用户名: 密码: 验证码:
普通油茶花发育和遗传转化体系构建初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通油茶(Camellia oleifera Abel)是我国油茶栽培的主要物种,是典型的花果同时发育多年生常绿树种,开花是油茶产量形成的重要基础。本文分析了普通油茶花发育过程生理生化变化及其影响因子,初步探明了油茶的成花过程生化指标的变化动态,并通过花芽发育过程的转录组和表达谱测序及分析,分离了影响油茶花发育关键基因(FT和PI),并构建了FT基因的超表达和PI基因RNAi干扰植物遗传转化载体以及初步的遗传转化系统,具体结果如下:
     1.随着普通油茶花芽分化,老叶中可溶性蛋白含量逐渐下降,茎可溶性蛋白含量逐渐上升,新叶中可溶性蛋白含量变化相对平稳;老叶中可溶性糖含量逐渐下降,新梢组织(上叶、下叶和茎)可溶性糖含量变化相对平稳;茎的蔗糖含量上升幅度明显,叶片的蔗糖含量呈“下降-上升-下降”变化趋势;新梢各组织(上叶、下叶和茎)中果糖含量变化趋势相似,呈“下降-上升-下降-上升”趋势,新叶含量比茎高,茎比老叶高;植物激素含量新叶比老叶和茎高,其中含量最高的是脱落酸;新叶的生长素与细胞分裂素比值变化趋势较平缓,而茎和老叶的生长素/细胞分裂素比值变化幅度较大。
     2.普通油茶花器官形成过程,春梢上各部位组织(上叶、下叶和花芽)中可溶性蛋白和可溶性糖含量呈缓慢上升趋势;蔗糖和果糖变化幅度较大,花芽中的含量普遍比叶片中低;春梢叶片各种激素含量呈“下降-上升-下降”,春梢各部位组织中脱落酸与生长素比值呈“上升-下降-上升-下降”变化,生长素与细胞分裂素比值在花芽中变化平缓,在叶片中呈“下降-上升-下降”变化,上叶和下叶中的比值变化相反。
     3.在普通油茶花芽转变期,在短日照处理下,可溶性蛋白和可溶性糖新叶部位含量最高,蔗糖在实生苗的老叶部位含量最高;在水分处理条件下,老叶中蔗糖含量明显低于新叶;叶片中的果糖含量在氮素处理时含量最高,在短日照时含量最低;茎中生长素含量普遍比叶片中低,新叶比老叶高,新叶在热处理下生长素含量最高,在光照处理及实生苗中较低;赤霉素含量最高是在生长素处理时的新叶部位,最低为对照处理的茎部位;细胞分裂素含量最高为细胞分裂素处理的新叶部位,脱落酸在春梢不同部位含量变化差异不明显;短日照下的普通油茶茎尖FCA基因相对表达量最高,FLC基因在实生苗茎中表达量最高,FT基因在长日照时茎尖表达量最高。
     4.转录组测序总共获得28,448,847个reads和5,742,023,480pb碱基,GC含量为46.52%;N50长度为806,普通油茶与葡萄的Unigenes相似度最高,总共SSR数量为8,399个,1kb以上的Unigenes有12,643条,占Unigene库总数的13.38%;Unigenes各数据库功能注释数目依次为:在COG中有9,095条,在GO中有27,201条,在KEGG中有6,431条,在Swissprot中有24,534条,在TrEMBL中有36,393条,在nr中有36,400条,在nt中有30,858条;茎尖中FLC、FCA和FT基因表达量普遍较AP1、AP2和PI基因低,FT基因是油茶成花的关键基因,PI基因与雄蕊发育关系紧密。
     5.通过对普通油茶花发育的6个时期样品测序,共获得了原始reads数为103,249,386条,平均CycleQ20都为100%,各样品测序reads与转录组部分测序构建的Unigene库的序列对比,对比效率都超过60%,样品间的差异基因分析,共获得了差异表达基因为26,861个。5月9号和8月25日的差异表达基因最少,7月3日和6月15日与其他时期差异表达的基因数量最多。
     6.普通油茶FT基因编码区序列长度为540pb,编码179个氨基酸,FT基因编码的蛋白有一个磷脂酰乙醇胺结合蛋白家族(BP)的结构域,与中华猕猴桃的FT基因编码蛋白同源性最高;PI基因编码区序列长度为627,共编码208个氨基酸数,PI基因编码的蛋白有一个MADS-box和K-box蛋白结构域,该蛋白和大豆及四季豆PI基因编码的蛋白同源性最高。
     7. MS培养基是普通油茶体胚再生最适宜的培养基,长林53号品种较易诱导出胚性愈伤组织,7月27日左右的未成熟胚最容易诱导出体胚,TDZ、2.4-D是体胚诱导最重要的激素,2.4-D、KT、TDZ和CH添加物配比最有利于体胚诱导。选择MS培养基,2mg/L浓度的IAA,0.5mg/L浓度的KT,0.5mg/L浓度的TDZ和500mg/L浓度的CH等组合,有适合于体胚萌发和胚状体生长。
     8.愈伤组织的潮霉素选择压为120mg/L;外植体预培养时间长短、农杆菌侵染时间长短、共培养时间长短及AS浓度大小对抗性愈伤组织选择都有显著影响,侵染时间对抗性愈伤组织选择影响最为明显,其次是共培养时间、AS浓度和预培养时间;侵染时间、共培养时间及AS浓度大小对农杆菌污染都有极显著影响,侵染时间和AS浓度对农杆菌污染影响最为关键,其次是侵染时间;预培养时间为40d,侵染时间为20min,共培养时间为5天,AS浓度为200mg/L时抗性愈伤组织最多,农杆菌污染率最低。
Camellia oleifera Abel. is a typical flower and fruit co-development perennial evergreenplants. Blossom is an important basis for plant production and breeding. This paper analyzedthe physiological and biochemical variation during flower development of C. oleifera and mainfocused on the effect of environmental factors on the blossom. Based on the data results fromtranscriptome sequencing of flower, differentially expressed genes especially those related toflowering process were detected and the preliminary mechanism of C. oleifera flowering waselucidated. By RT-qPCR, the expression profiles of the key flower genes (FT and PI) wereanalysis and then the above genes were successfully cloned into the over-expressing and RNAinterfering vector. Moreover, gene transformation system was analysted and optimized. Theresults were listed as follows:
     1. During the flower differentiation, the content of soluble proteins gradually decreased in oldleaves, increased in stems. The content of soluble sugar were reduced in old leaves. Thesucrose content was sharply elevated in the stems and kept steady in leaves. The variation offructose content displayed similar change method in different organs of spring shoots.Comparing with the stem and old leaves, the content of fructose in young leaves was the mostabundant while was the least abundant in old leaves. In young leaves, the ratios of abscisic acidand auxin kept constant while in the stems and old leaves they varied largely.
     2. During floral formation, the contents of soluble protein and soluble sugar rised slowly indifferent parts of spring shoots. The content of sucrose and fructose varied dramatically, andthose were lower in flower buds than in leaves. The level of hormone in leaves showed atendency of “down-up-down”. The ratio of abscisic acid and gibberellic acid showed atendency of “up-down-up-down” in different parts of the spring shoot, The ratio of abscisicacid and auxin showed different tendencies in different parts of the spring shoot.
     3. During the period of flower differentiation, the contents of soluble protein and soluble sugar in the leaves were the highest in the short-day treatment. The content of sucrose was thehighest in the old leaves. The content of fructose in leaves was the highest in the nitrogentreatment and it was the lowest in the short day treatment. The content of auxin was lower instems than that in leaves. The content of auxin was highest in the heat treatment than that inothers treatments, and the lowest in light treatment. The content of gibberellin was the highestin new leaves under auxin treatment, and the lowest in stems of the control. The content ofcytokinin was the highest in young leaves under cytokinin treatment than that in othertreatmenyts. The relative gene expression of FCA in shoot tips was the highest under differentlight intensity treatments. The relative gene expression of FLC was the highest in seedling andthat of FT was the highest under the long-day treatment.
     4. The transcriptome sequencing obtained total of28,448,847reads and5,742,023,480bp. Thelength of N50was806bp. The number of unigenes longer than1kb was12,643. With24,534Unigenes being annotated in Swissprot,36,393in TrEMBL,36,400in Nr. The annotatedunigenes were then further classified into different processes and pathways by COG, GO andKEGG. RT-qPCR results showed that the expression levels of FLC, FCA and FT in the stemapex were lower than those of AP1, AP2, PI showed close relationship with the stamendevelopment. The digital sequencing of samples from six periods obtained a total of103,249,386reads. Alignment of the above data with transcriptome sequences. The analysisdetected26,861differentially expressed genes among the tested samples.
     5. The ORF of FT gene in C. oleifera was540pb that encoding179amino acids with themolecular weight was20KD and isoelectric point was7.74. The protein was most homologousto the FT gene in Actinidia chinensis Planch. The ORF of PI in C. oleifera was627bp andencoded208amino acids with the molecular weight of24KD and isoelectric point of9.11.That was most homologous to PI in soybean and sauteed green beans.
     6. MS medium was the most suitable medium for the regeneration of somatic embryosinduction and Changlin53variety was most easy for callus induction. TDZ,2.4-D areimportant factors influencing somatic induction. The combination of MS culture medium with 2mg/L IAA,0.5mg/L KT,0.5mg/L TDZ and500mg/L CH was most suitable to somaticinduction.
     7. Hygromycin concentration for callus selection pressure was120mg/L. The effect of explantpreculture time, Agrobacterium infection and co-culture time and AS concentration onHygromycin resistant callus was significant. Pre-culture time, infection time, co-culture timeand AS concentration had significant effect on the callus of pollution, and infection time andAS concentration had important effect on the pollution, secondly was the time of infection andpre-culture time. The conversion efficiency was the highest and the rate of pollution was thelowest under the condition of40days preculture,20min infection,5days co-culture and the200mg/L AS concentration.
引文
[1]柏云爱,宋大海,张富强,等.油茶籽油与橄榄油营养价值的比较[J].中国油脂,2008(3):43-45.
    [2]张规富,谢深喜,薛华.油茶营养成分的分析测定[J].甘肃科学学报,2011(3):48-51.
    [3]钱学射,张卫明,黄晶晶,等.油脂植物油茶的开发利用[J].中国野生植物资源,2011(5):33-36.
    [4]庄瑞林.中国油茶[M].北京:中国林业出版社,2008.
    [5]姚小华,王开良,任华东,等.油茶资源与科学利用研究[M].北京:科学出版社,2011.
    [6]杨抑.中国油茶起源初探[J].中国农史,1992(3):74-77.
    [7]杨焰.油茶籽的综合开发与利用[J].经济林研究,2009(4):121-124.
    [8]黄敦元,郝家胜,余江帆,等.油茶研究现状与展望[J].生命科学研究,2009(5):87-93.
    [9]朱必凤,彭凌,罗莉菲,等.油茶肉质果和肉质叶开发价值及食用安全性分析[J].食品与生物技术学报,2007(2):1-6.
    [10]林翔云.油茶的深度开发利用[J].粮油食品科技,2010(3):24-28.
    [11]姚小华,王开良,罗细芳,等.我国油茶产业化现状及发展思路[J].林业科技开发,2005(1):3-6.
    [12]王伟同,张旭.人口红利衰减,稳增长约束与人口城乡迁移速度[J].财经问题研究,2013(10):91-96.
    [13]杨瑞珍.持续农业与生态农业[J].世界农业,1994(1):6-7.
    [14]王一超.论人口红利及中国经济发展[J].现代商业,2013(32):80-81.
    [15]奚如春,邓小梅.我国油茶产业化发展中的现状,要素及其优化[J].经济林研究,2005,23(1):83-87.
    [16]贾治邦.解决突出问题推进油茶产业又好又快发展[J].林业经济,2009(10):3-5.
    [17]李艳,郑亚军,杨伟波,等.海南省油茶产业存在的问题及对策[J].现代农业科技,2012(1):357-358.
    [18]杨曾辉,董艳琴.我国油茶产业发展的问题与对策[J].江西农业大学学报:社会科学版,2011,9(4):40-42.
    [19]陈晓亚,汤章城.植物生理与分子生物学[M].北京:高等教育出版社,2007.
    [20]李利红,马锋旺.杏不同品种花芽分化的解剖学观察[J].西北农林科技大学学报(自然科学版),2001,29(2):105-108.
    [21] Joseph C., Venkatesan S. Control of the Transition to Flowering[J]. Current Opinion in Biotechnology,1996,7(2):145-149.
    [22] Paul K B, Ruth M B, Joshua S M, et al. Multiple Pathways in the Decision to Flower: Enabling,Promoting, and Resetting[J]. The Plant Cell Online,2004,16(suppl1):18-31.
    [23]曾骧.果树的花芽分化(二)-影响花芽分化的外因和调控措施[J].植物杂志,1985(3):30-31.
    [24]王庆贺,李亚东,张志东,等.生态条件对越橘花芽分化的影响[J].吉林农业大学学报,2009(6):705-710.
    [25]李合生.植物生理学[M].北京,高等教育出版社,2002.
    [26]仲学广,李敏.简述植物成花生理[J].中学生物学,2010(6):3-5.
    [27]欧阳汝欣.温度对设施桃花器官发育的影响[J].北方园艺,2010(20):93-95.
    [28]黄胜琴,郭建军,叶庆生,等.温度对蝴蝶兰成花诱导的研究初探[J].中山大学学报:自然科学版,2003,42(4):132-134.
    [29]谢利娟,王定跃,孙敏,等.毛棉杜鹃花芽分化期叶片C、N、P质量分数的变化[J].东北林业大学学报,2009(9):45-47.
    [30]任红旭,陈雄.低氮营养与激动素对离体黄瓜子叶花芽分化的影响[J].兰州大学学报:自然科学版,1999,35(2):124-129.
    [31]郑诚乐,许伟东,郭建靖,等.杨梅花芽生理分化期叶片矿质元素含量动态变化[J].热带作物学报,2009(5):584-588.
    [32] Chinnathambi S, Michael G M. Physiology of Flowering in the Grapevine-a Review[J]. AmericanJournal of Enology and Viticulture,1981,32(1):47-63.
    [33]曲波,张微,陈旭辉,等.植物花芽分化研究进展[J].中国农学通报,2010,26(24):109-114.
    [34]邓万刚,张黎明,唐树梅.环境因子对荔枝花芽分化的影响研究进展[J].华南热带农业大学学报,2004,10(1):17-22.
    [35] Masaaki O, Kiyoshi O, Yasuko F, et al. Effects of Sugar on Vegetative Development and FloralTransition in Arabidopsis[J]. Plant Physiology,2001,127(1):252-261.
    [36]傅永福,孟繁静.植物的成花生理信号[J].中国农业大学学报,1998,3(3):1-11.
    [37] Georges B, Bernier G. Physiology of Flowering Vol. I: Initiation of Flowers[M].[S.l.]: Crc Press,1981.
    [38] Akiko I, Hiroko H, Yoshiki K. Sugar Metabolism in Buds During Flower Bud Formation: a Comparisonof Two Japanese Pear [Pyrus Pyrifolia (burm.) Nak.] Cultivars Possessing Different Flowering Habits[J].Scientia Horticulturae,2002,96(1):163-175.
    [39] Kinet J M. Environmental, Chemical, and Genetic Control of Flowering[J]. Hort. Rev,1993,(15):279-334.
    [40] Krajewski A, Rabe E.Citrus Flowering: a Critical Evaluation[J]. Journal of Horticultural Science,1995,(70):357-374.
    [41]鲁亚婷,袁晓亮,林新春,等.雷竹花芽形态分化过程中内源激素的变化规律[J].浙江农林大学学报,2012,29(2):161-165.
    [42]黄迪辉,黄辉白.柑桔成花机理的研究I.与内源激素的关系[J].果树科学,1992,9(1):13-18.
    [43] Tao H, Henrik B, Sven Eriksson, et al. The Mrna of the Arabidopsis Gene Ft Moves From Leaf to ShootApex and Induces Flowering[J]. Science,2005,309(5741):1694-1696.
    [44] Katja E J, Philip A W. Ft Protein Acts as a Long-range Signal In Arabidopsis[J]. Current Biology,2007,17(12):1050-1054.
    [45] Enrico S C, Jose M R, Sandra D, et al. A Homeotic Gene Required for Flower Development inAntirrhinum Majus[J]. Cell,1990,63(6):1311-1322.
    [46] Henrik B, Tao H,Laurence C, et al. Co/ft Regulatory Module Controls Timing of Flowering andSeasonal Growth Cessation in Trees[J]. Science,2006,312(5776):1040-1043.
    [47] Cindy G B, Beth S, Martin F Y. Regulation of the Arabidopsis Floral Homeotic Gene Apetala1[J]. Cell,1994,76(1):131-143.
    [48] Elizabeth A S, George W H. Leafy, a Homeotic Gene That Regulates Inflorescence Development inArabidopsis.[J]. The Plant Cell Online,1991,3(8):771-781.
    [49] Kirsten B, Wang R L, Barbara A Ambrose, et al. Duplicate Floricaula/leafy Homologs Zfl1and Zfl2Control Inflorescence Architecture and Flower Patterning in Maize[J]. Development,2003,130(11):2385-2395.
    [50]邵寒霜,李继红.拟南芥LFYcDNA的克隆及转化菊花的研究[J].植物学报:英文版,1999,41(3):268-271.
    [51] Ryosuke H, George C. The Molecular Basis of Diversity in the Photoperiodic Flowering Responses ofArabidopsis and Rice[J]. Plant Physiology,2004,135(2):677-684.
    [52] Joanna P, Frances R, Karen L, et al. The Constans Gene of Arabidopsis Promotes Flowering andEncodes a Protein Showing Similarities to Zinc Finger Transcription Factors[J]. Cell,1995,80(6):847-857.
    [53] Hailong A, Clotilde R, Paula S L, et al. Constans Acts in the Phloem to Regulate a Systemic Signal ThatInduces Photoperiodic Flowering of Arabidopsis[J]. Development,2004,131(15):3615-3626.
    [54] Elizabeth A S, George W H. Genetic Analysis of the Floral Initiation Process (flip) in Arabidopsis[J].Development,1993,119(3):745-765.
    [55] Enrico S C, Elliot M M. The War of the Whorls: Genetic Interactions Controlling FlowerDevelopment[J]. Nature,1991,353(6339):31-37.
    [56] Soraya P, Gary S D, Elvira B, et al. B and C Floral Organ Identity Functions Require SepallataMads-box Genes[J]. Nature,2000,405(6783):200-203.
    [57] Detlef W, Elliot M M.The Abcs of Floral Homeotic Genes[J]. Cell,1994,78(2):203-209.
    [58] Cetin Y, Mark E K, Richard L H, et al. Effects of Induction Treatments on Flowering in PopulusDeltoides[J]. Tree Physiology,2003,23(7):489-495.
    [59] Visser T. The Relation Between Growth, Juvenile Period and Fruiting of Apple Seedlings and Its Use toImprove Breeding Efficiency[J]. Euphytica,1970,19(3):293-302.
    [60] Wesley P H. Juvenility, Maturation, and Rejuvenation in Woody Plants[J]. Horticultural Reviews,1985(7):109-155.
    [61] Maria L M, Maurizio T, Angelo D P, et al. The Plant Oncogene Rold Stimulates Flowering inTransgenic Tobacco Plants[J]. Developmental Biology,1996,180(2):693-700.
    [62] Henryk F, Andreas P, Tuomas S, et al. Overexpression of Bpmads4From Silver Birch (betula PendulaRoth.) Induces Early‐flowering in Apple (Malus×Domestica Borkh.)[J]. Plant Breeding,2007,126(2):137-145.
    [63] Hans H, Olaf N, Dieter H, et al. Heterologous Overexpression of the Birch Fruitfull-like Mads-boxGene Bpmads4Prevents Normal Senescence and Winter Dormancy in Populus Tremula L.[J].Planta,2008,227(5):1001-1011.
    [64] William H R, Richard M, Lorraine A S, et al. Diverse Effects of Overexpression of Leafy and Ptlf, aPoplar (populus) Homolog of Leafy/floricaula, in Transgenic Poplar and Arabidopsis[J]. The PlantJournal,2000,22(3):235-245.
    [65] Hanke M V, Henryk F,Andreas P, et al. No Flower No Fruit–genetic Potentials to Trigger Flowering inFruit Trees[J]. Genes Genomes Genomics,2007,1(1):1-20.
    [66] Jeffrey S S, Richard M,Caiping M, et al. The Populus Ptd Promoter Imparts Floral-predominantExpression and Enables High Levels of Floral-organ Ablation in Populus, Nicotiana andArabidopsis[J].Molecular Breeding,2003,12(2):119-132.
    [67]王善平,许农,许智宏,等.利用PEG法对GUS基因在几种杨树原生质体中瞬间表达的研究[J].实验生物学报,1991,24(1):71-74.
    [68]信金娜,韩烈保,刘君,等.基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株[J].中国生物工程杂志,2006,26(8):10-14.
    [69] Chupeau M C, Veronique P, Yves C. Recovery of Transgenic Trees After Electroporation of PoplarProtoplasts[J]. Transgenic Research,1994,3(1):13-19.
    [70]杨景成,于元杰,齐延芳.外源DNA导入植物技术的发展及其在作物育种中的应用[J].核农学报,2003,17(1):79-84.
    [71] Huixia S, Reid G P, Kan W. Irreproducibility of the Soybean Pollen-tube Pathway TransformationProcedure[J]. Plant Molecular Biology Reporter,2002,20(4):325-334.
    [72] Yukoh H, Shozo O, Toshihiko K, et al. Efficient Transformation of Rice (oryza Sativa L.) Mediated ByAgrobacterium and Sequence Analysis of the Boundaries of the T‐dna[J].The Plant Journal,1994,6(2):271-282.
    [73]王关林,方宏筠.植物基因工程原理与技朮[M].北京:科学出版社,1998.
    [74]张杰道,孟祥兵.植物分子育种方法研究进展[J].生命科学研究,2001,5(3):165-169.
    [75]雷治国,黄永芳,何会蓉.油茶及其种质资源研究进展[J].经济林研究,2003,21(4):123-125.
    [76]张日清,丁植磊,张勖,等.油茶育种研究进展[J].经济林研究,2007,24(4):1-8.
    [77]庄瑞林.我国油茶良种选育工作的历史回顾与展望[J].林业科技开发,2010,24(6):1-5.
    [78]庄瑞林,董汝湘,黄爱珠.油茶亚1,亚2,亚6,三个优良家系的选育[J].经济林研究,1986,4(1):30-39.
    [79]欧阳涛,吴定荣.油茶71-2优良家系的选育[J].林业科技通讯,1991,(11):8-9.
    [80]庄瑞林.中国亚热带经济林研究-庄瑞林文集[M].北京:中国林业出版社,2013.
    [81]汪洪丽,郭晓敏,赵中华.油茶生长量,产量与平衡施肥的研究[J].江西林业科技,2008(6):73-75.
    [82]袁军.普通油茶营养诊断及施肥研究[D].长沙:中南林业科技大学,2010.
    [83]吴建军,鲁北南.施肥和灌溉对油茶主要经济性状的影响[J].经济林研究,1997,15(2):27-29.
    [84]申魏,杨小平,姚小华,等.施肥对油茶生根和结实特性的影响[J].林业科学研究,2008,21(2):239-242.
    [85]刘学锋,郭晓敏,李小梅,等.平衡施肥对油茶林地土壤主要养分含量的影响[J].经济林研究,2013,31(2):44-47.
    [86]白玉杰.水肥耦合对油茶生长及土壤性状的影响[D].南京:南京林业大学,2013.
    [87]俞小鹏.水肥耦合条件下油茶生长-养分变化及营养诊断研究[D].南京:南京林业大学,2013.
    [88]左继林,龚春,黄建建,等.夏旱期不同管理措施下高产油茶的光合特性[J].南京林业大学科学自然版,2013,37(2):28-33.
    [89]胡玉玲.植物生长调节剂及水肥对油茶生长的影响研究[D].南昌:江西农业大学,2011.
    [90]许鹏波,薛立.油茶施肥研究进展[J].中国农学通报,2011,27(8):1-6.
    [91]付登强,杨伟波,陈良秋,等.油茶林养分管理研究进展[J].热带农业科学,2013(2):17-21
    [92]黄谢.油茶配方施肥技术研究[D].南京:南京林业大学,2012.
    [93]段伟华,袁德义,高超,等.普通油茶不同树体结构与光能利用的关系[J].林业科学研究,2013(1):118-122.
    [94]刘君昂.油茶林健康经营关键技术研究[D].长沙:中南林业科技大学,2010.
    [95]何志祥.油茶树体调控模式与技术的研究[D].长沙:中南林业科技大学,2013.
    [96]姜晓装.油茶病虫害的防治措施[J].林业科技开发,2001(5):35-37.
    [97]杨光道.油茶品种对炭疽病的抗性机制研究[D].合肥:安徽农业大学,2009.
    [98]沈万芳.油茶炭疽病发生与林分和气候因素的关系及叶片结构抗病机理的研究[D].合肥:安徽农业大学,2008.
    [99]潘华平.油茶主要病虫害防控区域划分及其预测预报研究[D].长沙:中南林业科技大学,2011.
    [100]颜慕勤.人工诱导油茶体细胞胚状体实验成功[J].林业科技通讯,1980(12):18.
    [101]隆振雄.油茶幼胚离体培养初获完整植株[J].林业科技通讯,1981(5):12-16.
    [102]卢天玲.油茶未成熟子叶幼胚离体培养成苗的研究[J].实验生物学报,1982(4):3-13.
    [103]张智俊.油茶优良无性系组织培养、RAPD分子鉴别和cDNA文库构建的研究[D].长沙:中南林学院,2003.
    [104]毕方铖,谭晓风,张智俊,等.油茶离体培养诱导再生植株的研究[J].经济林研究,2004(2):5-9.
    [105]范晓明.油茶组织培养技术研究[D].长沙:中南林业科技大学,2011.
    [106]刘虹.油茶组培体系的建立及VIGS系统在油茶、油桐基因功能研究中的应用[D].重庆:西南大学,2012.
    [107]陈永忠,张智俊,谭晓风.油茶优良无性系的RAPD分子鉴别[J].中南林学院学报,2005(4):40-45.
    [108]黄永芳,陈锡沐,庄雪影,等.油茶种质资源遗传多样性分析[J].林业科学,2006(4):38-43.
    [109]王保明,陈永忠,谭晓风,等.应用ISSR分析油茶无性系的遗传多样性[J].东北林业大学学报,2008,26(6):19-25.
    [110]张国武,钟文斌,乌云塔娜,等.油茶优良无性系ISSR分子鉴别[J].林业科学研究,2007(2):278-282.
    [111]谭晓风,胡芳名,谢禄山,等.油茶种子EST文库构建及主要表达基因的分析[J].林业科学,2006(1):43-48.
    [112]张党权,谭晓风,陈鸿鹏.油茶油脂的生物合成及调控基因的特性[J].中南林业科技大学学报,2007(5):106-111.
    [113]谭晓风,陈鸿鹏,张党权,等.油茶FAD2基因全长cDNA的克隆和序列分析[J].林业科学,2008(3):73-78.
    [114]谭晓风,蒋瑶,王保明,等.油茶乙酰辅酶A羧化酶BC亚基全长cDNA克隆及序列分析[J].中南林业科技大学学报,2010(2):7-15.
    [115]谭晓风,曹彦妮,郭静怡,等.油茶FBPase基因的全长cDNA克隆及序列分析[J].江西农业大学学报,2011(3):514-520.
    [116]严学成.油茶的花芽分化[J].华南农业大学学报(自然科学版),1980(2):136-144.
    [117]何汉杏,康文星,何秀春.普通油茶及其优树生殖生态研究[J].经济林研究,2002(4):10-13.
    [118]曾燕如,黎章矩,戴文圣.油茶开花习性的观察研究[J].浙江林学院学报,2009(6):802-809.
    [119]庄瑞林,王劲风.油茶花的生物学和人工授粉效果的研究[J].浙江农业科学,1965(8):44-47.
    [120]张卓文,徐福余.六种油茶花粉形态观察[J].浙江林学院学报,1989(1):12-15.
    [121]李广清,孙立,刘燕.山茶属连蕊茶组6种植物花粉形态特征研究[J].热带亚热带植物学报,2005,13(1):40-44.
    [122]唐光旭.油茶花芽分化及其与外因关系的观察[J].江西林业科技,1979(4):6-11.
    [123]严学成.油茶的花芽分化[J].华南农学院学报,1980(2):136-144.
    [124]袁德义,邹锋,谭晓风,等.油茶花芽分化及雌雄配子体发育的研究[J].中南林业科技大学学报,2011(3):65-70.
    [125]王湘南,蒋丽娟,陈永忠,等.油茶花芽分化的形态解剖学特征观测[J].中南林业科技大学学报,2011(8):22-27.
    [126]林素兰.普通油茶花芽分化的初步观察[J].湖南农学院学报,1987(S1):87-91.
    [127]唐光旭.油茶春梢生长发育与物质转化的研究[J].经济林研究,1984(2):44-51.
    [128]张吉祥.油茶结实对不同叶龄叶片部分生理指标和影响[J].浙江林业科技,2000,20(4):75-78.
    [129]胡哲森.油茶新梢生长过程中蛋白质、核酸的动态变化[J].福建林学院学报,1990(2):174-176.
    [130]姜志娜,谭晓风,袁军,等.油茶果实和叶片中主要营养物质含量的变化规律[J].中南林业科技大学学报,2012(5):42-45.
    [131]李合生.现代植物生理学[M].北京:高等教育出版社,2002.
    [132] Paul H R, George C. Analysis of Flowering Time Control in Arabidopsis By Comparison of Doubleand Triple Mutants[J]. Plant Physiology,2001,126(3):1085-1091.
    [133] Miguel A B. Flower Development Pathways[J]. Journal of Cell Science,2000,113(20):3547-3548.
    [134] Thomas J. Molecular and Genetic Mechanisms of Floral Control[J]. The Plant Cell Online,2004,16(suppl1): s1-s17.
    [135] Aidyn M, Frederic C, George C. Control of Flowering Time Interacting Pathways as a Basis forDiversity[J]. The Plant Cell Online,2002,14(suppl1): s111-s130.
    [136] Miguel A B, Detlef W. Integration of Floral Inductive Signals in Arabidopsis[J]. Nature,2000,404(6780):889-892.
    [137]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [138]张志良,瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社,1990.
    [139]吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素[J].植物生理学通讯,1988,5(1):53-57.
    [140]唐启义,冯明光.实用统计分析及其DPS数据处理系统: DPS data processing system for practicalstatistics[M].北京:科学出版社,2002.
    [141]唐光旭.油茶春梢生长发育与物质转化的研究[J].经济林研究,1984(2):44-5.
    [142]林桂玉,黄在范,张翠华,等.菊花花芽分化期超微弱发光及生理代谢的变化[J].园艺学报,2008,35(12):1819-1824.
    [143]曹尚银,张秋明,朱志勇,等.苹果花芽孕育蛋白质组学初步分析[J].中国农业科学,2007,40(10):2281-2288.
    [144]王桂兰,乔永旭,陈超,等.蝴蝶兰催花及开花过程中可溶性蛋白含量变化的研究[J].北方园艺,2007(4):121-124.
    [145]樊卫国,刘国琴.刺梨花芽分化期芽中内源激素和碳,氮营养的含量动态[J].果树学报,2003,20(1):40-43.
    [146]林晓东.激素调节花芽分化的研究进展[J].果树科学,1997,14(4):269-274.
    [147]黄肇宇,蒋波,詹源庆,等.生长调节物质对金钗石斛器官分化的影响[J].玉林师范学院学报,2006,26(3):83-86.
    [148]段九菊,曹冬梅,王丽萍,等.乙炔催花对凤梨‘丹尼斯’花芽分化及内源激素含量的影响[J].农学学报,2012,2(5):49-56.
    [149] Luckwill L C. A New Look at the Process of Fruit Bud Formation in Apple[C] Proceedings of theXixth International Horticultural Congress,1974:237-246.
    [150]王永勤,曹家树,虞慧芳,等.白菜核雄性不育两用系生理生化特性的分析[J].园艺学报,2003,30(2):212-214.
    [151]邓晓辉,张蜀宁,侯喜林,等.不结球白菜Pol胞质雄性不育系及其保持系的部分生理生化指标分析[J].江西农业大学学报,2007,29(4):522-525.
    [152]王桂兰,乔永旭,陈超,等.蝴蝶兰催花及开花过程中可溶性蛋白含量变化的研究[J].北方园艺,2007(4):121-124.
    [153]王桂兰,陈超,李艳梅,等.蝴蝶兰催花及开花过程中可溶性糖含量变化的研究[J].北方园艺,2010(10):151-154.
    [154]郭盈妤.受熱與ABA調控基因AtRZFP33之生理功能分析[D].台北:中央大學,2011.
    [155] Gordon G S, Caroline D. Arabidopsis, the Rosetta Stone of Flowering Time[J]. Science,2002,296(5566):285-289.
    [156] Frank W, Márcio A F, Annick D, et al. Genome-wide Analysis of Gene Expression During EarlyArabidopsis Flower Development[J]. Plos Genetics,2006,2(7): e117.
    [157]李二平.普通油茶花雌蕊雄蕊相对长度与产量相关性的探讨[J].湖南林业科技,1989(1):30-33.
    [158]袁德义,邹锋,谭晓风,等.油茶花芽分化及雌雄配子体发育的研究[J].中南林业科技大学学报,2011(3):65-70.
    [159]陈世明,王猛,赵志珩,等.油茶异常落花落果现象的生殖特性[J].北方园艺,2014(2):94-98.
    [160]李春林.普通油茶主要无性系开花生物学及可配性研究[D].重庆:西南大学,2011.
    [161]邓园艺,喻勋林,雷瑞虎,等.油茶的传粉生物学特性[J].经济林研究,2009(1):72-75.
    [162]邹健.福建省主栽油茶品种生殖生物学及其环剥效应的研究[D].福州:福建农林大学,2013.
    [163] Zhou C F, Lin P, Yao X H, et al. Selection of Reference Genes for Quantitative Real-time Pcr in SixOil-tea Camellia Based on Rna-seq[J]. Molecular Biology,2013,47(6):836-851.
    [164]赵则海.发育时期对少花龙葵光合生理特性及代谢产物的影响[J].生态环境,2008,17(1):312-316.
    [165]吴平,陈昆松.植物分子生理学进展[M].杭州:浙江大学出版社,2000.
    [166]曹尚银,张秋明,吴顺.果树花芽分化机理研究进展[J].果树学报,2003,20(5):345-350.
    [167]曾辉,杜丽清,邹明宏,等.澳洲坚果花芽分化期间内源激素的变化[J].安徽农业科学,2008,36(34):1494-1495.
    [168]王姗,张荣良,郝霞,等.空气凤梨Tillandsia bergeri花芽分化时期叶片内源激素含量的变化[J].中国农学通报,2013,29(22):142-146.
    [169] Scott D M, Richard M A. Flowering Locus C Encodes a Novel Mads Domain Protein That Acts as aRepressor of Flowering[J]. The Plant Cell Online,1999,11(5):949-956.
    [170] Scott D M, Richard M A. Loss of Flowering Locus C Activity Eliminates the Late-floweringPhenotype of Frigida and Autonomous Pathway Mutations but Not Responsiveness to Vernalization[J].The Plant Cell Online,2001,13(4):935-941.
    [171] Laurent C, Coral V, Seonghoe J, et al. Ft Protein Movement Contributes to Long-distance Signaling inFloral Induction of Arabidopsis[J]. Science,2007,316(5827):1030-1033.
    [172] Jan A D Zeevaart. Leaf-produced Floral Signals[J]. Current Opinion in Plant Biology,2008,11(5):541-547.
    [173] Duan J, Xia C, Zhao G, et al. Optimizing de novo common wheat transcriptome assembly usingshort-read RNA-Seq data[J]. BMC genomics,2012,13(1):392.
    [174] Huang H H, Xu L L, Tong Z K, et al. De novo characterization of the Chinese fir (Cunninghamialanceolata) transcriptome and analysis of candidate genes involved in cellulose and ligninbiosynthesis[J]. BMC genomics,2012,13(1):648.
    [175] Muers M. Gene expression: Transcriptome to proteome and back to genome[J]. Nature ReviewsGenetics,2011,12(8):518-518.
    [176] Jain M. A next-generation approach to the characterization of a non-model plant transcriptome[J].Current Science (00113891),2011,101(11)..
    [177] Crawford J E, Guelbeogo W M, Sanou A, et al. De novo transcriptome sequencing in Anophelesfunestus using Illumina RNA-seq technology[J]. PLoS one,2010,5(12): e14202.
    [178] Chen S, Jiang J, Li H, et al. The salt-responsive transcriptome of Populus simonii×Populus nigra viaDGE[J]. Gene,2012,504(2):203-212.
    [179] KALAITZIS P, BAZAKOS C, MANIOUDAKI M. Comparative transcriptome analysis of two olivecultivars in response to NaCl-stress[C]//BOOK OF ABSTRACTS.2012:295.
    [180] Tao X, Gu Y H, Wang H Y, et al. Digital gene expression analysis based on integrated de novotranscriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.][J]. PloS one,2012,7(4): e36234.
    [181] Xie F, Burklew C E, Yang Y, et al. De novo sequencing and a comprehensive analysis of purple sweetpotato (Impomoea batatas L.) transcriptome[J]. Planta,2012,236(1):101-113.
    [182]王湘南.油茶物候期及开花生物学特性研究[D].长沙:中南林业科技大学,2011.
    [183]王湘南,蒋丽娟,陈永忠,等.油茶花芽分化的形态解剖学特征观测[J].中南林业科技大学学报,2011(8):22-27.
    [184]袁德义,邹锋,谭晓风,等.油茶花芽分化及雌雄配子体发育的研究[J].中南林业科技大学学报,2011(3):65-70.
    [185]曾燕如,黎章矩,戴文圣.油茶开花习性的观察研究[J].浙江林学院学报,2009(6):802-809.
    [186]邹锋,谭晓风,袁德义,等.我国油茶生殖生物学研究进展[J].长江大学学报(自然科学版)农学卷,2009(1):25-27.
    [187] Marcel H S, Daniel R Z, Martin V, et al. Oases: Robust De Novo Rna-seq Assembly Across theDynamic Range of Expression Levels[J]. Bioinformatics,2012,28(8):1086-1092.
    [188] Manfred G G, Brian J H, Moran Y, et al. Full-length Transcriptome Assembly From Rna-seq DataWithout a Reference Genome[J]. Nature Biotechnology,2011,29(7):644-652.
    [189] Victor E V, Zhang L, Zhou W, et al. Characterization of the Yeast Transcriptome[J]. Cell,1997,88(2):243-251.
    [190]黄琛,武明花,李桂源.鼻咽癌转录组学研究的现状与进展[J].生物化学与生物物理进展,2007,34(11):1129-1135.
    [191] Eric S L, Lauren M L, Bruce B, et al. Initial Sequencing and Analysis of the Human Genome[J].Nature,2001,409(6822):860-921.
    [192] Brian T W, Landry J R. Rna-seq—quantitative Measurement of Expression Through MassivelyParallel Rna-sequencing[J]. Methods,2009,48(3):249-257.
    [193] Ugrappa N, Zhong W, Karl W, et al. The Transcriptional Landscape of the Yeast Genome Defined ByRna Sequencing[J]. Science,2008,320(5881):1344-1349.
    [194] Ruben R, Tatiana B, Hans L, et al. Characterizing the Mouse Es Cell Transcriptome with IlluminaSequencing[J]. Genomics,2008,92(4):187-194.
    [195] Peter A, Yavuz A, Helene H T, et al. Deep Sequencing-based Expression Analysis Shows MajorAdvances in Robustness, Resolution and Inter-lab Portability Over Five Microarray Platforms[J].Nucleic Acids Research,2008,36(21):e141.
    [196]林萍,曹永庆,姚小华,等.普通油茶种子4个发育时期的转录组分析[J].分子植物育种,2011(4):498-505.
    [197]陈英,江香梅,张露,等.基于油茶组59万条EST序列的转录组学初步分析[J].林业科学,2011(2):161-163.
    [198] Pablo D C, Joanne C. Regulation of Flowering Time By Light Quality[J]. Nature,2003,423(6942):881-885.
    [199] Detlef W, John A, David R S, et al. Leafycontrols Floral Meristem Identity in Arabidopsis[J].Cell,1992,69(5):843-859.
    [200] Miguel A B, Lara N S, Ilha L, et al. Leafy Expression and Flower Initiation in Arabidopsis[J].Development,1997,124(19):3835-3844.
    [201] Mandel M A, Cindy G B, Beth S, et al. Molecular Characterization of the Arabidopsis Floral HomeoticGene Apetala1[J]. Cell,1994,76(1):131-143.
    [202] Koji G, Elliot M M. Function and Regulation of the Arabidopsis Floral Homeotic Gene Pistillata.[J].Genes&Development,1994,8(13):1548-1560.
    [203] Stephen H H. Molecular Genetics of Plant Development[M]. London:Cambridge University Press,1998.
    [204] Martin C, Yuan T, Ghia E, et al. Green Fluorescent Protein as a Marker for Gene Expression[J].Science,1994,263(5148):802-805.
    [205]宁顺斌,王玲.几种差别表达基因显示技术及其在植物方面的应用[J].生命科学,1999,11(3):140-143.
    [206]宁顺斌,王玲,宋运淳.几种差别表达基因显示技术及其在植物方面的应用[J].生命科学,1999(3):140-144.
    [207] Kim S Y, Randal B, Jerome G, et al. Temporal Aspects of Dna and Rna Synthesis During HumanImmunodeficiency Virus Infection: Evidence for Differential Gene Expression.[J].Journal of Virology,1989,63(9):3708-3713.
    [208] Simon B. Solexa Ltd[J]. Pharmacogenomics,2004,5(4):433-438.
    [209] Morrissy A S, Ryan D M, Allen D, et al. Next-generation Tag Sequencing for Cancer Gene ExpressionProfiling[J]. Genome Research,2009,19(10):1825-1835.
    [210] Elaine R M. Next-generation Dna Sequencing Methods[J]. Annu. Rev. Genomics Hum. Genet.,2008(9):387-402.
    [211] Rebecca C, Olivia A, Pamela A H. The Next Generation: Using New Sequencing Technologies toAnalyse Gene Regulation[J]. Respirology,2011,16(2):210-222.
    [212] Michiel J L, Seiya I, John N, et al. Open Source Clustering Software[J]. Bioinformatics,2004,20(9):1453-1454.
    [213] Michael B E, Paul T S, Patrick O B, et al. Cluster Analysis and Display of Genome-wide ExpressionPatterns[J].Proceedings of the National Academy of Sciences,1998,95(25):14863-14868.
    [214] Heike W, Erica M, Marco T, et al. On Reconciling the Interactions Between Apetala2, Mir172andAgamous with the Abc Model of Flower Development[J]. Development,2010,137(21):3633-3642.
    [215] Enrico C. Goethe and the Abc Model of Flower Development[J]. Comptes Rendus De L'académie DesSciences-series Iii-sciences De La Vie,2001,324(6):523-530.
    [216] Elena R A, Eugenio A, Rafael B, et al. From Abc Genes to Regulatory Networks, EpigeneticLandscapes and Flower Morphogenesis: Making Biological Sense of Theoretical Approaches[C].Seminars in Cell&Developmental Biology, Elsevier,2010:108-117.
    [217]吕品,柴晓杰,王丕武,等.大豆胰蛋白酶抑制剂KSTI3基因的克隆及其植物表达载体的构建[J].吉林农业大学学报,2007,29(3):275-278.
    [218]李杰,李晶,朱延明,等. DREBlA基因植物表达载体的构建[J].东北农业大学学报,2003,34(2):199-204.
    [219]孙全喜.多基因植物表达载体构建方法的研究[D].济南:山东农业大学,2008.
    [220] Roger M B, Ramon N W, Daniela S B, et al. An Improved Method for Fast, Robust, and SeamlessIntegration of Dna Fragments Into Multiple Plasmids[J]. Protein Expression and Purification,2006,45(1):66-71.
    [221] Chad R I, Andrew F, David O W, et al. Vaccinia Virus and Poxvirology[M].[S.l.]: Springer,2012:23-35.
    [222] Nick S B, David A, Raymond J O. High Throughput Protein Expression and Purification[M].[S.l.]:Springer,2009:75-90.
    [223] Mansour K, Dirk I, Ann D. Gateway Vectors for Agrobacterium Mediated Plant Transformation[J].Trends in Plant Science,2002,7(5):193-195.
    [224] Mark D C, Ueli G. A Gateway Cloning Vector Set for High-throughput Functional Analysis of Genesin Planta[J]. Plant Physiology,2003,133(2):462-469.
    [225]Antoine G, Sonia L,Christophe B. One-step Generation of Error-prone Pcr Libraries Using GatewayTechnology[J].Microbial Cell Factories,2012,11(1):14.
    [226]朱锦辉,权军利,何玉科,等.根癌农杆菌感受态细胞的制备以及质粒Prok对其转化的研究[J].西北农林科技大学学报(自然科学版),2006,34(7).
    [227]周长富.油茶种子发育过程组分及脂类代谢相关基因表达变化研究[D].北京:中国林业科学研究院,2013.
    [228] Horsch R B, Fry J E, Hoffmann N L, et al. A Simple and General Method for Transferring Genes IntoPlants[J]. Science,1985,(227):1229-1231.
    [229] Ramesh S, Nagadhara D, Reddy V D, et al. Production of Transgenic Indica Rice Resistant to YellowStem Borer and Sap-sucking Insects, Using Super-binary Vectors of Agrobacterium Tumefaciens[J].Plant Science,2004,166(4):1077-1085.
    [230]王瑶,林木兰.农杆菌介导的木本植物遗传转化[J].生物技术通报,1999,15(6):23-27.
    [231]王景雪,孙毅.农杆菌介导的植物基因转化研究进展[J].生物技术通报,1999,15(1):7-13.
    [232]梁慧敏,夏阳,孙仲序,等.根癌农杆菌介导苜蓿遗传转化体系的建立[J].农业生物技术学报,2005,13(2):152-156.
    [233]谢龙旭,李云锋,徐培林.根癌农杆菌介导的转aroAM12基因棉花植株的草甘膦抗性[J].植物生理与分子生物学学报,2004,30(2):173-178.
    [234]党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报,2007,40(3):185-195.
    [235] John G C. Embryogenic Cells in Plant Tissue Cultures: Occurrence and Behavior[J]. In Vitro Cellular&developmental Biology,1990,26(8):746-753.
    [236] Tautorus T E, Fowke L C, Dunstan D I. Somatic Embryogenesis in Conifers[J]. Canadian Journal ofBotany,1991,69(9):1873-1899.
    [237] Hogberg K A, Bozhkov P V, Roland G, et al. Critical Factors Affecting Ex Vitro Performance ofSomatic Embryo Plants of Picea Abies[J]. Scandinavian Journal of Forest Research,2001,16(4):295-304.
    [238] Claudio S, Edward C Y. Recent Advances in Conifer Somatic Embryogenesis: Improving SomaticEmbryo Quality[J]. Plant Cell, Tissue and Organ Culture,2003,74(1):15-35.
    [239] Carl A H, John E P. Thidiazuron: a Potent Cytokinin for Woody Plant Tissue Culture[J]. Plant Cell,Tissue and Organ Culture,1993,33(2):105-119.
    [240] Takaji W, Thomas P, Takanobu K, et al. Production of Infectious Hepatitis C Virus in Tissue CultureFrom a Cloned Viral Genome[J]. Nature Medicine,2005,11(7):791-796.
    [241] Luc S, Buchs P A, Dominique M. A Simple Method for Organotypic Cultures of Nervous Tissue[J].Journal of Neuroscience Methods,1991,37(2):173-182.
    [242] Li T L. Regeneration of Plantlets in Cultures of Immature Cotyledons and Young Embryos of CamelliaOleifera Abel[J]. Acta Biologiae Experimentalis Sinica,1982(4):393-403.
    [243] Toshio M, Folke S. A Revised Medium for Rapid Growth and Bio Assays with Tobacco TissueCultures[J]. Physiologia Plantarum,1962,15(3):473-497.
    [244] Mccown B H, Lloyd G. Woody Plant Medium (wpm)-a Mineral Nutrient Formulation for Microcultureof Woody Plant-species[C]. Hortscience,1981,(16):453.
    [245]江荣翠.滇楸体细胞胚胎发生及其机理研究[D].南京:南京林业大学,2010.
    [246]周秀梅.牡丹体细胞胚胎发生研究[D].北京:北京林业大学,2008.
    [247]李金,李国树,徐成东,等.油茶组织培养研究进展[J].楚雄师范学院学报,2010,(6):28-31.
    [248]吴正凯,郑晓峰.油茶组织培养技术研究[J].内蒙古农业科技,2008,(1):63-64.
    [249]张智俊,罗淑萍,李亚玲,等.油茶优良无性系子叶体细胞胚植株再生[J].植物学通报,2006,22(B08):43-49.
    [250]李浚明,朱登云.植物组织培养教程[M].北京:中国农业大学出版社,2005.
    [251]赵术珍,阮圆,王宝山.盐地碱蓬幼嫩花序的组织培养及植株再生[J].植物学通报,2006,23(1):52-55.
    [252] Víctor M J. Involvement of Plant Hormones and Plant Growth Regulators on in Vitro SomaticEmbryogenesis[J]. Plant Growth Regulation,2005,47(2):91-110.
    [253] Malgorzata D G. Factors Influencing Somatic Embryogenesis Induction and Plant Regeneration withParticular Reference to Arabidopsis Thaliana (l.) Heynh[J]. Plant Growth Regulation,2004,43(1):27-47.
    [254] Raemakers C J, Jacobsen E, Visser R G. Secondary Somatic Embryogenesis and Applications in PlantBreeding[J]. Euphytica,1995,81(1):93-107.
    [255] Merkle S A, Parrott W A, Flinn B S. In Vitro Embryogenesis in Plants[M].[S.l.]: Springer,1995:155-203.
    [256] Junyan Z, Hui M, Fuxing G, et al. Effect of Thidiazuron on Somatic Embryogenesis of CayratiaJaponica[J]. Plant Cell, Tissue and Organ Culture,1994,36(1):73-79.
    [257] Mithila J, Hall J, Victor JMR, et al. Thidiazuron Induces Shoot Organogenesis at Low Concentrationsand Somatic Embryogenesis at High Concentrations on Leaf and Petiole Explants of African Violet(saintpaulia Ionantha Wendl.)[J]. Plant Cell Reports,2003,21(5):408-414.
    [258] Vengadesan G, Ganapathi A, Amutha S, et al. In Vitro Propagation of Acacia Species-a Review[J].Plant Science,2002,163(4):663-671.
    [259] Gary D C, Stephen G E. In Vitro Shoot Regeneration of Populus Deltoides: Effect of Cytokinin andGenotype[J]. Plant Cell Reports,1989,8(8):459-462.
    [260] TAO M. Studies on the Abnormal Embryoid and Hypeahydric Shoot in Tissue Culture [J]. ActaBotanica Boreali-occidentalia Sinica,2001,(5):39.
    [261] Kalpana P, Vishnoi R K, Kothari S L. Plant regeneration from embryogenic callus of finger milletEleusine coracana (L.) Gaertn. on higher concentrations of NH4NO3as a replacement of NAA in themedium[J]. Plant Science,1997,129(1):101-106.
    [262]范双喜.植物组织培养中胚状体诱导的研究[J].北京农学院学报,1993(2):142-146.
    [263]郭仲琛,王伏雄.吲跥乙酸及椰子乳汁对向日葵离体胚生长的影响[J]. Journal of Integrative PlantBiology,1963,(2):3.
    [264]崔凯荣,戴若兰.植物体细胞胚发生的分子生物学[M].北京:科学出版社,2000.
    [265]丛建民,沈海龙,李玉花,等.水曲柳体胚发生过程中不同状态类型外植体的生理生化状态[J].华南农业大学学报,2012,33(1):48-52.
    [266]许智宏.植物发育与生殖的研究:进展和展望[J].植物学报,1999,41(9):909-920.
    [267] Miho I, Mikihisa U, Shinobu S, et al. Stress‐induced Somatic Embryogenesis in Vegetative Tissuesof Arabidopsis Thaliana[J]. The Plant Journal,2003,34(1):107-114.
    [268]许传营,陈星旭,辛伟杰,等.花烛体细胞胚胎发生过程中相关生理生化特征研究[J].广西植物,2010,30(1):117-121.
    [269]祝建波,朱先灿,崔燕,等.杂花苜蓿高效再生体系的建立[J].作物杂志,2006,(5):14-17.
    [270]张启香,胡恒康,王正加,等.山核桃间接体细胞胚发生和植株再生[J].园艺学报,2011,38(6):1063-1070.
    [271]陈以峰,周燮,汤日圣,等.水稻体细胞培养中胚性细胞出现与IAA的关系[J].植物学报,1998,40(5):474-477.
    [272] Nebojsa I,nders O, Jerry D C. Differential Inhibition of Indole-3-acetic Acid and TryptophanBiosynthesis By Indole Analogues. I. Tryptophan Dependent Iaa Biosynthesis[J]. Plant GrowthRegulation,1999,27(1):57-62.
    [273] Pullman G S, Zhang Y, Phan B H. Brassinolide Improves Embryogenic Tissue Initiation in Conifersand Rice[J]. Plant Cell Reports,2003,22(2):96-104.
    [274] Héctor G M, Natalia I V, et al. Metagenomic Analysis of Two Enhanced Biological PhosphorusRemoval (ebpr) Sludge Communities[J]. Nature Biotechnology,2006,24(10):1263-1269.
    [275] Garcia-martin G, Manzanera J A, Gonzalez-benito M E. Effect of Exogenous Aba on EmbryoMaturation and Quantification of Endogenous Levels of Aba and Iaa in Quercus Suber SomaticEmbryos[J]. Plant Cell, Tissue and Organ Culture,2005,80(2):171-177.
    [276] Tomohiro K, Yoshu Y, Kazuko Y, et al. A Nuclear Gene Encoding Mitochondrial ProlineDehydrogenase, an Enzyme Involved in Proline Metabolism, Is Upregulated By Proline butDownregulated By Dehydration in Arabidopsis.[J]. The Plant Cell Online,1996,8(8):1323-1335.
    [277]周维燕.植物细胞工程原理与技术[M].北京:中国农业大学出版社,2001.
    [278] Abdul Q R, Allah B, Sarfraz K, et al. The Myth of Plant Transformation[J]. Biotechnology Advances,2009,27(6):753-763.
    [279] Andrea P, Heribert H. New Insights Into an Old Story: Agrobacterium‐induced Tumour Formation inPlants By Plant Transformation[J]. The Embo Journal,2010,29(6):1021-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700