):439-447.
    90. Garrington TP, Johnson GL. Organization and regulation of mitogen activated protein kinase signaling pathways.Curr Opin Cell Biol. 1999, 11(2):211-218
    
    
    91. ERK1/ERK2, P38 MAPK 在肺挫伤复合内毒素血症早期所致肺炎症反应中的作用研究.第三军医大学博士学位论文,2001
    92. Hatherill M, Tibby SM, Turner C, et al. Procalcitonin and cytokine levels: relationship to organ and mortality in pediatric septic shock. Crit Care Med 2000 Jul;28(7):2591-4.
    93. Raffin TA. Withdrawing life support. How is the decision made? JAMA 1995 Marl; 273(9): 738-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700