用户名: 密码: 验证码:
微藻培养过程中轮虫污染防治研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微藻在食品、营养和保健等领域具有重要应用价值,开发微藻资源可获得人类大量需求的高附加值生物活性物质,同时也是获得再生生物能源的理想途径。但随培养规模逐步扩大,敌害生物污染严重制约着微藻规模化培养过程,限制其生物资源开发。其中以浮游动物对藻类摄食危害最为严重,轻者影响微藻生长,重者则会在几天时间内将微藻食光,造成严重的经济损失。但目前在微藻工程化培养中尚缺乏有效的污染控制方法。本实验基于浮游动植物的基本生物学特征差异,在筛选轮虫高毒性植物源杀虫剂的基础上,获得具有增效作用的植物源杀虫剂二元复配,研究了植物源杀虫剂单剂和增效二元复配对微藻培养中轮虫污染的控制效果,探讨其使用经济性和实用性,并初步了解植物源杀虫剂对轮虫毒性的作用机理,以期为微藻工程化培养中敌害生物防治提供理论和技术指导。主要结果如下:
     1、通过测定4种植物源杀虫剂(苦皮藤素、印楝素、苦参碱和川楝素)对褶皱臂尾轮虫的急性毒性,筛选出3种对轮虫高急性毒性的植物源杀虫剂—苦皮藤素、苦参碱和川楝素,并得到其24h内的有效致死浓度(LC50),分别为0.175mg/L、0.061mg/L和2.132×10-3mg/L;亚致死浓度苦皮藤素(≥0.110mg/L)、苦参碱(≥0.050mg/L)和川楝素(≥0.191×10-3mg/L)对轮虫个体繁殖和种群累积具强慢性毒性,可显著降低轮虫个体净生殖力、内禀增长率和周限增长率,并缩短其时代时间;种群抑制效应具有明显的剂量依赖性和时间依赖性,药物浓度越高,作用时间越长,对轮虫种群繁殖的抑制作用越强。
     2、研究植物源杀虫剂单剂对海水微藻培养中轮虫污染的控制效果,结果表明:(1)全致死浓度(LC100)苦皮藤素(0.316mg/L)可在24h内快速杀灭微拟球藻中褶皱臂尾轮虫,同时对微拟球藻净光合放氧和呼吸速率均无显著影响,藻细胞保持正常生长分裂,但其色素含量有降低,微藻生物量可达到空白对照组84%;(2)相比苦皮藤素,川楝素对抑制褶皱臂尾轮虫种群繁殖慢性毒性更强,LC30~LC50(1.755~2.132×10-3mg/L)浓度川楝素在48~72h内有效降低轮虫种群密度,并导致存活轮虫产生明显的拒食反应,轮虫怀卵率和种群密度均维持在较低水平,同时对小球藻和微拟球藻光化学效率无明显抑制作用,藻细胞平均比生长速率与空白对照无显著差异。苦皮藤素和川楝素对环境非靶标生物低毒或无毒,同时具有易降解、残留量低、价格低廉等优势,是微藻培养中控制轮虫污染的有效候选药物。
     3、苦皮藤素、苦参碱和川楝素二元复配对褶皱臂尾轮虫的联合毒性同时受复配药物种类和复配比例影响,苦参碱和川楝素均以神经系统为主要作用靶标,其二元复配对轮虫联合毒性以相加作用为主;苦皮藤素/苦参碱和苦皮藤素/川楝素复配中,随苦参碱或川楝素含量增加,二元复配联合毒性基本呈增强趋势;复配比例达到1:9时,苦参碱或川楝素含量可充分抑制轮虫体内对苦皮藤素的解毒酶系统,从而导致苦皮藤素对轮虫毒性增强,二元复配表现为增效作用,提示可通过应用苦皮藤素/苦参碱(1:9)或苦皮藤素/川楝素(1:9)提高轮虫防治效率,减少药剂使用量,进而降低防治成本。
     4、基于低剂量多次添加的防治策略,连续四次添加0.006mg/L苦皮藤素/川楝素(1:9)增效混剂,可破坏轮虫消化系统、麻痹神经系统,引起轮虫生理紊乱并最终抑制轮虫能量吸收,从而在四天内逐渐降低轮虫种群密度(至1尾/ml),有效控制种群繁殖;期间增效混剂对小球藻和微拟球藻细胞实际光化学效率(φPSII)和光能利用效率(α)无抑制作用,细胞密度保持连续增长,其色素含量达到空白对照组70~90%。增效复配药剂控制轮虫污染可明显减少单剂使用量30~90%,降低对环境非靶标生物的潜在毒性,同时减少药剂经济成本29%以上,有效降低轮虫污染的防控成本。
     5、户外培养实验表明,两次添加0.003~0.006mg/L苦皮藤素/川楝素(1:9)增效复配在3天内有效抑制了钝顶螺旋藻中的萼花臂尾轮虫种群繁殖,对螺旋藻生物量、叶绿素和藻蓝蛋白含量无显著抑制作用;与目前生产中常用的碳酸氢铵方法相比较,0.003mg/L增效复配通过抑制轮虫繁殖可长期控制轮虫污染;碳酸氢铵处理组中由于氨挥发,培养后期轮虫种群将有部分恢复;碳酸氢铵和增效复配对螺旋藻藻丝形态均无明显影响;但碳酸氢铵作用短期内对螺旋藻生长抑制作用较强,增效药剂控制轮虫污染后螺旋藻生物量可达更高水平;增效复配可增加螺旋藻培养经济收入,在螺旋藻户外大规模培养控制轮虫污染中具有较高的实用性和经济可行性。
     6、以川楝素为例初步研究了植物源杀虫剂对轮虫毒性机理,表明LC30~LC70(1.755~2.59×10-3mg/L)浓度川楝素可改变轮虫体壁细胞膜的膜蛋白结构,引起细胞内外渗透压失衡,轮虫体壁出现明显褶皱;导致存活轮虫个体体长和体宽均明显缩小,体积迅速减小,并促使胃蛋白酶-底物中间体形成,但抑制酶-底物复合物进一步分解,从而降低胃蛋白酶酶促反应速度,同时抑制类胰蛋白酶-底物复合体形成,降低类胰蛋白酶酶促反应速度,从而引起轮虫明显的拒食反应,并随川楝素浓度升高,拒食反应越明显。
Microalgae have great potential applications in varied fields such as the food, nutritionand health care. Microalgal resource development can produce large amounts ofhigh-additional-value substances that are in great demand now, and is also considered to bean ideal way for renewable energy production. However, the contaminations caused bybiological pollutants constrain the algal large-scale cultivation and seriously impede thedevelopment of microalgal resource. Microalgal growth is especially susceptible to thegrazing by zooplanktons, which can inhibit algal growth and reduce the algal concentrationto low levels within just a few days, resulting in heavy economic loss. For now, no effectiveapproaches are found to control the biological contaminations. Based on the biologicaldifferences between zooplankton and phytoplankton, this study screened the individualbotanical pesticide that had high toxicity on rotifers, and obtained the synergistic binarycombinations of the pesticides. The rotifer-control effects of individual botanical pesticideand the synergistic combinations, and their safety for algal growth were studied. Theeconomics, practical applicability, and insecticidal mechanism of botanical pesticides onexterminating rotifers were also discussed. This study is aimed to provide theoretical andtechnical directions to the control of biological pollutants in microalgal mass cultivation. Themain results were as follows:
     1. By determining the acute toxicity of four botanical pesticides (celangulin,azadirachtin, matrine and toosendanin) on the rotifer B. plicatilis, three botanical pesticides,celangulin, matrine and toosendanin, that were highly acute toxic to rotifers were screened,with24h LC50values of0.175mg/L,0.061mg/L and2.132×10-3mg/L, respectively.Sublethal concentrations of celangulin (≥0.110mg/L), matrine (≥0.050mg/L) andtoosendanin (≥0.191×10-3mg/L) showed highly chronic toxicity toward the rotiferreproduction and population growth, with significant decreases of the net reproduction,intrinsic rate and finite rate of increase, and shortened generation time. The inhibitory effects of celangulin, matrine and toosendanin on population growth of rotifers were significantlyconcentration-dependent and time-dependent. The longer the time or higher theconcentration the rotifers were exposed to, the stronger the population growth of rotifers wasinhibited.
     2. The rotifer-control effects of individual botanical pesticide and its safety in algalcultivation were evaluated. Results demonstrated that,(1) the LC100(0.316mg/L) ofcelangulin exterminated the B. plicatilis rotifers effectively in the Nannochloropsis gaditanacultures in24hours. The celangulin treatment had no significant toxicity to the netphotosynthetic and respiratory rates of algal cells. Though partial decreases of chlorophyllcontent were observed, the N. gaditana kept growing during the cultivation period, with theharvest dry biomass reaching84%of the control;(2) Compared with the celangulin,toosendanin showed stronger chronic toxicity on inhibiting the population growth of rotifers.The LC30~LC50(1.755~2.132×10-3mg/L) of toosendanin decreased the rotifer density in48~72h, with the obvious antifeeding responses of survivals in the Chlorella sp. and N.oceanica cultures. Thus, both the population density and egg ratio of survival rotifers kept inlow levels. The toosendanin treatments had no negative influences on the photosyntheticefficiency of algal cells. There was no significant difference on the average specific growthrate between the algae treated by toosendanin and the control. Celangulin and toosendaninshowed none or low toxicity to non-target organisms in aquatic environments. Together withtheir advantages of rapid degradation, low residue and low commercial price, celangulin andtoosendanin are considered to be good potential botanical pesticides for controlling rotifersin microalgal mass cultivation.
     3. Interaction toxicity of binary combinations between celangulin, matrine andtoosendanin were dependent on the pesticides themselves and their ratios in combinations.Mixtures of matrine/toosendanin mainly produced addition owing to their similar modes ofaction aiming at the nervous system. As the content of matrine or toosendanin incombinations increased, there was an increased trend in the binary toxicity of either celangulin/matrine or celangulin/toosendanin combinations. Combinations of celangulinmixed with matrine or toosendanin at the1:9ratio exhibited synergism, which was attributedto the interference of matrine or toosendanin with the detoxification enzymes of celangulin.The synergistic celangulin/matrine (1:9) or celangulin/toosendanin (1:9) treatment will leadto increased insecticidal efficacy, reduced dosage of biocides, thereby reducing the cost ofexterminating rotifers.
     4. Based on the management strategy of frequent low-dose treatments, four dailytreatments of0.006mg/L celangulin/toosendanin (CA/TSN)(1:9) combination reduced thepopulation density of rotifers to approximately one rotifers/ml in four days. Thelow-concentration treatments do not directly cause rotifer death, but rather causephysiological disorders by damaging the digestive system, paralyzing the neuromuscularsystem and finally inhibiting energy uptake of the rotifers. Four additions of0.006mg/LCA/TSN treatment had no inhibitory effects on the effective quantum yield (φPSII) andphotosynthetic efficiency (α) of Chlorella sp. and N. oceanica. The microalgae treated by thecombination kept growing, with the pigment content reaching70~90%of the control.Application of the synergistic CA/TSN combination leads to an obvious dosage reduction by30~90%of celangulin and toosendanin for rotifer elimination. As a result, the potentialtoxic impacts for non-target organisms were decreased. The cost for rotifer exterminationwould also be reduced by29%.
     5. The outdoor experiments showed that two additions of0.003~0.006mg/L of thecelangulin/toosendanin (CA/TSN)(1:9) combination effectively inhibited rotiferreproduction within3days, and showed no toxicity toward the algal biomass, including thechlorophyll and phycocyanin levels of S. platensis. A comparison between the CA/TSNcombination and NH4HCO3treatments indicated that0.003mg/L CA/TSN showed a lastingeffect on controlling rotifers by sterilizing the rotifers. In the NH4HCO3treatment, therotifers still reproduced at a low level, partially owing to the dissipation of thetreatment-generated ammonia. Neither the NH4HCO3nor the CA/TSN treatment changed algal filament morphology; however, the NH4HCO3treatment initially inhibited algal growthmore seriously. S. platensis treated by CA/TSN reached a higher biomass concentration inthe same time frame. Given its effectiveness, together with the projected increase in farmearnings, the synergistic CA/TSN combination showed excellent potential and economicfeasibility for rotifer extermination in outdoor mass cultures of S. platensis.
     6. The insecticidal mechanism of toosendanin for rotifers was preliminarily studied.Results suggested that LC30~LC70(1.755~2.59×10-3mg/L) of toosendanin seriouslywrinkled the body wall of rotifers by isomerizing the membrane proteins in the epidermalcells, thereby resulting in the imbalance of osmotic pressures inside and outside of cells.Toosendanin decreased the body length and width, and shrunk the body size of survivalrotifers significantly. For the digestive enzymes, toosendanin decreased the rate ofpepsase-catalyzed reaction by improving the binding but inhibiting the further decomposingof pepsase and substrates. In contrast, toosendanin decreased the rate of tryptase-catalyzedreaction by reducing the affinity of tryptase with substrates. The inhibition of toosendanin onpepsase and tryptase activities resulted in the obvious antifeeding responses of rotifers,which was dosage-dependent.
引文
1. Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A., Commercial applications ofmicroalgae. Journal of Bioscience and Bioengineering,2006.101:87-96.
    2. Singh, S., Arad, S.M., and Richmond, A., Extracellular polysaccharide production inoutdoor mass cultures of Porphyridium sp. in flat plate glass reactors. Journal of AppliedPhycology,2000.12:269-275.
    3. Borowitzka, M.A., Microalgae as sources of pharmaceuticals and other biologically activecompounds. Journal of Applied Phycology,1995.7:3-15.
    4. Mata, T.M., Martins, A.A., and Caetano, N.S., Microalgae for biodiesel production andother applications: a review. Renewable and Sustainable Energy Reviews,2010.14:217-232.
    5. Metting Jr, F., Biodiversity and application of microalgae. Journal of IndustrialMicrobiology,1996.17:477-489.
    6. Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P., A look back at the USDepartment of Energy's Aquatic Species Program: Biodiesel from algae. Vol.328.1998:National Renewable Energy Laboratory Golden.
    7. Doucha, J. and Lívansky, K., Productivity, CO2/O2exchange and hydraulics in outdooropen high density microalgal (Chlorella sp.) photobioreactors operated in a Middle andSouthern European climate. Journal of Applied Phycology,2006.18:811-826.
    8. Borowitzka, M.A., Commercial production of microalgae: ponds, tanks, and fermenters.Progress in Industrial Microbiology,1999.35:313-321.
    9. Liu, J., Hu, P., Yao, L., and Wang, X., Advance of photobioreactor on microalgalcultivation. Food Science,2006.27:772-777(in Chinese).
    10. Chisti, Y., Biodiesel from microalgae. Biotechnology Advances,2007.25:294-306.
    11. Christenson, L. and Sims, R., Production and harvesting of microalgae for wastewatertreatment, biofuels, and bioproducts. Biotechnology Advances,2011.29:686-702.
    12. Carvalho, A.P., Meireles, L.A., and Malcata, F.X., Microalgal reactors: a review ofenclosed system designs and performances. Biotechnology Progress,2006.22:1490-1506.
    13. Niyogi, K.K., Photoprotection revisited: genetic and molecular approaches. AnnualReview of Plant Biology,1999.50:333-359.
    14. Powles, S.B., Photoinhibition of photosynthesis induced by visible light. Annual Reviewof Plant Physiology,1984.35:15-44.
    15. Wang, H., Zhang, W., Chen, L., Wang, J., and Liu, T., The contamination and control ofbiological pollutants in mass cultivation of microalgae. Bioresource Technology,2013.128:745-750.
    16. Vasudevan, P.T. and Briggs, M., Biodiesel production—current state of the art andchallenges. Journal of Industrial Microbiology&Biotechnology,2008.35:421-430.
    17. Chen, C., Yeh, K., Aisyah, R., Lee, D., and Chang, J., Cultivation, photobioreactordesign and harvesting of microalgae for biodiesel production: a critical review. BioresourceTechnology,2011.102:71-81.
    18. Li, S. and Li, H., The studies on the large-scale culture of Chlorella pyrenoidosa in atubular photobioreactor. Chinese Journal of Biotechnology,1997.13:91-97(in Chinese).
    19. Torzillo, G., Pushparaj, B., Bocci, F., Balloni, W., Materassi, R., and Florenzano, G.,Production of Spirulina biomass in closed photobioreactors. Biomass,1986.11:61-74.
    20. Choi, W., Kim, G., and Lee, K., Influence of the CO2absorbent monoethanolamine ongrowth and carbon fixation by the green alga Scenedesmus sp. Bioresource Technology,2012.120:295-299.
    21. Nayak, M., Jena, J., Bhakta, S., Rath, S.S., Sarika, C., Rao, B.V.S.K., Pradhan, N.,Thirunavoukkarasu, M., Mishra, S.K., and Panda, P.K., Screening of fresh water microalgaefrom eastern region of India for sustainable biodiesel production. International Journal ofGreen Energy,2011.8:669-683.
    22. Zhou, W., Qiao, X., Sun, J., Xing, K., and Tang, X., Ecological effect of Z-QS01strainon Chlorella vulgaris and its response to UV-B radiation stress. Procedia EnvironmentalSciences,2011.11:741-748.
    23. Shilo, M., Lysis of blue-green algae by myxobacter. Journal of Bacteriology,1970.104:453-461.
    24. Anne, M.P., Flavia, E., Doralyn, D.S., Sacha, S., Suhelen, E., Sally, J., Jeremy, S.W., andStaffan, K., Biofilm development and cell death in the marine bacterium Pseudoalteromonastunicata. Applied and Environmental Microbiology,2004.70:3232-3238.
    25. Ichiro, I., Ishida, Y., Sakaguchi, K., and Hata, Y., Algicidal marine bacteria isolated fromnorthern Hiroshima Bay, Japan. Fisheries Science: FS,1995.61:628-636.
    26. Shi, S., Liu, Y., Shen, Y., Li, G., and Li, D., Lysis of Aphanizomenon flosaquae(Cyanobacterium) by a bacterium Bacillus cereus. Biological Control,2006.39:345-351.
    27. Kang, Y.H., Kim, J.D., Kim, B.H., Kong, D.S., and Han, M.S., Isolation andcharacterization of a bioagent antagonistic to diatom, Stephanodiscus hantzschii. Journal ofApplied Microbiology,2005.98:1030-1038.
    28. Wang, H., Liu, L., Liu, Z.P., and Qin, S., Investigations of the characteristics and modeof action of an algalytic bacterium isolated from Tai Lake. Journal of Applied Phycology,2010.22:473-478.
    29. Wang, B., Yang, X., Lu, J., Zhou, Y., Su, J., Tian, Y., Zhang, J., Wang, G., and Zheng, T.,A marine bacterium producing protein with algicidal activity against Alexandrium tamarense.Harmful Algae,2012.13:83-88.
    30. Su, J., Yang, X., Zhou, Y., and Zheng, T., Marine bacteria antagonistic to the harmfulalgal bloom species Alexandrium tamarense(Dinophyceae). Biological Control,2011.56:132-138.
    31. Nakamura, N., Nakano, K., Sugiura, N., and Matsumura, M., A novel cyanobacteriolyticbacterium, Bacillus cereus, isolated from a Eutrophic Lake. Journal of Bioscience andBioengineering,2003.95:179-184.
    32. Mu, R., Fan, Z., Pei, H., Yuan, X., Liu, S., and Wang, X., Isolation and algae-lysingcharacteristics of the algicidal bacterium B5. Journal of Environmental Sciences,2007.19:1336-1340.
    33. Kim, M.J., Jeong, S.Y., and Lee, S.J., Isolation, identification, and algicidal activity ofmarine bacteria against Cochlodinium polykrikoides. Journal of Applied Phycology,2008.20:1069-1078.
    34. Lee, S., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., and Ohtake, H.,Involvement of an extracellular protease in algicidal activity of the marine bacteriumPseudoalteromonas sp. strain A28. Applied and Environmental Microbiology,2000.66:4334-4339.
    35. Zhang, H., Yu, Z., Huang, Q., Xiao, X., Wang, X., Zhang, F., Wang, X., Liu, Y., and Hu,C., Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22against Microcystis aeruginosa. Limnologica-Ecology and Management of Inland Waters,2011.41:70-77.
    36. Kang, Y.H., Kim, J.D., Kim, B.H., Kong, D.S., and Han, M.S., Isolation andcharacterization of a bio‐agent antagonistic to diatom, Stephanodiscus hantzschii. Journalof Applied Microbiology,2005.98:1030-1038.
    37. Kim, J.D., Kim, B., and Lee, C.G., Alga-lytic activity of Pseudomonas fluorescensagainst the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae).Biological Control,2007.41:296-303.
    38. Sakata, T., Yoshikawa, T., and Nishitarumizu, S., Algicidal activity and identification ofan algicidal substance produced by marine Pseudomonas sp. C55a-2. Fisheries Science,2011.77:397-402.
    39. Furusawa, G., Yoshikawa, T., Yasuda, A., and Sakata, T., Algicidal activity and glidingmotility of Saprospira sp. SS98-5. Canadian Journal of Microbiology,2003.49:92-100.
    40. Imamura, N., Motoike, I., Shimada, N., Nishikori, M., Morisaki, H., and Fukami, H., Anefficient screening approach for anti-Microcystis compounds based on knowledge of aquaticmicrobial ecosystem. The Journal of Antibiotics,2001.54:582.
    41. Su, J., Yang, X., Zhou, Y., and Zheng, T., Marine bacteria antagonistic to the harmfulalgal bloom species Alexandrium tamarense (Dinophyceae). Biological Control,2011.56:132-138.
    42. Yoshikawa, K., Adachi, K., Nishijima, M., Takadera, T., Tamaki, S., Harada, K.,Mochida, K., and Sano, H., β-Cyanoalanine production by marine bacteria on cyanide-freemedium and its specific inhibitory activity toward cyanobacteria. Applied andEnvironmental Microbiology,2000.66:718-722.
    43. Sakai, H., Oguma, K., Katayama, H., and Ohgaki, S., Effects of low-ormedium-pressure ultraviolet lamp irradiation on Microcystis aeruginosa and Anabaenavariabilis. Water Research,2007.41:11-18.
    44. Banin, E., Israely, T., Kushmaro, A., Loya, Y., Orr, E., and Rosenberg, E., Penetration ofthe coral-bleaching bacterium vibrio shiloi into Oculina patagonica. Applied andEnvironmental Microbiology,2000.66:3031-3036.
    45. Nakashima, T., Miyazaki, Y., Matsuyama, Y., Muraoka, W., Yamaguchi, K., and Oda, T.,Producing mechanism of an algicidal compound against red tide phytoplankton in a marinebacterium γ-proteobacterium. Applied Microbiology and Biotechnology,2006.73:684-690.
    46. Piazzi, L. and Ceccherelli, G., Effects of competition between two introduced Caulerpa.Marine Ecology Progress Series,2002.225:189-195.
    47. Twiner, M.J., Dixon, S.J., and Trick, C.G., Toxic effects of Heterosigma akashiwo donot appear to be mediated by hydrogen peroxide. Limnology and Oceanography,2001.46:1400-1405.
    48. Twiner, M.J., Chidiac, P., Dixon, S.J., and Trick, C.G., Extracellular organic compoundsfrom the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium andinduce apoptosis in Sf9cells. Harmful Algae,2005.4:789-800.
    49. Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., andHonjo, T., Growth inhibition and formation of morphologically abnormal cells of Akashiwosanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodiniumpolykrikoides Margalef. Marine Biology,2007.152:157-163.
    50. Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., and Honjo, T.,Interactions between the red tide dinoflagellates Heterocapsa circularisquama andGymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology andEcology,1999.241:285-299.
    51. Uchida, T., Yamaguchi, M., Matsuyama, Y., and Honjo, T., The red-tide dinoflagellateHeterocapsa sp. kills Gyrodinium instriatum by cell contact. Marine Ecology Progress Series.Oldendorf,1995.118:301-303.
    52. Gross, E., Allelopathy in benthic and littoral areas: case studies on allelochemicals frombenthic cyanobacteria and submersed macrophytes1999: Bibliothek der Universit tKonstanz.
    53. Litchman, E., Competition and coexistence of phytoplankton under fluctuating light:experiments with two cyanobacteria. Aquatic Microbial Ecology,2003.31:241-248.
    54. Kuwata, A. and Miyazaki, T., Effects of ammonium supply rates on competitionbetween Microcystis novacekii(Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta):simulation study. Ecological Modelling,2000.135:81-87.
    55. Suikkanen, S., Fistarol, G.O., and Granéli, E., Allelopathic effects of the Balticcyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaenalemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology,2004.308:85-101.
    56. Fogg, G. and Hofmann, W., Extracellular products of algae in freshwater. Archiv fürHydrobiologie,1971.
    57. Rengefors, K. and Legrand, C., Toxicity in peridinium aciculiferum-an adaptive strategyto outcompete other winter phytoplankton? Limnology and Oceanography,2001.46:1990-1997.
    58. Papke, U., Gross, E.M., and Francke, W., Isolation, identification and determination ofthe absolute configuration of Fischerellin B. A new algicide from the freshwatercyanobacterium Fischerella muscicola(Thuret). Tetrahedron Letters,1997.38:379-382.
    59. Pan, K., Wang, J., and Zhu, B., Progress on study of competition among marinemicroalgae. Marine Sciences,2007.31:58-62(in Chinese).
    60. Johansson, N., Graneli, E., Yasumoto, T., Carlsson, P., and Legrand, C.C. Toxinproduction by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient anddeficient conditions. in Intergovernmental Oceanographic Commission of UNESCO In:Yasumoto, T, Oshima Y, Fukuyo Y (eds) Harmful and Toxic Algal Blooms.1996.
    61. Anderson, D., Kulis, D., Sullivan, J., and Hall, S., Toxin composition variations in oneisolate of the dinoflagellate Alexandrium fundyense. Toxicon,1990.28:885-893.
    62. Kagami, M., Bruin, A., Ibelings, B.W., and Van Donk, E., Parasitic chytrids: their effectson phytoplankton communities and food-web dynamics. Hydrobiologia,2007.578:113-129.
    63. Safferman, R.S. and Morris, M.E., Algal virus: isolation. Science,1963.140:679-680.
    64. Gibbs, A., Skotnicki, A.H., Gardiner, J.E., Walker, E.S., and Hollings, M., Atobamovirus of a green alga. Virology,1975.64:571-574.
    65. Suttle, C.A. and Chen, F., Mechanisms and rates of decay of marine viruses in seawater.Applied and Environmental Microbiology,1992.58:3721-3729.
    66. Nagasaki, K., Tarutani, K., and Yamaguchi, M., Growth characteristics of Heterosigmaakashiwo virus and its possible use as a microbiological agent for red tide control. Appliedand Environmental Microbiology,1999.65:898-902.
    67. Baudoux, A.C., Noordeloos, A.A., Veldhuis, M.J., and Brussaard, C.P., Virally inducedmortality of Phaeocystis globosa during two spring blooms in temperate coastal waters.Aquatic Microbial Ecology,2006.44:207.
    68. Brussaard, C.P., Thyrhaug, R., Marie, D., and Bratbak, G., Flow cytometric analyses ofviral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae)and Phaeocystis pouchetii (Prymnesiophyceae). Journal of Phycology,1999.35:941-948.
    69. Seaton, G.G., Lee, K., and Rohozinski, J., Photosynthetic shutdown in Chlorella NC64Aassociated with the infection cycle of Paramecium bursaria Chlorella virus-1. PlantPhysiology,1995.108:1431-1438.
    70. Van Etten, J.L., Burbank, D.E., Xia, Y., and Meints, R.H., Growth cycle of a virus,PBCV-1, that infects Chlorella-like algae. Virology,1983.126:117-125.
    71. Jacquet, S., Heldal, M., Iglesias-Rodriguez, D., Larsen, A., Wilson, W., and Bratbak, G.,Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection.Aquatic Microbial Ecology,2002.27:111-124.
    72. Bratbak, G., Jacobsen, A., and Heldal, M., Viral lysis of Phaeocystis pouchetii andbacterial secondary production. Aquatic Microbial Ecology,1998.16:11-16.
    73. Jacquet, S. and Bratbak, G., Effects of ultraviolet radiation on marine virus–phytoplankton interactions. FEMS Microbiology Ecology,2003.44:279-289.
    74. Rosetta, C.H. and McManus, G.B., Feeding by ciliates on two harmful algal bloomspecies, Prymnesium parvum and Prorocentrum minimum. Harmful Algae,2003.2:109-126.
    75. Lürling, M. and Beekman, W., Influence of food-type on the population growth rate ofthe rotifer Brachionus calyciflorus in short-chronic assays. Acta Zool Sinica,2006.52:70-78.
    76. Frederiksen, M., Edwards, M., Richardson, A.J., Halliday, N.C., and Wanless, S., Fromplankton to top predators: bottom‐up control of a marine food web across four trophiclevels. Journal of Animal Ecology,2006.75:1259-1268.
    77. Pogozhev, P. and Gerasimova, T., The effect of zooplankton on microalgae bloomingand water eutrophication. Water Resources,2001.28:420-427.
    78. Benemann, J.R. Open ponds and closed photobioreactors-comparative economics. in5thannual World Congress on Industrial Biotechnology and Bioprocessing, April.2008.
    79. Moreno-Garrido, I. and Canavate, J., Assessing chemical compounds for controllingpredator ciliates in outdoor mass cultures of the green algae Dunaliella salina. AquaculturalEngineering,2001.24:107-114.
    80. Vanderploeg, H.A. and Paffenh fer, G., Modes of algal capture by the freshwatercopepod Diaptomus sicilis and their relation to food-size selection. Limnology andOceanography,1985.30:871-885.
    81. Kleppel, G., Burkart, C., Carter, K., and Tomas, C., Diets of calanoid copepods on theWest Florida continental shelf: relationships between food concentration, food compositionand feeding activity. Marine Biology,1996.127:209-217.
    82. Harris, R.P., Zooplankton grazing on the coccolithophore Emiliania huxleyi and its rolein inorganic carbon flux. Marine Biology,1994.119:431-439.
    83. Huntley, M.E. and Lopez, M.D., Temperature-dependent production of marine copepods:a global synthesis. American Naturalist,1992:201-242.
    84. Wang, R. and Conover, R.J., Dynamics of gut pigment in the copepod Temoralongicornis and the determination of in situ grazing rates. Limnology and Oceanography,1986.31:867-877.
    85. Sarma, S., Larios Jurado, P.S., and Nandini, S., Effect of three food types on thepopulation growth of Brachionus calyciflorus and Brachionus patulus (Rotifera:Brachionidae). Revista de Biología Tropical,2001.49:77-84.
    86. Hotos, G.N., Growth, filtration and ingestion rate of the rotifer Brachionus plicatilis fedwith large (Asteromonas gracilis) and small (Chlorella sp.) celled algal species. AquacultureResearch,2003.34:793-802.
    87. Huang, X., Xi, Y., and Zhu, G., Rotifera. Bulletin of Biology,1999.34:10-12(inChinese).
    88. Koste, W., Die Radertiere Mitteleuropas I,1978, Textband, Berlin.
    89. Pourriot, R. and Snell, T.W., Resting eggs in rotifers. Hydrobiologia,1983.104:213-224.
    90. Snell, T.W. and Boyer, E.M., Thresholds for mictic female production in the rotiferBrachionus plicatilis (Muller). Journal of Experimental Marine Biology and Ecology,1988.124:73-85.
    91. Gao, S., Hypoxia of rotifer and protozoon and the prevention Scientific Fish Farming,2002.9:46(in Chinese).
    92. Fischer, B.B., Roffler, S., and Eggen, R.I., Multiple stressor effects of predation byrotifers and herbicide pollution on different Chlamydomonas strains and potential impacts onpopulation dynamics. Environmental Toxicology and Chemistry,2012.31:2832-2840.
    93. Schlüter, M., Groeneweg, J., and Soeder, C.J., Impact of rotifer grazing on populationdynamics of green microalgae in high-rate ponds. Water Research,1987.21:1293-1297.
    94. Borowitzka, M., Culturing microalgae in outdoor ponds. Algal Culturing Techniques,2005.218.
    95. Ferrando, M. and Andreu-Moliner, E., Acute toxicity of toluene, hexane, xylene, andbenzene to the rotifers Brachionus calyciflorus and Brachionus plicatilis. Bulletin ofEnvironmental Contamination and Toxicology,1992.49:266-271.
    96. Gama Flores, J., Sarma, S., and Fernandez Araiza, M., Combined effects of Chlorelladensity and methyl parathion concentration on the population growth of Brachionuscalyciflorus (Rotifera). Bulletin of Environmental Contamination and Toxicology,1999.62:769-775.
    97. Marcial, H.S. and Hagiwara, A., Effect of diazinon on life stages and resting egghatchability of rotifer Brachionus plicatilis. Hydrobiologia,2007.593:219-225.
    98. Ke, L., Xi, Y., Zha, C., and Chu, Z., Effects of methamidophos and acephate onexperimental population dynamics of rotifer Brachionus calyciflorus. Acta HydrobiologicaSinica,2009.33:189-194.
    99. Ferrando, M., Sancho, E., and Andreu-Moliner, E., Chronic toxicity of fenitrothion to anAlgae (Nannochloris oculata), a Rotifer (Brachionus calyciflorus), and the Cladoceran(Daphnia magna). Ecotoxicology and Environmental Safety,1996.35:112-120.
    100. Snell, T.W. and Hoff, F.H., Fertilization and male fertility in the rotifer Brachionusplicatilis. Hydrobiologia,1987.147:329-334.
    101. Wang, Z. and Yin, Y., Studies of the toxicity of pyrethroid Insecticides (crude productand commodity grades) and solvents to aquatic organisms. Journal of Jinan University(Natural Science),1997.18:98-103(in Chinese).
    102. Fathi, A.A., Some metabolic activities in the green alga Scenedesmus bijuga as affectedby the insecticide trichlorfon. Protistology,2003.3:92-98.
    103. Chen, H. and Jiang, J., Toxic effects of chemical pesticides (trichlorfon and dimehypo)on Dunaliella salina. Chemosphere,2011.84:664-670.
    104. Wang, Z., Nie, X., Yue, W., and Li, X., Physiological responses of three marinemicroalgae exposed to cypermethrin. Environmental Toxicology,2012.27:563-572.
    105. Morales, C.E., Harris, R.P., Head, R.N., and Tranter, P.R., Copepod grazing in theoceanic northeast Atlantic during a6week drifting station: the contribution of size classesand vertical migrants. Journal of Plankton Research,1993.15:185-212.
    106. Liu, Z. and Lu, G., The sterilizing studies of flagellate and ciliate in marine unicellularalgae liquid. Zhanjiang Aquaculture College,1990.2:36-41.
    107. Becker, E.W., Microalgae: biotechnology and microbiology. Vol.10.1994: CambridgeUniversity Press.
    108. Post, F., Borowitzka, L., Borowitzka, M., Mackay, B., and Moulton, T., The protozoa ofa Western Australian hypersaline lagoon. Hydrobiologia,1983.105:95-113.
    109. Belay, A., Mass culture of Spirulina outdoors: the Earthrise Farms experience. Spirulinaplatensis (Arthrospira): Physiology, Cell-biology and Biotechnology. London, Taylor andFrancis,1997:131-158.
    110. Mitchell, S. and Richmond, A., The use of rotifers for the maintenance of monoalgalmass cultures of Spirulina. Biotechnology and Bioengineering,1987.30:164-168.
    111. Comps, M., Mari, J., Poisson, F., and Bonami, J.R., Biophysical and biochemicalproperties of an unusual birnavirus pathogenic for rotifers. Journal of General Virology,1991.72:1229-1236.
    112. Comps, M., Menu, B., Breuil, G., and Bonami, J.R., Virus isolation from masscultivated rotifers, Brachionus plicatilis. Bulletin of the European Association of FishPathologists,1990.10:37-38.
    113. Comps, M., Menu, B., Breuil, G., and Bonami, J.R., Viral infection associated withrotifer mortalities in mass culture. Aquaculture,1991.93:1-7.
    114. Kong, X. and Wu, W., A study of how narcotic activity F from the root of euonymusverrucosides affect insect. Journal of Heilongjiang August First Land ReclamationUniversity,2000.12:21-24(in Chinese).
    115. Du, Y., He, B., Wang, W., Liu, A., Hu, Z., and Wu, W., Patch clamp study on theanesthetics mechanisms of celangulin IV. Acta Biophysica Sinica2002.18:297-301(inChinese).
    116. Hu, Z., Wu, W., Ji, Z., and Liu, A., Effects of Celangulin IVand V from Celastrusangulatuson excitatory junction potentials of Drosophila melanogaster Larvae. Journal ofNorthwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition),2004.32:60-63(in Chinese).
    117. Zeng, X., Zhang, S., Fang, J., and Han, J., Comparison of the bioactivity of elliptoneand rotenone against several agricultural insect pests. Acta Entomologica Sinica,2002.45:611-616(in Chinese).
    118. Wang, W., Liao, F., and Mo, J., The in vivo effect of genkwanin toxin on digest enzymesand tissue structures of A.miranda. Pesticide2000.39:23-24(in Chinese).
    119. Fu, C. and Zhang, X., Effects of the extracts of Savin juniper, Sabina vulgaris ant. onthe activities of several enzymes in Mythimna separta walker. Acta Phytophylacica Sinca,2000.27:75-78(in Chinese).
    120. Luo, D., Fen, J., Hu, Z., Zhu, M., and Zhang, X., Isolation and bioactivities of thealkaloids from Tripterygium wilfordii against Pieris rapae L. Journal of Northwest Sci-TechUniversity of Agriculture and Forestry (Natural Science Edition),2001.29:61-64(inChinese).
    121. Fan, H., Zhang, C., Yan, S., and Lin, J., Advances of synthesis and strunturemodification and bioactivity of azadirachtin. Chinese Journal of Organic Chemistry,2009.29:20-33(in Chinese).
    122. Qi, Z., Hu, Z., Shi, C., Wu, W., and Li, E., Effects of0.2%celangulins EC on non-targetorganisms in environment. Journal of Northwest Sci-Tech University of Agriculture andForestry (Natural Science Edition),2004.32:31-34(in Chinese).
    123. Zeng, X., Han, J., and Wei, X., Acute toxicity of botanical insecticides to wasps ofTrichogramma ostriniae Pang et Chen. Journal of South China Agricultural University,2002.23:90-91(in Chinese).
    124. Wang, J., Li, D., Luo, Y., and Wang, F., Influence of medium pH on population growthand reproduction of Brachinus calyciflorus Chinese Journal of Applied Ecology,1997.8:435-438(in Chinese).
    125. Liu, Z. and Wang, W., Cultivation of zooplankton1990, Beijing: Agriculture Press (inChinese).
    126. Mitchell, S., Experiences with outdoor semi-continuous mass culture of Brachionuscalyciflorus Pallas (Rotifera). Aquaculture,1986.51:289-297.
    127. Ge, M., Zhu, W., Su, Y., Dong, S., and Zhang, Y., Effects of acute salinity decreases onthe survival and resting egg formation of Branchionus plicatilis. Reservoir Fisheries,2008.28:46-54(in Chinese).
    128. He, J., Wei, X., Qi, Q., Xu, Z., and Yang, M., Influences of several factors on the rotiferreproduction. Fisheries Science&Technology Information,2005:10-12(in Chinese).
    129. Wang, Y. and Liang, Y., Study on the reproduction and cultivation of Brachionusplicatilis Müller. Marine Fisheries Research,1980:27-48(in Chinese).
    130. Han, J., Apply ammonium bicarbonate on controlling rotifers and its influence onSpirulina growth. Journal of Fujian Fisheries,2012.34:476-480(in Chinese).
    131. Randall, D. and Tsui, T., Ammonia toxicity in fish. Marine Pollution Bulletin,2002.45:17-23.
    132. Lussier, S., Gentile, J., and Walker, J., Acute and chronic effects of heavy metals andcyanide on Mysidopsis bahia (crustacea: mysidacea). Aquatic Toxicology,1985.7:25-35.
    133. Poole, R.W., Introduction to quantitative ecology.1974.
    134. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Betavulgaris. Plant Physiology,1949.24:1.
    135. Hartmut, K., Determinations of total carotenoids and chlorophylls b of leaf extracts indifferent solvents. Analysis (Peach, K&Tracey, MV, eds),1983.4:142-196.
    136. Strasser, R., Srivastava, A., and Tsimilli-Michael, M., The fluorescence transient as atool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms,Regulation and Adaptation,2000:445-483.
    137. Ferrando, M. and Andreu-Moliner, E., Acute lethal toxicity of some pesticides toBrachionus calyciflorus and Brachionus plicatilis. Bulletin of Environmental Contaminationand Toxicology,1991.47:479-484.
    138. Serrano, L., Miracle, M., and Serra, M., Differential response of Brachionus plicatilis(Rotifera) ecotypes to various insecticides. Journal of Environmental Biology,1986.
    139. Sánchez-Fortún, S. and Barahona, M., Comparative study on the environmental riskinduced by several pyrethroids in estuarine and freshwater invertebrate organisms.Chemosphere,2005.59:553-559.
    140. Fernandez-Casalderrey, A., Ferrando, M., and Andreu-Moliner, E., Demographicparameters of Brachionus calyciflorus Pallas (Rotifers) exposed to sublethal endosulfanconcentrations. Hydrobiologia,1991.226:103-110.
    141. Stebbing, A., Hormesis-the stimulation of growth by low levels of inhibitors. Science ofthe Total Environment,1982.22:213-234.
    142. Qi, Z., Shi, B., Hu, Z., Zhang, Y., and Wu, W., Ultrastructural effects of Celangulin Von midgut cells of the oriental armyworm, Mythimna separata walker (Lepidoptera:Noctuidae). Ecotoxicology and Environmental Safety,2011.74:439-444.
    143. Wu, W., Ji, Z., and Hu, Z., Natural products and digestive poisons. Pesticides,1997.36:6-9.
    144. Chen, W., Isman, M.B., and Chiu, S.F., Antifeedant and growth inhibitory effects of thelimonoid toosendanin and Melia toosendan extracts on the variegated cutworm,Peridromasaucia (Lep., Noctuidae). Journal of Applied Entomology,1995.119:367-370.
    145. Zhou, P., Luo, L., Bai, D., and Li, J., The toosendanin induced blocking action ofsynaptic transmission in the6th abdominal ganglion of cockroach, Periplaneta Americana.Acta Scicentiarum Naturalum Universitis Pekinesis,1987.2:71-76(in Chinese).
    146. Krause, G. and Weis, E., Chlorophyll fluorescence and photosynthesis: the basics.Annual Review of Plant Biology,1991.42:313-349.
    147. Appenroth, K., St ckel, J., Srivastava, A., and Strasser, R., Multiple effects of chromateon the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll afluorescence measurements. Environmental Pollution,2001.115:49-64.
    148. Mohapatra, P., Schubert, H., and Schiewer, U., Effect of dimethoate on photosynthesisand pigment fluorescence of Synechocystis sp. PCC6803. Ecotoxicology and EnvironmentalSafety,1997.36:231-237.
    149. Neidhardt, J., Benemann, J.R., Zhang, L., and Melis, A., Photosystem-II repair andchloroplast recovery from irradiance stress: relationship between chronic photoinhibition,light-harvesting chlorophyll antenna size and photosynthetic productivity in Dunaliellasalina (green algae). Photosynthesis Research,1998.56:175-184.
    150. Kaplan, A., Badger, M.R., and Berry, J.A., Photosynthesis and the intracellularinorganic carbon pool in the bluegreen alga Anabaena variabilis: response to external CO2concentration. Planta,1980.149:219-226.
    151. Marco, E., Perona, E., and Orús, M., Effects of acephate on N2-fixing cyanobacteriumAnabaena PCC7119. Bulletin of Environmental Contamination and Toxicology,1992.48:894-900.
    152. Bhunia, A., Marik, R., and Banerjee, S., Biochemical effects of carbaryl on nitrogenassimilating enzymes of cyanobacteria Nostoc muscorum. Bulletin of EnvironmentalContamination and Toxicology,1994.52:886-892.
    153. Yamano, T. and Morita, S., Effects of pesticides on isolated rat hepatocytes,mitochondria, and microsomes. Archives of Environmental Contamination and Toxicology,1993.25:271-278.
    154. Davies, J. and Smith, D.I., Plasmid-determined resistance to antimicrobial agents.Annual Reviews in Microbiology,1978.32:469-508.
    155. Liu, Q., He, M., Li, L., Yu, W., Xu, N., and Liu, J., A biodiesel producing micro-algalstrain IOAC689S and optimization of its culture parameters. Marine Sciences,2011.35:28-35(in Chinese).
    156. Mae, T., Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis,and yield potential, in Plant Nutrition for Sustainable Food Production andEnvironment1997, Springer. p.51-60.
    157. Xu, X., Wei, Y., Tang, H., Zhang, J., Chen, S., and Xiong, L., Combined toxicity effectof methamiclophos and cypermethrin to Scenedesmus Obliquus. Journal ofAgro-Environment Science,2007.26:718-722(in Chinese).
    158. Liu, T., Xiong, L., Sheng, X., and Wang, Y., Study on the toxicity of beta-cypermethrinto Scenedesmus obliquus. Chemistry&Bioengineering,2006.23:37-39(in Chinese).
    159. Ou, X., Lei, M., and Wang, X., Effect of novel insecticide HNPC-A9908on growth ofgreen algae Chlorella pyrenoidosa Chinese Journal of Pesticide Science,2002.4:45-50(inChinese).
    160. Seaton, G.G. and Walker, D.A., Validating chlorophyll fluorescence measures ofefficiency: observations on fluorimetric estimation of photosynthetic rate. Proceedings of theRoyal Society of London. Series B: Biological Sciences,1992.249:41-47.
    161. Snell, T.W., Review paper: Chemical ecology of rotifers, in Rotifera VIII: AComparative Approach1998, Springer. p.267-276.
    162. Yang, Z., Kong, F., Shi, X., and Yang, J., Effects of Branchionus calyciflorus culturemedia filtrate on Microcystis aeruginosa, Scenedesmus obliquus and Chlorella vulgariscolony formation and growth. Chinese Journal of Applied Ecology,2005.16:1138-1141.
    163. Qi, Z., Hu, Z., Shi, C., Wu, W., and Li, E., Effects of0.2%celangulins EC on non-targetorganisms in environment. Journal of Northwest Sci-Tech University2004:31-34(inChinese)
    164. Zhang, Y., Ma, Z., Wang, H., Wang, Z., Gao, B., Feng, J., and Zhang, X., Evaluation onthe toxicity of botanical pesticide toosendanin to non-target organisms. Acta Sci Circumst,2007.27:1-8(in Chinese).
    165. Liu, W., Ji, Z., Wei, S., and Wu, W., Studies on the stability of celangulins in water andthe structures of the hydrolysates. Chinese Journal of Pesticide Science2009.3:335-340(inChinese).
    166. Sun, Y., Xu, Y., Qin, D., Qin, X., and Dai, X., Residue detection and degradation ofmatrine in cucumber and soil. Journal of Agro-Environment Science,2010.4:686-691(inChinese).
    167. Zhang, Y., Environmental safety evaluation of botanical pesticide toosendanin,2007,North West Agriculture and Forestry University: Shanxi.
    168. Faust, S.D. and Gomaa, H.M., Chemical hydrolysis of some organic phosphorus andcarbamate pesticides in aquatic environments. Environmental Letters,1972.3:171-201.
    169. Freed, V.H., Chiou, C.T., and Schmedding, D.W., Degradation of selectedorganophosphate pesticides in water and soil. Journal of Agricultural and Food Chemistry,1979.27:706-708.
    170. Elbert, A., Nauen, R., and McCaffery, A., IRAC, insecticide resistance and mode ofaction classification of insecticides. Modern Crop Protection Compounds,2007:753-771.
    171. Ahmad, M., Saleem, M.A., and Sayyed, A.H., Efficacy of insecticide mixtures againstpyrethroid‐and organophosphate‐resistant populations of Spodoptera litura (Lepidoptera:Noctuidae). Pest Management Science,2009.65:266-274.
    172. Greco, W.R., Bravo, G., and Parsons, J.C., The search for synergy: a critical reviewfrom a response surface perspective. Pharmacological Reviews,1995.47:331-385.
    173. Sun, Y. and Johnson, E., Synergistic and antagonistic actions of insecticide-synergistcombinations and their mode of action. Journal of Agricultural and Food Chemistry,1960.8:261-266.
    174. Monteiro, C.M., Fonseca, S.C., Castro, P.M., and Malcata, F.X., Toxicity of cadmiumand zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, fromNorthern Portugal. Journal of Applied Phycology,2011.23:97-103.
    175. Platt, T., Gallegos, C., and Harrison, W., Photoinhibition of photosynthesis in naturalassemblages of marine phytoplankton. Journal of Marine Research,1980.38:687-701.
    176. Backhaus, T., Faust, M., Scholze, M., Gramatica, P., Vighi, M., and Grimme, L.H., Jointalgal toxicity of phenylurea herbicides is equally predictable by concentration addition andindependent action. Environmental Toxicology and Chemistry,2004.23:258-264.
    177. Corbett, J.R., The biochemical mode of action of pesticides1974: Academic Press.
    178. Lü, M., Wu, W., and Liu, H., Effect of celangulin V on detoxification enzymes inMythimna separata and Agrotis ypsilon. Pesticide Biochemistry and Physiology,2008.90:114-118.
    179. Lü, Z.H., Medicinal value of Kuh-seng and its application in medicinal herb pesticides.Sci/Tech Information Development&Economy,2002.12:97-99(in Chinese).
    180. Zhang, X., Effects of toosendanin on several enzyme systems of the cabbage wormPieris rapae. Acta Entomologica Sinica,1992.35.
    181. Russell, A., Similarities and differences in the responses of microorganisms to biocides.Journal of Antimicrobial Chemotherapy,2003.52:750-763.
    182. Tang, M., Wang, Z., and Shi, Y., Involvement of cytochrome c release and caspaseactivation in toosendanin-induced PC12cell apoptosis. Toxicology,2004.201:31-38.
    183. Ma, L., Wen, S., Zhan, Y., He, Y., Liu, X., and Jiang, J., Anticancer effects of theChinese medicine matrine on murine hepatocellular carcinoma cells. Planta Medica,2008.74:245-251.
    184. Baldan, B., Andolfo, P., Navazio, L., Tolomio, C., and Mariani, P., Cellulose in algalcell wall: an" in situ" localization. European Journal of Histochemistry,2001.45:51-56.
    185. Liu, W.J., Zou, N., Sun, D.H., and Ning, L.T., Study on the different food consumptionof rotifer (Brachionus urceus) to two microalgae. Journal of Anhui Agricultural Science,2008.36:14558-14559,14566(in Chinese).
    186. Zarrouk, C., Contribution à l’étude d’une cyanophycée influencé de divers facteursphysiques la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner). Geitler,1966, PhD Thesis, University of Paris, France.
    187. Wang, C.Y., Fu, C.C., and Liu, Y.C., Effects of using light-emitting diodes on thecultivation of Spirulina platensis. Biochemical Engineering Journal,2007.37:21-25.
    188. Siegelman, H. and Kycia, J., Algal biliproteins. Handbook of Phycological Methods.Cambridge University Press, Cambridge,1978:71-79.
    189. Sarma, S., Gulati, R., and Nandini, S., Factors affecting egg-ratio in planktonic rotifers,in Rotifera X2005, Springer. p.361-373.
    190. Inman, C. and Lockwood, A., Some effects of methylmercury and lindane on sodiumregulation in the amphipod Gammarus duebeni during changes in the salinity of its medium.Comparative Biochemistry and Physiology Part C: Comparative Pharmacology,1977.58:67-75.
    191. Sekar, S. and Chandramohan, M., Phycobiliproteins as a commodity: trends in appliedresearch, patents and commercialization. Journal of Applied Phycology,2008.20:113-136.
    192. Gantt, E., Phycobilisomes. Annual Review of Plant Physiology,1981.32:327-347.
    193. Huang, Y., Liu, J., Li, L., Pang, T., and Zhang, L., Efficacy of binary combinations ofbotanical pesticides for rotifer elimination in microalgal cultivation. Bioresource Technology,2014.154:67-73.
    194. Schlüter, M. and Groeneweg, J., The inhibition by ammonia of population growth of therotifer, Brachionus rubens, in continuous culture. Aquaculture,1985.46:215-220.
    195. Waniewski, R.A., Physiological levels of ammonia regulate glutamine synthesis fromextracellular glutamate in astrocyte cultures. Journal of Neurochemistry,1992.58:167-174.
    196. Thomas, W., Hastings, J., and Fujita, M., Ammonium input to the sea via large sewageoutfalls-Part2: Effects of ammonium on growth and photosynthesis of southern Californiaphytoplankton cultures. Marine Environmental Research,1980.3:291-296.
    197. Azov, Y. and Goldman, J.C., Free ammonia inhibition of algal photosynthesis inintensive cultures. Applied and Environmental Microbiology,1982.43:735-739.
    198. Wu, H., Gao, K., Villafa e, V.E., Watanabe, T., and Helbling, E.W., Effects of solar UVradiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospiraplatensis. Applied and Environmental Microbiology,2005.71:5004-5013.
    199. Wang, Z. and Zhao, Y., Morphological reversion of Spirulina (Arthrospira) platensis(cyanophyta): from linear to helical1Journal of Phycology,2005.41:622-628.
    200. Hu, H., The biology and biotechnology principle of Spirulina2003, Beijing: SciencePress.
    201. Dodd, J., Elements of pond design and construction. CRC Handbook of MicroalgalMass Culture. CRC, Boca Raton,1986:265-283.
    202. Zhang, Z. and Huang, X., Method for study on freshwater plankton,1991, SciencePress, Beijing (in Chinese).
    203. Sarma, S. and Ramakrishna Rao, T., Effect of food level on body size and egg size in agrowing population of the rotifer Brachionus patulus Muller. Archiv für Hydrobiologie,1987.111:245-253.
    204. Guo, E., Wang, X., Chen, X., Song, J., and Zhang, Y., Effects of starvation andrefeeding on digestive enzyme activities of Brachionus plicatilis. Chinese AgriculturalScience Bulletin,2009.10:290-295(in Chinese).
    205. Yang, D. and Zhang, J., Effects of toosendanin on the histiocyte and diastatic activity inthe midgut of Musca Domestica. Acta Parasitologica et Medica Entomologica Sinica,2002.9:39-43.
    206. Stearns, S.C., The evolution of life histories. Vol.248.1992: Oxford University PressOxford.
    207. Kirk, K., Egg size, offspring quality and food level in planktonic rotifers. FreshwaterBiology,1997.37:515-521.
    208. Walz, N. and Rothbucher, F., Effect of food concentration on body size, egg size, andpopulation dynamics of Brachionus angularis (Rotatoria). Internationale Vereinigung fu rTheoretische und Angewandte Limnologie, Verhandlungen,1991.24:2750-2753.
    209. Guisande, C. and Mazuelos, N., Reproductive pattern of Brachionus calyciflorus Pallasat different food concentrations. Journal of Plankton Research,1991.13:279-286.
    210. Starkweather, P.L., Aspects of the feeding behavior and trophic ecology ofsuspension-feeding rotifers, in Rotatoria1980, Springer. p.63-72.
    211. Kleinow, W. and R hrig, A., Enzyme activity measurements on isolated organs ofBrachionus plicatilis (Rotifera). Hydrobiologia,1995.313:171-174.
    212. Hassett, R. and Landry, M., Effects of food-level acclimation on digestive enzymeactivities and feeding behavior of Calanus pacificus. Marine Biology,1983.75:47-55.
    213. Guo, E., Wang, X., Chen, X., Song, J., and Zhang, Y., Effects of starvation andrefeeding on digestive enzyme activities of Brachionus plicatilis. Chinese AgriculturalScience Bulletin,2009.25:290-295(in Chinese).
    214. He, W. and Zhu, M., Study on relation between urease and fertility of soils in shanxi Ⅱ:Soil urease kinetic characteristics. Acta Pedologica Sinica,1997.34:42-52(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700