用户名: 密码: 验证码:
水平定向钻机结构研究及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非开挖技术(Trenchless Technology)开始于上世纪七十年代开始时发达西方国家,是把传统的石油定向钻进技术用于市政建设的一次突破。非开挖技术指在以最小的开挖地表情况下,铺设、修复或更换各种地下管线的一种高科技实用新技术。它具有不破坏路面、不影响交通和商业经营、不污染环境、综合经济效益高等优点得到广泛的应用和飞速的发展。其中,水平定向钻进由于施工速度快、对环境影响小、经济效益高等优点越来越受到用户的喜爱,是目前应用最为广泛的施工机械。
     水平定向钻机的机构按其功能主要可分为以下几大部件:底盘、钻架、钻杆自动装卸装置、动力头、虎钳、锚固装置、动力系统及燃油箱、发动机罩、电器系统、液压系统、随车泥浆系统、泥浆搅拌系统、操作台、驾驶室、随车起重机、空调系统等。
     在底盘设计中,由于我国现阶段已经掌握履带底盘的通用设计,已经存在完善的设计技术,因此水平定向钻机的底盘设计已经相对简单,主要是根据机器的重量,选择合适的履带规格及驱动减速机输出扭矩,确保机器能在最困难的工况下完成行走动作,此过程需要进行进行接地比压、行走驱动力、原地转弯能力、履带张紧装置的选择及验算。
     钻架是水平定向钻机的主要受力结构件,水平定向钻机施工时所承受的最大推拉力及扭矩均由钻架进行传递及承受。传统的钻架的强度及刚度计算主要是利用材料力学知识,由于模型不精确,进行了大量的简化,所以只能进行近似估算,其结果也不准确。在设计大型结构件时,主要是运行类比设计:主要是参考国外的同类型机器,进行测绘或模仿,同时在结构件的强度的方面,由于没有掌握可靠的设计方法,所以需进行安全系数的放大,从而浪费了材料。随着计算机技术的快速发展,有限元理论和有限元分析方法的普及,特别是有限元计算程序的简化,使得普通的力学分析越来越简单。本文利用有限分析软件ANSYS进行了钻架的强度分析,把在Pro/E创立的模型进行导入,利用系统自带的软件进行单元格划分、模型的加载、约束的施加,并进行结果计算并储存。根据计算的结果进行分析后,可改进数据后进行优化,并重新有限元分析计算,根据计算结果确定最终理想的强度及刚度。
     发动机的功率是水平定向钻机的动力源,水平定向钻机的所有动力输出均依靠发动机进行动力的输出。水平定向钻机的发动机功率选择主要是依据具体的施工状况来给出,由于实际施工中,工作的工况复杂,根据机器最大的输出能力得到的计算结果往往比实际大,如果依据计算的结果选择发动机,会造成发动机功率的浪费。目前国内设计选型一般也根据类比设计。根据作者多年的工作及实际经验,并在参考国外数据资料的基础上,给出了发动机功率与机器吨位的关系。
     动力头是水平定向钻机的另一关键件,钻机主要功能的实现,就依靠动力头的旋转及推拉来完成。其性能的标志,主要以其扭矩性能为指标,典型的动力头扭矩主要有两种型式:高速方案和低速方案。低速方案以低速大扭矩马达或摆线马达驱动减速机箱体实现动力的输出,高速方案则首先以高速的柱塞马达带动减速机,然后再由减速机驱动动力头箱体实现动力输出,两者的最大区别在于驱动小齿轮的工作装置。
     动力头的推拉方式主要有三种:一是齿轮齿条传动机构,二是链轮滚子链传动方式,三是油缸板式链传动方式,此三种传动方式各有优缺点。齿轮齿条传动的传动力大,运动平稳,但制造成本高,制造加工困难;油缸板式链传动制造成本最低,但其传动效率最高,由于没有减速机、马达等部件,其运动只是依靠油缸的推拉来实现动力头的顶进及回拖,因此其传动效率最高,但滚子链的安装、拆卸较麻烦,特别是滚子链在受到泥浆的腐蚀时,容易断裂;链轮滚子链传动介于两者之间。
     本文针对国内水平定向钻机设计现状,目前水平定向钻机的设计缺乏详实的科学计算,只是依据类比设计法来确定结构型式,特别是大型定向钻机的结构件强度及刚度方面缺乏计算,安全系数过高,造成制造材料大量的浪费,不仅增加整机重量,还增加制造成本和运输成本。结合作者多年的研发经验和成果,详细阐述了水平定向钻机的作业系统,应用有限元对核心部件钻架进行仿真模拟分析,同时对液压系统进行了切实有效的研究。
     本文通过水平定向钻机结构设计研究,给出了水平定向钻机在导向孔设计、底盘设计、动力系统匹配、液压系统设计的原则及方法;同时给出了钻架结构的科学计算方法,为水平定向钻机合理设计提供一种科学的理论计算依据。
Trenchless Technology began in 1970’s in the western countries. It used the petro technology in city building. It is a new high-tech practical technology that can laid, repairs and replace all kinds of underground pipeline in the smallest trench surface. The Trenchless Technology has gotten wide application and rapid development , because it doesn’t destroy the road and environment ,but has high economic efficiency. In all the trenchless machineries, horizontal direction drilling is the most popular and widely in the user, because of its rapid construction, small environmental pollution and high economic performance.
     Horizontal Directional Drill’s part‘s primary includes: chassis, drill frame, pipe auto load, power head, anchor, engine, cover, electric, hydraulic, mud, mud mixing, operation platform, cab, adapt crane, air condition etc.
     In the chassis design, because we have the perfect system of design in the track chassis. So it is relatively simple in design chassis. It’s main work is that depend on the weight of the machine. Then choose the right track and gearbox. Make sure that it can work well in the condition of the worst conditions. In this process, we should calculate the pressure of soil, travel speed, origin place swerve, track puff etc.
     Drill frame is one of the main part of the machine. When it work, the max force and torque pass through the drill frame. Traditional drill frame’s intension and rigidity calculate depend on material mechanics. Because the model isn’t exactitude, it has been carried through plenty of predigest. So it’s calculation result isn’t exactitude. We often use analogy in designing the drill frame: consult the coequality of the machine. And the same time, because we lack of particular calculation, we must increase the safety modulus. So we waste the material. Along with the development of the computer, especially the finite element analysis program predigest, make it more suppleness to mechanics analysis. In this article, author put up by using ANSYS, using the Pro/E to building modules. Utilize this kind of software, we can process element compartmentalize, module obligation and add force. It can also save result. Depend on the result, we change the thickness of material, and do it again. At last, we get what we want.
     The power of the engine is the source of the machine. All the actions depend on it. The power depend on the work conditions. Because in construction, the condition of machine is very complex, it will waster if we choose the engine by the worst work conditions. In our country, we chose engine by analogy method. According the author attitude, we have a good way of chose the engine.
     The power head is another main part of the machine. The machine can work well depend on the power head. It’s main parameter is the torque. Representative power head has two way: rapid speed and low speed. Low speed use the low speed motor qua drive. Rapid speed use the rapid motor, it drive the gearbox to reduce it speed. The main difference between them is that the set isn’t same.
     There are three methods in power head moving. One is gear transmission, another is chain wheel transmission, and the third one is cylinder-chain transmission. There are difference characteristic. gear transmission can impress more force, circulate placidity, but it manufacture hard, especially machining difficulty. cylinder-chain transmission is the cheapest way to produce the machine, it has the best high efficiency in transmission. For it has no gearbox and motor, it moving depend on the cylinder, so it has the best efficient. But it has some disadvantage such as it is difficult to fit and repair. Especially the chain is in crustily condition. Chain wheel transmission advantage and disadvantage between then.
     In the design of domestic horizontal direction drilling, without the scientific calculation method, designers find the inadequacy of the structure form by analogy method, especially in the design of agencies intensity and rigidity. High safety coefficient brings a lot of waste, increases the weight of the drilling and improves the manufacturing and transports cost. With many years of experience, this article expounds the horizontal direction drilling operating system detailed, simulate and analyze the drilling frame and power head using the Finite Element Analysis and research the hydraulic system effectively.
     Based on the study of the structure design of horizontal direction drilling, this article provides the principle and methods of the pilot hole design, chassis design, power system design and hydraulic system design in the horizontal direction drilling design, at the same time, this article offers the scientific computing methods of the drilling frame design, in order to provide the theory computational basis of the reasonable design of the horizontal direction drilling.
引文
[1]马保松.新兴的非开挖工程学.探矿工程[J].2005,(增刊):164-168.
    [2]颜纯文,D.Stein.非开挖地下管线施工技术及其应用[M].北京:地震出版社,1999.
    [3]马保松.非开挖工程学[M].北京:人民交通出版社,2008.
    [4] Richard Yach. Trenchless Installations Grow in Asia. Trenchless Technology[J]. 2002(2):19-21.
    [5]探矿工程编辑部.持续发展的非开挖铺管技术.探矿工程[J].2002,(3):46-49.
    [6]叶建良,蒋国盛,窦斌,非开挖铺设地下管线施工技术与实践[M].武汉:中国地质大学出版社,2000.
    [7]王忠国.徐工ZD系列水平定向钻机.建筑机械化[J].2006,(9):22-24.
    [8] Ariaratnam, Samuel T., Lueke etc. Utilization of trenchless construction methods by Canadian municipalities. Journal of Construction Engineering and Management[J]. 1999, (2):76-86.
    [9]刘刚.流砂地层的非开挖导向钻进工法探讨.非开挖技术[J].2004,(6):21-24.
    [10]窦斌,蒋国盛.我国非开挖施工技术的发展状况及差距.岩土工程界[J].20014):14-17.
    [11]孙星亮,景诗庭.水平钻孔旋喷注浆加固地层效果研究.岩石力学与工程学报[J].1998,(5): 589-593.
    [12]侯树刚,陈静.非开挖技术的发展研究.科技进步与对策[J],2003,(1):232-233.
    [13]刘希圣主编.钻井工艺原理[M].北京:石油工业出版社,1988.
    [14] Ian Clarke. The Advancement of Directional Drilling rig and Accessories. No Dig International[J],2001(1):55-56.
    [15]宋翔雁.国外导/定向钻进管线工程技术及设备的进展与趋势.地质装备[J].2000,(2):3-9.
    [16]胡汉月.国内外岩石非开挖现状及我们的对策.探矿工程[J].2003,(1):31-34.
    [17]韩宇.45t水平定向钻机液压驱动系统研究[D].西安:长安大学,硕士学位论文,2007.
    [18]张忠海,杨满江,张启君.水平定向钻机及施工工艺.建筑机械化[J].2004,(1):61-62.
    [19] V.E.Bruee. Trenchless Construction for Utilities. Institution of Public Health Engineers Grosvenor Gardens.London.1985:99-147.
    [20] ThomsonJ, RumseyP. Trenchless technology applications for utility installation. Geomeehanies Abstraets[J].1997,(5):345
    [21]耿瑞伦.当今非开挖铺设管线技术的新进展.记第四届国际非开挖技术研讨会.探矿工程[J].2000,(4):54-56.
    [22]邓爱民,肖娇美,田流.现代非开挖工程机械[M],北京:人民交通出版社,2003.
    [23] Ian Clarke. The Advancement of Directional Drilling rig and Accessories. No Dig International[J].2001,(1):55-56.
    [24]耿瑞伦,胡远彪.水平定向钻进(HDD)用钻杆探讨.非开挖技术[J].2002,(4):17-19.
    [25]刘志新等.探地雷达天线方向性探讨.物探与化探[J].2001,(2):48-52.
    [26]颜纯文,蒋国盛,等.非开挖铺设地下管线工程技术[M].上海:上海科学技术出版社,2005.
    [27]乌效鸣,胡郁乐.导向钻进与非开挖铺管技术[M].武汉:中国地质大学出版社,2004.
    [28]张启军,张忠海,杨满江,魏恒.国内外水平定向钻机的现状与发展建议.建筑机械化[J]. 2004,(4):11-12.
    [29] David A. Willoughby. Horizontal Directional Drilling-Utility and Pipeline Applications. McGraw-Hill[J].2005,(3):27-30.
    [30]张启君,张忠海,常仁齐,郑华,马瑞永.浅谈ZD系列水平定向钻机的结构设计.建筑机械化[J]. 2004,(4):48-52.
    [31]张启君,张忠海,常仁齐,郑华,马瑞永.ZD1245/ZD2070型水平定向钻机的设计.探矿工程[J]. 2004,(4):38-40.
    [32]车延岗,导向钻进非开挖技术简介.市政技术[J].2002,(4):41-46.
    [33]邓洪超,郑午,郑治川.FW-610型地下管线非开挖铺设钻机设计.长春科技大学学报.1999,4(2):188-192.
    [34]柳利平. Z6500水平定向钻机动力头及其液压驱动系统动力学研究[D].西安:长安大学,硕士学位论文,2009.
    [35]车延岗,张光烈,陈知一,袁明听.导/定向钻进非开挖技术(二).建筑机械化[J].2002(3):27-29.
    [36] Rudiger Kogler. Primary riskfae torsion horizontal directional dri11ing fromanassessors Point of view. No Dig International[J].2001,(9):48-56.
    [37]姚爱国等,钻探技术新进展,地质与勘探[J].2000,(2):1-4.
    [38]张启君,张忠海.水平定向钻机技术现状与可行性研究的分析.筑路机械与施工现代化[J].2004,(1):30-31.
    [39]张宏.HDD施工技术与发展.隧道机器与施工技术[J].2003,(7):18-21.
    [40] American AujersIne. Technical Manual for Horizontal Earth Boring Machines. Gas Journal[J].1983,(4):12-15.
    [41]安金龙.水平定向钻穿越回拖力的计算方法及其分析.江汉石油科技[J].2001,(2):53-58.
    [42]张红彦,郑午,尚涛等.国内外全液压钻机节能控制系统发展趋势.矿业工程[J].2004,(6):43-45.
    [43]刘远亮,乌效鸣,王海.非开挖铺管阻力新计算模型及减阻措施.煤田地质与勘探[J]. 2010,(4):39-41.
    [44]宋翔雁.国外导/定向钻进管线工程技术及设备的进展与趋势.岩土钻凿工程[J].2000,(2):3-10.
    [45]沙永柏,孙友宏,于萍,薛军.JFK-150型非开挖导向钻机给进机构的设计.机械设计与制造[J]. 2006,(4):111-112.
    [46]尚涛.液压挖掘机作业及行走系统节能控制研究[D].长春:吉林大学,硕士学位论文.2005.
    [47] http://www.vermeer.com/equipment/vacuum.
    [48]冯德强.钻机设计[M].武汉:中国地质大学出版社.1993.
    [49]成大先.机械设计手册[M].北京:化学工业出版社.2004.
    [50]郑午,吴晓军.FW-30O型非开挖导向钻机给进机构的设计.探矿工程[J].2002(2):51-52.
    [51]何宜章.非开挖技术现状及发展前景.岩土钻凿工程[J].1999,(2):17.
    [52]宋子康.材料力学[M].上海:同济大学出版社.1998.
    [53]张朝辉.ANSYS 11.0结构分析应用实例解析[M].北京:机械工业出版社.2008.
    [54]王呼佳,陈洪军等.ANSYS工程分析进阶实例[M].北京:中国水利水电出版社.2006.
    [55]朱辉.水平定向钻机分工况作业规律及其控制策略研究[D].长春:吉林大学,硕士学位论文.2009.
    [56]沙永柏,JFK-15型非开挖导向钻机的研制及其液压系统动态特性仿真研究[D].长春:吉林大学,博士学位论文.2007.
    [57]沙永柏,刘宝仁,于萍.非开挖导向钻机给进机构分析.探矿工程[J].2005(5):46-48.
    [58]孙友宏,沙永柏,于萍.JFK一15型非开挖导向钻机夹持一拧卸机构.工程机械[J]. 2006(11):12-15.
    [59]中华人民共和国国家发展和改革委员会.JB/T10548-2006水平定向钻机.
    [60]张志友,姚怀新.闭式液压系统内部油温的测算.筑路机械与施工现代化[J].1999,(3):5.
    [61] Rudiger Kogler,刘海翔.从评价师的观点看水平定向钻进的主要风险因素.非开挖技术[J].2003,(2):77-79.
    [62]熊勃,隆威.某通信工程中的非开挖水平定向钻进技术应用探讨.中国科技论文在线.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700