用户名: 密码: 验证码:
基于昆虫口器的仿生低阻抑菌医用注射针研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用医用注射针注射给药、输液是医疗常用的诊疗方法,随着生活水平的提高,患者对注射过程的舒适性和安全性越来越重视。现有研究表明,注射穿刺疼痛主要源自于针尖刺入皮肤时对痛感神经的刺激和针杆与皮下组织摩擦导致其细胞变形甚至破裂而释放出痛感粒子,通过减小针尖穿刺阻力和针杆摩擦阻力的方法可以减轻病人的痛苦。此外,注射针在与机体组织接触过程中易造成细菌污染,严重者可导致细胞坏死及形成血栓。因此研究减小注射针注射过程的穿刺阻力和增强注射针抗菌作用,对提高无痛抑菌注射技术具有重要的科学意义和广阔的市场前景。
     仿生针头主要以昆虫口器为仿生对象,通过改变常规针头表面形态和表面微观结构方法来实现无痛和抑菌。本文对多种生物口器原形和其刺入方式进行了观察分析;根据生物体表润湿特性对抑菌针头进行试验研究;设计了4种仿生针头并进行了穿刺阻力试验;探讨了针尖结构和形态对其穿刺阻力的影响。包括以下四部分:
     (1)选择具有刺入、吸收功能的昆虫口器作为研究对象,如蚊子、蝉和水黾的刺入式口器,牛虻刮舐式口器,蜜蜂蛰针等。通过对比生物口器的异同发现,昆虫口器在口针表面均存在非光滑形态,如锯齿形、凹槽形、纵向条纹(加强肋)、三角凸包等。由于刺入对象和生存环境的差异,导致不同生物口针的同一种形态存在区别。研究了生物口器减阻机理,生物口器在刺入生物体表过程中通过减小接触面面积、产生滚动摩擦、产生微振动来减小刺入阻力。
     (2)进行了仿生针头抑菌性能试验研究,不锈钢针头依次与盐酸、硝酸银溶液发生反应后,可以使仿生针头银离子含量大幅度增高,实现了既增强针头抑菌效果又修饰表面微观结构的作用,并选择疏水药剂和亲水药剂改良了针头表面润湿性。以大肠杆菌作为测量对象,通过观察菌群周围抑菌圈的大小检测仿生针头的抑菌作用,发现普通针头无抑菌功能,亲水针头和疏水针头都具备抑菌功能,且疏水表面针头的抑菌功能更佳。进行了不同润湿性针头穿刺阻力对比试验,发现疏水针头穿刺阻力小于光滑针头。
     (3)在16号针头上设计并加工了螺旋、凹坑、条纹和锯齿形4种形态的仿生针头。按照国标对针头穿刺性能的检验方法,进行仿生针头单因素穿刺试验,试验表明仿生针头均具备减阻功能,采用试验优化设计方法,获得了各种仿生针头的最佳结构尺寸。对仿生针头减阻机理分析发现,仿生针头表面的非光滑结构使光滑部分与介质的接触面积减小,仿生针头的刺入阻力小于原光滑针头的刺入阻力,实现仿生针头的减阻作用。
     (4)在针头针尖部分设计了仿生非光滑结构形态,按照国标要求进行了仿生针头和传统针头的穿刺阻力试验;建立了针尖的斜面角和斜面旋转角不同时的几何模型,并对其穿刺力进行了数值模拟,探索了针尖斜面角和斜面旋转角对穿刺阻力的影响规律。
Intramuscular injection and transfusion by syringe are commonly usedtechniques in clinical application. With the improvement of living standards,considerable attention has been paid on the safety and comfort of the injection bythe patients. According to the researches, pain of injection is mainly caused bypuncture resistance, which made of rupturing of the skin tissue during the initialstage of the injection and friction between needle and subcutaneous tissue duringthe process of injection. In addition, the infection occurs at the interface betweenthe syringe and surrounding tissues from the adhesion of bacterial. So the painlessantibacterial injection technique has significant scientific and market values.
     Mimicking the structure of the needling mouthpart of the insect, the study ofbionic needle is used to realize drag reduction and antibacterial injection techniquethrough modifying the configuration and the microstructure of the needle surface.Based on the existing research results, mouthparts structure and its biologicalmechanism has been analysed;the method of enhancement antibacterial effect ofbionic needle has been studied from the angle of biomaterials;to get the optimalsurface structure parameters of bionic needle, experimental optimization methodhas been adopted here;the pinpoint shape relation with puncture effect has beendiscussed. Mainly include four parts as following:
     (1) More insect mouthparts with the piercing and sucking function have beenstudied in this paper. Such as the piercing-sucking mouthparts of mosquito, cicadaand water skipper, scratching mouthparts of gadfly, and sting needles of bee etc. Bycomparing the mouthparts found, the biological needle surfaces have a variety ofnon-smooth structures, such as serrated, groovy, stripe, and triangular convex hulletc. Study on mechanism of bionic mouthpart drag reduction indicates that thebionic mouthpart could reduce the resistance by decreasing the contact area, changesliding friction into rolling friction and producing micro-vibration during theprocess of the needle piercing the muscle soft tissue.
     (2) Experiment results show that the best modification effect on the needlesurface obtained when reaction of the treated stainless steel needle with HCL、 AgNO3solutions. Then the wettability of the needle surfaces was modified usinghydrophile reagent and hydrophobic reagent respectively. For the antibacterialactivity test, Escherichia coli (E. coli) were used as test organism. The antibacterialactivity of the bionic needle was assessed by calculating the surface area of theinhibition zone against E. coli formed on agar medium. From the experiment resultwe can see that the original stainless steel needles doesn’t exhibit any antibacterialactivity, on the otherwise the bionic needles with hydrophile or hydrophobicsurfaces show antibacterial activity. And the antibacterial property ofsuper-hydrophobic surface is better than that of hydrophile one. According tosilicon membrane puncture test, the bionic needles with hydrophobic surfaces showdrag reduction effects.
     (3) Different bionic needles with spiral,concave,undee and serrated shapeshave been designed on No.16bionic needle and processed into that with the bionicnon-smooth surface by the laser technology. According to the national standardmethod for needle piercing property measurement, carry out silicon membranesingle factor puncture test of bionic needle and calculate the drag reduction rates ofthe bionic needles mentioned above to find the optimal structure size for thedifferent needles respectively. As a result, all the needles were found to have dragreduction effects. Through drag reduction mechanism analysis, it is found that thenon-smooth structure on the bionic needle surface made the contact area betweensmooth part and medium decreased. Therefore the drag reduction could be realized.
     (4) According to the national standard and the structure of the needlingmouthpart of the insect, different pinpoints with non-smooth structures have beendesigned. By means of silicon membrane puncture contrast test of needle tip forbase, the pierce drag of the bionic pinpoint is less than that of the original pinpoint.The relationship between the pinpoint inclined plane and puncture effect wasdiscussed by geometry finite element method, found the optimal structure size forthe pinpoint inclined planes.
引文
[1]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2012.
    [2]蒲侠,葛建芳,陈灿成.具有微纳米阶层结构仿生超疏水表面的研究进展[J].广东化工,2010,37(5):25-28.
    [3]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报,2006,51(20):2353-2359.
    [4] Barthlott W, Neinhuis C. Purity of the scared lotus, or escape fromcontamination in biological surfaces [J]. Planta,1997,202:1-8.
    [5]孔祥清.蚊子浮水与针刺力学行为研究[D].大连:大连理工大学,2010.
    [6] Tong J, Moayad B Z, Ren L, et al. Biomimetics in soft terrain machines: Areview [J]. Intern Agr Eng,2004,13(3):71-86.
    [7] Viswanath P R. Aircraft viscous drag reduction using riblets. ProgAerosp Sci,2002,38:571-600.
    [8] Robert J P. Drag reduction: An industrial challenge [C]. SpecialCourse on SkinFriction Drag Reduction,1992, AGARD-R-786.
    [9] Igarashi T. Drag reduction of a square prism by flow control usinga small rod[J]. Wind Eng Indust Aerodyn,1997,69-71:141-153.
    [10]陆以佳.外科护理学[M].北京:人民出版社,1999.
    [11]谷松涛.基于昆虫刺吸式口器的仿生注射器研究[D].长春:吉林大学生物与农业工程学院,2008.
    [12]赵俊,张立生.疼痛治疗学[M].第1版北京华夏出版社,1994.
    [13]丛茜,金敬福,齐欣,宋薇,齐迎春.一种仿生医用穿刺针改良润湿性的处理方法:中国, CN101933830A[P].2011-01-05.
    [14]段磊.护理学基础[M].北京:人民卫生出版社,2005:157-158.
    [15]齐迎春,李岩,金敬福,等.无痛注射技术研究现状[J].医疗卫生装备,2009,30(9):34-36.
    [16]M. R. Prausnitz, S. Mitragotri, R Langer. Current status and future potential oftransdermal drug delivery [J]. Nat. Rev. Drug Discovery,2004,3:115-24.
    [17]高云华.微针透皮给药系统研究进展[J].中医外治杂志,2005,14(3):3-7.
    [18]Roxhed N, Samel B, Nordquist L, et al. Painless drug delivery throughmicroneedle-based transdermal patches featuring active infusion[J], IEEETRANSACTIONS ON BIOMEDICAL ENGINEERING,2008.3,55(3):1063-1071.
    [19]S Henry, DV McAllister, MG Allen, M Prausnitz. Microfabricatedmicroneedles: a novel approach to transdermal drug delivery[J]. J. Pharm. Sci.,1998,87:922-925.
    [20]Vandervoort Jo, Ludwig Annick, Micro needles for transdermal drug delivery:a minireview[J], Frontiers in bioscience publications,2008,13:1711-1715.
    [21]Oka K, Aoyagi S, Arai Y, Isono Y. Fabrication of a micro needle for traceblood test[J]. Sensors Actuators A: Physical,97-98:478–485.
    [22]Oki A, Takai M, Ogawa H, Takamura Y, Fukasawa T, Kikuchi J, Ito Y.Healthcare chip for checking health condition from analysis of trace bloodcollected by painless needle[J]. J. Appl. Phys,42:3722-3727.
    [23]康莹,康亚萍,张虹.诺和笔胰岛素注射指导[J].黑龙江护理杂志,2000,6(7):6-7.
    [24]O’Shaughnessy, Paul J, Injector geometry effect on plain jet air blastatomization[J]. American society of mechanical engineers,1998,12(6):8.
    [25]S. Mitragotri. Current status and future prospects of needle-free liquid jetinjectors [J]. Nature Reviews, Drug Discovery,2006,5:543-548.
    [26]J. Schramm, S. Mitragotri. Transdermal drug delivery by jet injectors:energetics ofjet formation and penetration[J]. Pharm, Res’2002,19(11):1673-1679.
    [27]J. Schramm-Baxter, J. Katrencik, S. Mitragotri. Jet injection intopolyacrylamide gels: investigation of jet injection mechanics [J]. J. ofBiomech.,2004,37:1181-1188.
    [28]周旭,王伽伯,肖小河.无针注射给药系统及应用[J].解放军药学学报,1998,21(6):20-22.
    [29]Hingson R A, Hughes J G. Clinical studies with jet injection. A new method ofdrug administration [J]. Current Researches in Anesthesia and Analgesia1947:26(6):221-230.
    [30]Arora A, Hakim I, Baxter J, et al. Needle-free delivery of macromoleculesacross the skin by nanoliter-volume pulsed microjets [J]. PNAS,2007,104(11):4255-4260.
    [31]Chen K. A Novel Piezo-Driven Micro-jet Injection System For TransdermalDrug Delivery System[C]. Proc. ASME4th Frontiers of Biomedical DevicesConf, Irvine, CA, USA,2009:67-68.
    [32]许亮,无痛注射针.中国,200420054687.9[P].2006-03-29.
    [33]杨益.针头“整形”打针不太疼[N].新文化报,2007.3.11.
    [34]李甫清,无痛自动注射:中国, CN2096371U[P].1992-02-19.
    [35]宣建民,肌肉注射无痛器:中国, CN102688543A[P].2013-09-04.
    [36]刘爱花.无痛注射研究进展[J].护理研究,2009,12,23(12):3200-3201.
    [37]Davis S P, Martanto W, Allen M G, Praunitz M R. Hollow MetallicMicroneedles for Insulin Delivery to Diabetic Rats[J]. IEEE Transactions onBiomedical Engineering,2005,52(5),909-915.
    [38]Griss P, Stemme G. Side-Opened Out-of-Plane Microneedles for MicrofluidicTransdermal Liquid Transfer[J]. Microelectromechanical Systems,2003,12(3),296-301.
    [39]Park J H, Allen M G, Prausnitz M R. Biodegradable polymer microneedles:Fabrication, mechanics and transdermal drug delivery[J]. Controlled Release,2005,104(1),51-66.
    [40]M K Ramasubramanian, O M Barham, V Swaminathan.Mechanics of amosquito bite with applications to microneedle design. Bioinsp [J]. Biomim.2008,3,046001.
    [41]X Q Kong, C W Wu. Measurment and Prediction of Insertion Force for theMosquito Fascicle Penetrating into Human Skin[J]. Bionic Engineering.2009,6,143-152.
    [42]Aoyagi S, Izumi H. Development of micro lancet needle made ofbiodegradable polymer for medical treatment[J]. Institute of electricalengineers of Japan,2007,127(2):342-349.
    [43]谷松涛.基于昆虫刺吸式口器的仿生注射器研究.长春:吉林大学生物与农业工程学院,2008.
    [44]陈丽莉.注射器针头表面仿生非光滑形态减阻的试验研究[D].长春:吉林大学生物与农业工程学院,2006.
    [45]王京春.基于昆虫刺吸式口器的仿生耦合无痛注射针头的研究[D].长春:吉林大学生物与农业工程学院,2008.
    [46]李岩.仿生医用针头穿刺阻力变化特性研究[D].长春:吉林大学生物与农业工程学院,2011.
    [47]昆虫学通论[M/OL].http://wenku.baidu.com/view/6ac80140be1e650e52ea99cf.html.
    [48]Jones J C. The feeding behavior of mosquitoes [J]. Scientific American,1978,138-148.
    [49]刘明,任东,谭京晶.昆虫口器及其进化简史[J].昆虫知识,2005,42:587-592.
    [50]Hudson A. Notes on the piercing mouthparts of three species of mosquitoesviewed with the scanning electron microscope [J]. Canadian Entomologist,1970,102:501-509.
    [51]孔祥清.蚊子浮水与针刺力学行为研究[D].大连理工大学,2010.
    [52]颜忠诚.昆虫的口器[J].生物学通报,2005,40:6-8.
    [53]郑乐怡,归鸿.昆虫分类[M].南京:南京师范大学出版社,1999.
    [54]昆虫纲[M/OL]. http://www.baike.com/wiki/昆虫纲.
    [55]Davis S P, Landis B J, Adams Z H, Allen M G. Prausnitz M R. Insertion ofmicroneedles into skin: measurement and prediction of insertion force andneedle fracture force[J]. Biomechenical,2004,37(8),1155-1163.
    [56]M.谢尔格, S.戈尔博.微/纳米生物摩擦学—大自然的选择[M].北京,机械工业出版社,2004,6,50-61.
    [57]江雷,冯琳.仿生智能纳米界面材料[M].北京:化学工业出版社,2007,122-123.
    [58]Yang M, Zahn J. Microneedle insertion force reduction using vibratoryactuation[J]. Biomed Microdev,2004,6,177-182.
    [59]Daniel T L, Kingsolver J G. Feeding strategy and the mechanics of bloodsucking in insects[J]. Theor.Biol,1983,105661-72.
    [60]郑志方.树皮化学与利用[M].北京:中国林业出版社,1988,23-55.
    [61]Wildnauer R H, Bothwell J W, Douglass A B. Stratum corneum biomechanicalproperties: I. Influence of relative humidity on normal andextracted humanstratum corneum[J]. Investigative Dermatology,1971,56(1),72-80.
    [62]Gardner T N, Briggs G A D. Biomechanical measurements in microscopicallythin stratum corneum using acoustics[J]. Skin Research and Technology,2001,7(4),254-261.
    [63]Mehta A K, Wong F. Measurement of flammability and burn potential offabrics. Full Report from Fuels Research Laboratory, MIT, Cambridge,Massachusetts,1973.
    [64]Elkhyat A, Courderot-Masuyer C, Humbert Ph. Influence of the hydrophobicand hydrophilic characteristics of sliding and slider surfaces on frictioncoefficient: in vivo human skin friction comparison. Skin Research andTechnology,2004,10(4),215-221.
    [65]蒲侠,葛建芳,陈灿成.具有微纳米阶层结构仿生超疏水表面的研究进展[J].广东化工,2010,37(5):25-28.
    [66]彭赟,周旻娴.水黾足部跗节的结构特性及疏水原理探究[J].生物学教学,2012(3):66-68.
    [67]弯艳玲,丛茜,王晓俊.蜻蜓翅膀表面疏水性能耦合机理[J].农业机械学报,2009,40(9):205-208.
    [68]王晓俊,丛茜,张建军,等.夜蛾翅膀表面疏水性能的多元耦合机理分析[J].科学通报,2009,53(22):2704-2709.
    [69]房岩.蝴蝶翅膀表面鳞片形态及自清洁机理研究[D].吉林大学,2008.
    [70]Hu D L, Chan B, Bush J W M. The hydrodynamics of water striderlocomotion[J]. Nature,2003,424(6949):663-666.
    [71]Caponigro M A, Eriksen C H. Surface film locomotion by the water strider,Gerris remigis Say [J]. American midland naturalist,1976:268-278.
    [72]翟锦,江雷.仿生超疏水纳米界面材料.第七届功能性纺织品及纳米技术研讨会论文集,2007-4:30.
    [73]王淑杰,任露泉,韩志武,邱兆美,周长海.典型植物叶表面非光滑形态的疏水防黏效应[J].农业工程学报,2005,21(9):16-19.
    [74]王淑杰,任露泉,韩志武,邱兆美.植物叶表面防粘特性的研究[J].农机化研究,2005(4):176-181.
    [75]王淑杰.典型生物非光滑表面形态特征及其脱附功能特性研究[D].长春:吉林大学生物与农业工程学院,2006.
    [76]邱宇辰,刘克松,江雷.花生叶表面的高黏附超疏水特性研究及其仿生制备[J].中国科学:化学,2011,41(2):403-408.
    [77]孙明霞,郑咏梅,梁爱萍.昆虫体表疏水性研究进展[J].中国科学院研究生院学报,2011,28(3):275-287.
    [78]房岩.蝴蝶翅膀表面鳞片形态及自清洁机理研究[D].长春:吉林大学生物与农业工程学院,2008.
    [79]陈广化.蝴蝶翅膀表面的疏水性与自清洁性研究[D].长春:吉林大学生物与农业工程学院,2005.
    [80]张建军.蛾翅膀表面润湿性及其机理研究[D].长春:吉林大学生物与农业工程学院,2008.
    [81]张巍.纳米抑菌与抗菌内植物的研发[D].北京:军医进修学院解放军总医院,2009.
    [82]Jiang L. Super-hydrophobic nanoscale interface materials: from natural toartificial. Science&technology,2005,23,4-8.
    [83]Blossey R. Self-cleaning surfaces—virtual realities. Nature Mater,2003,2,301-306.
    [84]Zachary B, Bharat B. Surface characterization and adhesion and frictionproperties of hydrophobic leaf surfaces. Ultramicroscopy,2006,106,709-719.
    [85]Lu WX, Robert A. Systems and methods for super-Hydrophobic andsuper-oleophobic surface treatments. United States Patent Application,20130064990,2013.
    [86]Ji J, Zhang W. Bacterial behaviors on polymer surfaces with organic andinorganic antimicrobial compounds. J Biomed Mater Res,2009,88,448-453.
    [87]Richard D, Clanet C, Quéré D. Contact time of a bouncing drop. Nature,2002,417,811.
    [88]Lenz P. Wetting Phenomena on Structured Surfaces. Advanced Materials,1999,11,1531-1534.
    [89] Sun TL, Feng L, Gao XF, Jiang L. Bioinspired surfaces with specialwettability. Accounts of Chemical Research,2005,38,644–652.
    [90] Zhao N, Shi F, Wang ZQ, Zhang X, Combining Layer-by-Layer Assemblywith Electrodeposition of Silver Aggregates for Fabricating SuperhydrophobicSurfaces. Langmuir,2005,21,4713-4716.
    [91]Song W, Zhang JJ, Xie YF, Cong Q, Zhao B, Large-area unmodifiedsuperhydrophobic copper substrate can be prepared by an electrolessreplacement deposition. Journal of Colloid and Interface Science,2009,329,208-211.
    [92]Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, Zhu D. Super-“Amphiphobic”Aligned Carbon Nanotube Films. Angewandte Chemie,2001,113,1793-1796.
    [93]Chen W, Fadeev AY, Heieh MC, ner D, Youngblood J, McCarthy TJ.Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments andExamples. Langmuir,1999,15,3395-3399.
    [94]Li BJ, Zhou M, Yuan R, Cai L. Fabrication of titanium-based microstructuredsurfaces and study on their superhydrophobic stability. Journal of MaterialsResearch,2008,23,2491-2499.
    [95]Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang ZQ, Jiang L, Li XY. PolyelectrolyteMultilayer as Matrix for Electrochemical Deposition of Gold Clusters: TowardSuper-Hydrophobic Surface. Journal of American Chemical Society,2004,126,3064-3065.
    [96]Khorasani MT, Mirzadeh H, Kermani Z. Wettability of porouspolydimethylsiloxane surface: morphology study. Applied Surface Science,2005,242,339-345.
    [97]Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Preparation oftransparent superhydrophobic boehmite and silica films by sublimation ofaluminum acetylacetonate. Advanced Materials,1999,11:1365-1638.
    [98]Herrera M, Carrion P, Baca P, Liebana J, Castillo A. In vitro antibacterialactivity of glass-ionomer cements. Microbios,2001,104,141-148.
    [99]Yoshida K, Tanagawa M, Atsuta M. Characterization and inhibitory effect ofantibacterial dental resin composites incorporating silver-supported materials.Journal of Biomedical Materials Research,1999,47,516-522.
    [100] Bosetti M, Masse A, Tobin E, Cannas M. Silver coated materials forexternal fixation devices: in vitro biocompatibility and genotoxicity.Biomaterials,2002,23,887-892.
    [101]钱柏太.金属基体上超疏水表面的制备研究[D].大连,大连理工大学,2005.
    [102]中华人民共和国国家标准. GB18671-2009[s]中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会.2009.
    [103]朱迪斯·L·多伊尔,史蒂芬·L·科兹奥尔.皮下注射针头的五斜面针尖几何形状.中国, CN97105585.8[P],1998-01-07.
    [104]香河华拓电机制造有限公司. Hamilton注射器针头种类hamilton微量注射器.http://www.chem17.com/st148418/product_13362196.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700