用户名: 密码: 验证码:
我国大豆育成品种的遗传多样性,农艺性状QTL关联定位及优异变异在育种系谱内的追踪
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1923—-2005年我国共育成大豆品种1300个,这是我国大豆育种最重要核心的种质资源,揭示其遗传多样性、特异性和群体间遗传关系,可为拓宽我国大豆的遗传基础提供理论依据。本研究选取由378份我国大豆育成品种所组成的代表性样本,加上朝鲜半岛、东南亚和南亚的110份栽培大豆为参照,利用大豆核基因组均匀分布的64个SSR标记分析我国大豆育成品种及亚洲引入大豆品种的遗传多样性,探讨我国大豆育成品种不同群体的遗传特异性与互补性,以及亚洲引入品种对拓宽我国大豆遗传基础的潜在可能性。在此基础上,增加与农艺性状相关的21个SSR标记合计85个标记对378份中的我国黄淮和南方190份有代表性的大豆育成品种基因组进行扫描,检测群体结构、搜索连锁不平衡位点,并采用TASSEL软件的GLM方法对2年有重复田间试验的11个农艺性状QTL进行关联分析,进一步追查产量和品质优异等位变异在黄淮和南方主要大豆育成品种家族系谱中的踪迹。获得主要结果如下。
     1.我国大豆育成品种群体遗传丰富度为572个等位变异,平均每个位点等位变异数为8.94个,多态性信息量PIC为0.752。文自翔(2008)利用基本同样标记研究我国大豆地方品种群体、野生大豆群体平均每个位点等位变异数(Simpson指数)分别为16.3个(0.74)、17.6个(0.86)。我国大豆育成品种群体相对于大豆地方品种群体、野生大豆群体,局限在所用的祖先亲本,其遗传基础趋于狭窄,宜拓宽其遗传基础保障未来大豆育种可持续发展。
     2.在遗传丰富度和多样性指数基础上提出用群体间特有、特缺、互补等位变异评价我国大豆育成品种亚群间遗传多样性,分省亚群(黑龙江、吉林、辽宁、河南、山东、安徽、北京和江苏)间都存在较多互补等位变异,最多的在辽宁与河南亚群间。分时期亚群随着时间推移旧的等位变异在消失,而新的等位变异不断增加,绝大部分亚群新增加的等位变异多于旧消失的。分省亚群、分时期亚群分类与SSR标记遗传距离聚类间有显著相关,省份分群、时期分群都有其相应的遗传基础。研究结果启示分省亚群间存在的互补等位变异较多,在新品种选育中应加强各省间大豆育成品种种质交流、增加优异基因相互渗透,找到拓宽分省亚群遗传多样性恰当的对象亚群;各分时期亚群有着明显遗传差异,保存过去的大豆育成品种为培育新品种贮备材料。
     3.亚洲大豆育成品种群体遗传丰富度为585个等位变异,平均每个位点等位变异数为9.14个,多态性信息量PIC为0.733。SSR标记无根树状遗传关系聚类群体分类将亚洲大豆育成品种归为我国国内与国外2大类群,群体结构研究亚洲全群由2类血缘组成,分别占我国国内和国外2大类群的绝大部分;地理群体间2类血缘组成的差异明显。国外大豆是由中国传播出去的,但是各国特殊的地理生态条件和人工选择,使其与我国国内大豆产生分化。
     4.亚洲大豆育成品种地理群体间,即我国东北、我国黄淮、我国南方、朝鲜半岛、东南亚、南亚群体间,存在较多互补等位变异,最多的在我国黄淮与南亚群体间;各地理群体拥有各自特有、特缺的等位变异。国内与国外各群体间以我国南方与东南亚育成品种群体间分化最小;国外群体以东南亚与朝鲜半岛育成品种群体间分化最小;国内群体以我国黄淮与我国南方的育成品种群体分化最小。亚洲大豆育成品种地理群体间具有位点和等位变异的特异性,各群体间可以相互补充的位点及其等位变异甚丰富,利用亚洲引入品种有可能拓宽我国大豆的遗传基础。
     5.大豆育成品种群体在公共图谱上不论共线性或非共线性的SSR位点组合广泛存在连锁不平衡(LD),但不平衡程度D’>0.5的位点组合数只占总位点组合的1.71%,共线位点D'值随遗传距离的衰减较快。SSR数据遗传结构的分析结果,大豆育成品种群体由7个亚群体组成,矫正后全群体中共有45个位点累计有136个位点(次)与11个大豆农艺性状QTL关联,其中有22个位点(次)与家系连锁定位的QTL区间相重,43个位点(次)2年重复出现。与文自翔(2008)利用大体相同的标记对大豆地方品种群体和野生群体进行关联分析结果只有少数关联位点相同,而大多数关联位点不同。大豆育成品种群体与大豆地方品种群体、野生大豆群体在百粒重、株高等6个性状相同关联位点总数占总位点数的分别为3.3%、3.4%。表明大豆育成品种群体遗传结构的确与大豆地方品种群体、野生大豆群体存在明显差异。
     6.我国黄淮和南方的主要大豆育成品种家族58-161、徐豆1号、齐黄1号、南农493-1、南农1138-2的产量优异等位变异追踪结果,系谱祖先具有各自的优异等位变异,在系谱祖先基础上新品种衍生过程中逐步累积了更多的优异等位变异;随着育种轮次的推移,系谱祖先具有的优异等位变异在后育成品种中有较多丢失的表现;大豆高产与低产、各高产品种之间优异等位变异结构差异非常明显;高产品种没有吸纳全部产量优异等位变异,启示大豆产量有进一步改良潜力。
There were 1300 soybean released cultivars (SRC) in China between 1923 and 2005, this was most importance core germplasm, the marked purport of the present study was to reveal the genetic diversity, population specificity and genetic relation of SRC in China, and the practical guidance to broaden improving on present SRC. This study selected 378 SRC to be composed of representative sample, and to select reference 110 soybean cultivars from Korean Peninsula, Southern Asia and South Asia. A total of 64 simple sequence repeat (SSR) markers scattered on the genome were used to analyze the genetic diversity of SRC sampled in China and Asia introduction cultivars (AIC), and the study to reveal the population specificity and complementary in each population of China, and AIC on the application to broad genetic base of SRC in China. The genotyping data of 85 SSR markers (based on 64 SSR markers increased 21 SSR to be relation with agronomic trait) on 190 representative released cultivar population (RCP) (190 cultivars was the component part of 378 SRC in China) were obtained and analyzed for LD of pairwise loci and population structure, and then for association between SSR loci and 11 soybean agronomic traits of two-year-experimentation in the field under TASSEL GLM (General linear model) program, and the study on trace of elite alleles (EA) of yield and quality traits in the pedigree of major cultivar families released in Huanghuai Valleys and Southern China. The main results were obtained as follows.
     There were 572 alleles of genetic richness,8.94 alleles per locus,0.752 of PIC in RCP of China. There were 16.3 (0.74) and 17.6 (0.86) of alleles per locus (Simpson index) respectively in landrace and wild population of China, using basic same marker by study of Wen Zixiang in 2008. There existed to tend narrow genetic base of RCP in China, to broad its genetic base for soybean future last breeding.
     Based on genetic richness and genetic diversity indexes as well as specifically existent, specifically deficient and complementary alleles, there existed a plenty of genetic diversity in RCP of China as well as a plenty of complementary alleles among provincial subpopulations (Heilongjiang, Jilin, Liaoning, Henan, Shandong, Anhui, Beijing and Jiangsu), especially most between Liaoning and Henan subpopulation. Along with the period advance, some of the old alleles in earlier subpopulation disappeared and some new alleles came out in later subpopulation with the new ones mostly more than the old ones. Specifically existent and specifically deficient alleles in each subpopulation were detected. Significant relationship was found between SSR clusters and provincial subpopulations as well as period subpopulations, indicating the sound genetic bases of the classification of provincial subpopulations as well as period subpopulations. There existed plenty of complementary alleles between pairs of populations for broadening the genetic bases of the respective geographic cultivar populations, along with there markedly existed genetic different from each period subpopulation for cultivating new breed to store material in earlier SRC.
     There were 585 alleles of genetic richness,9.14 alleles per locus,0.733 of PIC in RCP of Asia. According to the model-based clustering method for using multilocus data to infer population structure and assign cultivars to populations (structure analysis), two ancestry sources in Asia were detected, one composing the most part of Chinese cultivar group, another composing the most part of exotic cultivar group. The composition of the two ancestry sources in the geographic populations was different markedly. The soybean of foreign was spread from China, there was differentiation in soybean between China and foreign, because of each country specific condition of geographic and manual work selection.
     There existed a plenty of alleles and genetic diversity of RCP in Asia as well as a plenty of complementary alleles among geographic populations (Northeast China, Huanghuai China, Southern China, Korean Peninsula, Southeast Asia and South Asia), especially most between Huanghuai China population and South Asia population. Specifically existent and specifically deficient alleles in each geographic population were detected. Significant differentiation among geographic populations was found, while the least differentiation between the Chinese group and exotic group was in the pair of Southern China population vs. Southeast Asia population, that within exotic group was in the pair of Southeast Asia population vs. Korean Peninsula population, and that within Chinese group was in the pair of Huanghuai China population and Southern China population. There existed plenty of specifically existent and deficient loci and alleles in each geographic population, and therefore, plenty of complementary alleles between pairs of populations for broadening the genetic bases of RCP in China by AIC.
     LD was detected extensively not only among syntenic markers but also among nonsyntenic ones in RCP, while the loci pairs with D'>0.5 accounted for only 1.71% of the total ones. The syntenic D value attenuated fastly along with the increase of genetic distance. Genetic structure analysis showed that RCP was composed of seven subpopulations. The 45 SSR loci with a total of 136 loci (time) was found to be associated with 11 agronomic traits in the RCP. Among those,22 loci (time) were consistent with mapped QTLs from family-based linkage mapping procedure and 43 loci (time) were consistently detected in two experiment years. There were only a few same association loci and most different loci among SRC and landrace, wild population of China, with landrace and wild population of China using most same marker by study of Wen Zixiang in 2008. There was 3.3% or 3.4% same association loci ratio total loci about 100-seed, plant height, etc.6 traits between SRC and landrace or wild of population. There existed to be found markedly different genetic structure among SRC and landrace or wild population.
     The yield EA were emphasis on analysis in mainly family (58-161, Xudou 1, Qihuang 1, Nannong 493-1 and Nannong 1138-2) of SRC Huanghuai Valleys and Southern in China, there were EA each other in pedigree ancestor, based on pedigree ancestor new cultivar cumulative more EA in course of derivation. EA of pedigree ancestor were more lost in new cultivars along with breeding cycle change. There was markedly different EA structure between high yield and low yield cultivars, and there was different EA structure in each high yield cultivar.5 families' cultivars were furthered improve yield potential.
引文
1. 常汝镇.中国大豆遗传资源的分析研究Ⅱ不同栽培区大豆品种若干子粒性状[J].中国种业,1989,4:11-14
    2. 陈维元,吕德昌,姜成喜,付亚书,景玉良,付春旭.绥农号大豆血缘关系分析[J].黑龙江农业科学,2004,(4):9-12
    3. 陈艳秋,孙贵荒.辽宁省大豆杂交育成品种的亲本分析[J].辽宁农业科学,2000,(3):16-18
    4. 崔艳华,邱丽娟,常汝镇,吕文河.黄淮夏大豆遗传多样性分析[J].中国农业科学,2004,37(1):15-22
    5. 崔艳华,邱丽娟,常汝镇,吕文河.利用SSR分子标记检测黄淮夏大豆(Glycine max)初选核心样本的代表性[J].植物遗传资源学报,2003,4(1):9-15
    6. 丁艳来.中国野生大豆的地理分化、聚类及遗传多样性分析[D].南京农业大学硕士学位论文,2005:38-42
    7. 盖钧镒,崔章林,邱家驯.大豆育种研究与发展[J].大豆通报,1995,1:1-3
    8. 盖钧镒,许东河,高忠,岛本义也,阿部纯,福士泰史,北岛俊二.中国栽培大豆和野生大豆不同生态类型群体间遗传演化关系的研究[J].作物学报,2000,26(5):513-520
    9. 盖钧镒,赵团结.中国大豆育种的核心祖先亲本分析[J].南京农业大学学报,2001,24(2):20-23
    10.盖钧镒.植物种质群体遗传结构改变的测度[J].植物遗传资源学报,2005,6(1):1-8
    11.盖钧镒主编.作物育种学各论[M].北京:中国农业出版社,1997(2002重印)
    12.关荣霞,郭娟娟,常汝镇,邱丽娟.国外种质对中国大豆育成品种遗传贡献的分子证据[J].作物学报,2007,33(9):1393-1398
    13.关媛,鄂文弟,王丽侠,关荣霞,刘章雄,常汝镇,曲延英,邱丽娟.以湖南和湖北大豆[Glycine max (L.) Merr.]为例分析影响遗传多样性评价的因素[J].作物学报,2007,33(3):461-468
    14.郭蓓,邱丽娟,邵桂花,邵桂花,常汝镇,刘立宏,许占友,李向华,孙建英.大豆耐盐基因的PCR标记[J].中国农业科学,2000,33(1):10-16
    15.郭顺堂,孟岩,张雪梅,张晓雷,齐静,邱丽娟,常汝镇.中国大豆蛋白亚基构成分析与缺失部分亚基的特异大豆品种的筛选[J].作物学报,2006,32(8):1130-1134
    16.韩天富,王彩虹,曾令清,李世润,秦路,马淑萍.美国大豆生产、科研、推广和市场体系(续一)[J].大豆通报,2006,82(3):37-39
    17.侯永翠,颜泽洪,兰秀锦,魏育明,郑有良.利用RAMP和ISSR标记分析大麦种质资源的遗传多样性[J].中国农业科学,2005,38(12):2555-2565
    18.胡国华.从加拿大大豆系谱分析谈大豆产量育种[J].大豆科学,1990,9(2):168-176
    19.胡喜平.合丰号大豆品种系谱分析[J].大豆科学,2002,21(2):131-137
    20.江均平,张广操,张涛,段苍风,刘章雄,邱丽娟.中国大豆核心种质β-淀粉酶的酶学特性研究[J].中国粮油学报,2006,21(1):87-91
    21.李福山.中国野生大豆资源目录[M].北京,中国农业出版社,1990
    22.李宏伟,高丽锋,刘曙东,李永强,贾继增.用EST-SSRs研究小麦遗传多样性[J].中国农业科学,2005,38(1):7-12
    23.李辉,戴常军,兰静,赵迺新,李宛.黑龙江省栽培大豆异黄酮含量的初步分析[J].中国粮油学报,2007,22(1):38-40
    24.李林海,邱丽娟,常汝镇,贺学礼.中国黄淮和南方夏大豆(Glycine max L.) SSR标记的遗传多样性及分化研究[J].作物学报,2005,31(6):777-783
    25.李强,王连铮.意大利的大豆生产、科研和技术推广[J].世界农业,2002,1:21-22
    26.李为喜,朱志华,刘三才,刘方,张晓芳,李燕,王述民.中国大豆(Glycine max)品种及种质资源主要品质状况分析[J].植物遗传资源学报,2004,5(2):185-192
    27.李英慧,刘燕,关荣霞,魏淑红,杨光宇,周新安,张孟臣,杨春燕,朱保葛,李卫东,刘学义,徐冉,孙君明,朱申龙,赵团结,刘章雄,常汝镇,邱丽娟.“十五”大豆创新种质和1963—1995年育成品种的SSR遗传结构及遗传多样性[J].作物学报,2007,33(10):1630-1636
    28.林凡云,邱丽娟,常汝镇,何蓓如.山西省大豆地方品种与选育品种农艺性状及SSR标记遗传多样性比较分析[J].中国油料作物学报,2003,25(3):24-29
    29.林蔚刚,许忠仁,胡立成,丁希明,董丽华,王以芝.不同株型大豆品种叶荚粒垂直分布规律的初步分析[J].大豆科学,1995,14(1):53-59
    30.刘丽君,吴俊江,高明杰.大豆抗疫霉病菌的生理生化机制[J].中国油料作物学报,2005,27(1):81-83
    31.刘鹏,杨玉爱,赵玉丹.大豆抗缺铝缺硼胁迫的基因型筛选[J].中国油料作物学报,2001,23(4):65-70
    32.刘晓冰,金剑,张秋英,杨恕平,王光华,李艳华.不同大豆基因型氮素积累运转研究简报[J].大豆科学,2001,20(4):298-301
    33.刘亚光,李海英,杨庆凯.大豆品种的抗病性与叶片内苯丙氨酸解氨酶活性关系的研究[J].大豆科学,2002,21(3):195-198
    34.刘亚光,李丽清,马景生,杨庆凯.感染大豆灰斑病菌后不同抗性的大豆品种叶绿素动态变化的研究[J].大豆科学,2001,20(1):49-53
    35.刘亚光,徐刚,杨庆凯.大豆叶片内几丁质酶活性的变化与大豆抗灰斑病关系的研究[J].东北农业大学学报,2003,34(2):119-123
    36.刘忠堂.巴西、阿根廷大豆的生产与科研[J].大豆科学,1999,18(2):176-180
    37.刘忠堂.黑龙江省大豆推广品种脂肪、蛋白质含量地理分布的研究[J].大豆科学,2002,21(4):250-254
    38.卢新雄,曹永生.作物种质资源保存现状与展望[J].中国农业科技导报,2001,3(3):43-47
    39.栾维江,刘章雄,关荣霞,常汝镇,何蓓如,邱丽娟.东北春大豆样本的代表性及其SSR位点的遗传多样性分析[J].应用生态学报,2005,16(8):1469-1476
    40.栾晓燕,满为群,杜维广,陈怡,刘鑫磊.大豆光钝感种质创新与光周期育种途径的研究[J].大豆科学,2004,23(3):196-199
    41.罗赓彤,战勇,刘胜利,孔新,王曙明,孙大敏,盖钧镒.新大豆1号和石大豆1号高产记录的创造[J].大豆科学,2001,20:270-274
    42.罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验[J].大豆科学,2001,20(3):177-182
    43.密士军,邱丽娟,常汝镇,郝再彬,关荣霞.利用SSR指纹图谱分析大豆花叶病毒SMV病抗源的遗传多样性[J].植物病理学报,2004,34(3):244-253
    44.苗以农,石连旋,刘立侠,朱长甫,许守民.大豆形态结构和生理生化性状的多样性[J].大豆科学,2004,23(2):130-133
    45.农业部赴巴西大豆考察组.巴西大豆产业发展情况与成功经验[J].世界农业,2003,292(8):37-39
    46.朴日花,刘章雄,关荣霞,常汝镇,郝再彬,邱丽娟.华南沿海地区南方夏大豆遗传多样性的SSR分析[J].农业生物技术学报,2005,13(4):435-440
    47.齐宁.东北春大豆推广品种蛋白质脂肪含量变化分析[J].大豆科学,2001,20(1):45-48
    48.秦君,陈维元,关荣霞,姜成喜,李英惠,付亚书,刘章雄,张孟臣,常汝镇,邱丽娟.国外种质拓宽中国大豆品种遗传基础的SSR标记分析[J].科学通报,2006,51(6):686-692
    49.邱芳,伏健民,金德敏,王斌.遗传多样性的分子检测[J].生物多样性,1998,6(2):143-150
    50.邱丽娟,曹永生,常汝镇,周新安,王国勋,孙建英,谢华,张博,李向华,许占友,刘立宏.中国大豆核心种质构建Ⅰ取样方法研究[J].中国农业科学,2003,36(12):1442-1449
    51.邵立红,王育民.印度大豆生产发展的现状、问题与展望[J].大豆通报,2004,5:24-25
    52.宋启建.大豆SSR分子标记的创制及其应用[J].大豆科学,1999,16(3):248-254
    53.孙志强,田佩占,王继安.东北地区大豆品种血缘组成分析[J].大豆科学,1990,9(2):112-120
    54.田清震.中国野生大豆与栽培大豆AFLP指纹分析及生态群体遗传关系研究[D].南京农业大学博士学位论文,2000
    55.田伟华,徐克章,邴鑫,翟俊峰,张治安,陈展宇,武志海.吉林省不同年代育成大豆品种某些农艺性状的变化[J].中国油料作物学报,2007,29(4):397-401
    56.万超文,邵桂花,陈一舞,闫淑荣.盐胁迫下大豆耐盐性与籽粒化学品质的关系[J].中国油料作物学报,2002,24(2):67-72
    57.王彪,常汝镇,陶莉,关荣霞,闫丽,张明恢,冯忠孚,邱丽娟.分析中国栽培大豆遗传多样性所需SSR引物的数目[J].分子植物育种,2003,1(1):82-88
    58.王海英,张惠君,刘闯,谢甫绨,Martin S K S中国辽宁省与美国近纬度地区新育成大豆品种的株型与产量的比较研究[J].大豆科学,2005,24(4):286-290
    59.王丽侠,关荣霞,常汝镇,邱丽娟.中国栽培大豆核心种质的取样策略.中国粮食安全战略——第九十次中国科协青年科学家论坛文集[M],2004a,119-129
    60.王丽侠,李英慧,李伟,朱莉,关媛,宁学成,关荣霞,刘章雄,常汝镇,邱丽娟.长江春大豆核心种质构建及分析[J].生物多样性,2004b,12(6):578-585
    61.王启明,徐心诚,马原松,吴诗光.干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系[J].干旱地区农业研究,2005,23(4):98-102
    62.王晓慧,李大勇,徐克章,张治安,武志海,陈展宇,杨光宇,杨春明.3种进化类型大豆叶片的某些生理特性比较[J].植物生理学通讯,2006,42(2):191-194
    63.文自翔.中国栽培和野生大豆的遗传多样性、群体分化和演化及其育种性状QTL的关联分析[D].南京农业大学博士学位论文,2008
    64.吴晓雷,贺超英,陈受宜,庄炳昌,王可晶,王学臣.用SSR分子标记研究大豆属种间亲缘进化关系[J].遗传学报,2001,28(4):359-366
    65.谢甫绨,李契,张惠君,王海英,Martin S K S亚有限型大豆品种单株生产潜力的比较研究[J].大豆科学,2007,26(5):675-679
    66.谢华,常汝镇,曹永生,张明辉,冯忠孚,邱丽娟.利用中国秋大豆{Glycine max (L.) Merr)筛选SSR核心位点的研究[J].中国农业科学,2003,36(4):360-366
    67.谢华,关荣霞,常汝镇,邱丽娟.利用SSR标记揭示我国夏大豆(Glycine max (L.) Merr)种质遗传多样性[J].科学通报,2005,50(5):434-442
    68.谢华.中国大豆预选核心种质代表性样品遗传多样性研究[D].中国农业科学院博士学位论文,2002:24-38
    69.熊冬金,赵团结,盖钧镒.1923—-2005年中国大豆育成品种的核心祖先亲本分析[J].大豆科学,2007,26(5):641-647
    70.熊冬金,赵团结,盖钧镒.1923—2005年中国大豆育成品种种质的地理来源及其遗传贡献[J].作物学报,2008,34(2):175-183
    71.徐豹,徐航,庄炳昌,路琴华,王玉民,李福山.中国野生大豆(Glycine soja)籽粒性状的遗传 多样性及其地理分布[J].作物学报,1995,21:733-739
    72.徐冉,张礼凤,王彩洁,李伟.山东省审定大豆品种的产量、品质及株型演变[J].中国油料作物学报,2007,29(3):242-247
    73.徐香玲,高晶,刘伟华,李集临.Ti质粒介导的Bt、K-δ内毒素蛋白基因转化大豆的初步研究[J].大豆科学,1997,16(1):6-11
    74.许东河,高忠,盖钧镒,张志永,陈受宜,北岛俊二,福士泰史,阿部纯,岛本义也.中国野生大豆与栽培大豆等位酶、RFLP和RAPD标记的遗传多样性与演化趋势分析[J].中国农业科学,1999a,32(6):16-22
    75.许东河,高忠,田清震,盖钧镒,北岛俊二,福士泰史,阿部纯,岛本义也.中国一年生野生大豆群体的遗传多样性研究[J].应用与环境生物学报,1999b,5(5):439-443
    76.杨琪.大豆遗传基础拓宽问题[J].大豆科学,1993,12(1):75-80
    77.杨庆凯,张晓艺,孟祥文,李岩,宁海龙,张大勇,孙德生.不同蛋白质、脂肪含量大豆品种在黑龙江不同地点的品质生态反应[J].大豆科学,2003,22(1):1-5
    78.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530
    79.杨秀红,吴宗璞,张国栋.不同生育期大豆品种根系性状的比较[J].大豆科学,2002,21(1):68-70
    80.杨秀红,吴宗璞,张国栋.无限结荚习性与亚有限结荚习性大豆品种根系性状的比较[J].大豆科学,2001,20(3):231-234
    81.叶兴国,王连铮.黄淮海地区大豆品种亲缘关系概势分析[J].大豆科学,1995,14(3):214-220.
    82.殷珊.水稻DNA序列多样性和籼粳分化[D].南昌大学硕士学位论文,2007
    83.于永涛.玉米核心自交系群体结构及耐早相关候选基因rabl7的等位基因多样性分析[D].中国农业科学研究院博士学位论文,2006
    84.於丙军,李锁娜,刘友良.大豆苗期盐害离子效应的比较[J].南京农业大学学报,2002,25(1):5-9
    85.张博,邱丽娟,常汝镇.中国大豆部分获奖品种与其祖先亲本间SSR标记的多态性比较和遗传关系分析[J].农业生物技术学报,2003,11(4):351-358
    86.张桂茹.黑农号大豆品种的基因源及农艺性状的遗传改进[J].大豆科学,1998,17(4):347-352
    87.张国栋.黑龙江省大豆品种系谱分析[J].大豆科学,1983,2(3):184-183
    88.张海燕,关荣霞,李英慧,王丽侠,栾维江,常汝镇,刘章雄,邱丽娟.大豆耐盐性种质资源SSR遗传多样性及标记辅助鉴定[J].植物遗传资源学报,2005,6(3):251-255
    89.张磊,戴瓯和,黄志平,李杰坤,张丽亚,胡晨.杂交大豆杂优豆1号选育[J].大豆通报,2007,87(2):14-16
    90.张磊,戴瓯和,朱国富,黄志平.皖豆系列大豆品种系谱分析[J].安徽农业科学,2000,28(2):139-140
    91.张礼凤,徐冉,王彩洁.山东大豆品种主要农艺性状的演进[J].大豆科学,2005,24(3):195-198
    92.张逸鸣,李英慧,郑桂萍,常汝镇,邱丽娟.吉林省大豆育成品种的遗传多样性特点分析[J].植物遗传资源学报,2007,8(4):456-463
    93.张跃强,关荣霞,刘章雄,常汝镇,姚源松,邱丽娟.利用大豆核心种质部分样本鉴定28K和30K过敏蛋白缺失材料[J].作物学报,2006,32(3):324-329
    94.赵静,付家兵,廖红,何勇,年海,胡月明,邱丽娟,董英山,严小龙.大豆磷效率应用核心种质的根构型性状评价[J].科学通报,2004,49(13):1249-1257
    95.赵丽梅,孙寰,王曙明,王跃强,黄梅,李建平.大豆杂交种杂交豆1号选育报告[J].中国油料作物学报,2004,26(3):15-17
    96.赵团结,盖钧镒,李海旺,邢邯,邱家驯.超高产大豆育种研究的进展与讨论[J].中国农业科学,2006,39(1):29-37
    97.钟鹏,吴俊江,刘丽君,林蔚刚,董德建,王建丽.水磷互作对不同磷效率基因型大豆苗期生理生化指标的影响[J].大豆科学,2007,26(6):873-878
    98.周蓉,张小娟,王贤智,沙爱华,周新安,涂赣英.湖北省大豆种质资源的遗传多样性分析[J].大豆科学,2006,(3):212-217
    99.周勋波,吴海燕,姜德锋,王海英,谢甫绨.不同结荚习性大豆株型特征与产量表现[J].中国油料作物学报,2004,26(2):61-64
    100.庄炳昌,徐航,王玉民,路琴华,徐豹,李福山.中国野生大豆(Glycine soja)茎叶性状的多态性及其地理分布[J].作物学报,1996,22:583-586
    101. Abe J, Xu D H, Suzuki Y, Kanazawa A, Shimamoto Y. Soybean germplasm pools in Asia revealed by nuclear SSRs [J]. Theoretical and Applied Genetics,2003,106:445-453
    102. Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars [J]. Molecular Breeding,2007,19:341-356
    103.Aljanabi S M, Forget L, Dookun A. An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA [J]. Plant Molecular Biology Reporter,1999, 17:1-8
    104. Andersen J R, Zein I, Wenzel G, Kriitzfeldt B, Eder J, Ouzunova M, Lubberstedt T. High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds [J]. Theoretical and Applied Genetics,2007,114: 307-319
    105. Azzi A, Stocker A. Vitamin E:non-antioxidant roles [J]. Progress in Lipid Research,2000,39: 231-255
    106. Board J E, Modali H. Dry matter accumulation predictors for optimal yield in Soybean [J]. Crop Science,2005,45(5):1790-1799
    107. Boyer J S. Plant productivity and environment [J]. Science,1982,218:443-448
    108. Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars [J]. Genetics,2006,172:1165-1177
    109. Brown-Guedira G L, Thompson J A, Nelson R L, Warburton M L. Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers [J]. Crop Science,2000,40:815-823
    110. Chen Y W, Nelson R L. Genetic variation and relationships among cultivated, wild, and semiwild soybean [J]. Crop Science,2004,44:316-325
    111. Chen Y W, Nelson R L. Relationship between origin and genetic diversity in Chinese soybean germplasm [J]. Crop Science,2005,45:1645-1652
    112. Choi I Y, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G., Reiter R S, Yoon M S, Hwang E Y, Yi S I, Young N D, Shoemaker R C, Tassell C P, Specht J E, Cregan P B. A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis [J]. Genetics,2007,176:685-696
    113. Concibido V, Vallee B La, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars [J]. Theoretical and Applied Genetics,2003,106(4):575-582
    114. Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome [J]. Crop Science,1999,39:1464-1490
    115. Cui Z L, Carter Jr T E, Burton J W. Genetic diversity patterns in Chinese soybean cultivars based on coefficient of parentage [J]. Crop Science,2000,40:1780-1793
    116. Delannay X, Rodgers D M, Palmer R G. Relative genetic contributions among ancestral lines to North American soybean cultivars [J]. Crop Science,1983,23:944-949
    117. Dong Y S, Zhuang B C, Zhao L M, Sun H, He M Y. The genetic diversity of annual wild soybeans grown in China [J]. Theoretical and Applied Genetics,2001,103:98-103
    118. Edward Buckler Lab. Maize Diversity Research [http://www.maizegenetics.net/bioinformatics/ tassel/]
    119. Eizenga G C, Agrama H A, Lee F N, Yan W, Jia Y. Identifying novel resistance genes in newly introduced blast resistant rice germplasm [J]. Crop Science,2006,46:1870-1878
    .120. Excoffier L, Laval G, Schneider S. Arlequin (version3.0):An integrated software package for population genetics data analysis [J]. Evolutionary Bioinformatics Online,2005,1:47-50
    121.Falush D, Stephens M and Pritchard J K. Inference of population structure using multilocus genotype data:linked loci and correlated allele frequencies [J]. Genetics,2003,164:1567-1587
    122. Falush D, Stephens M, Pritchard J K. Inference of population structure using multilocus genotype data:dominant markers and null alleles [J]. Molecular Ecology, Notes (2007). doi:10.1111/ j.1471-8286.2007.01758.ⅹ
    123. Farnir F, Coppieters W, Arranz J J, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M. Extensive genome-wide linkage disequilibrium in cattle [J]. Genome Research,2000,10:220-227
    124. Flagella Z, Giuliani M M, Rotunno T, Caterina R D, Caro A D. Effect of saline water on oil yield and quality of a high oleic sunflower(Helianthus annuus L.) hybrid [J]. European Journal of Agronomy.2004,21(2):267-272
    125.Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population:A high resolution platform for quantitative trait locus dissection [J]. The Plant Journal,2005,44:1054-1064
    126. Fu Y B, Peterson G W, Richards K W, Somers D, DePauw R M, Clarke J M. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004 [J]. Theoretical and Applied Genetics,2005,110:1505-1516
    127. Fu Y B, Peterson G W, Scoles G, Rossnagel B, Schoen D J, Richards K W. Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001 [J]. Crop Science,2003,43(6): 1989-1995
    128. Garcia A, Senadhira D, Flowers T J, Yeo A R. The effects of selection for sodium transport and of selection for agronomic characteristics upon salt resistance in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,1995,90:1106-1111
    129. Gizlice Z, Carter Jr T E, Burton J W. Genetic base for North American public soybean cultivars released between 1947 and 1988 [J]. Crop Science,1994,34:1143-1151
    130. Gizlice Z, Carter Jr T E, Burton J W. Genetic diversity in North American soybean:Ⅰ. multivariate analysis of founding stock and relation to coefficient of parentage [J]. Crop Science,1993,33: 614-620
    131. Gizlice Z, Carter Jr T E, Gerig T M, Burton J W. Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage [J]. Crop Science,1996,36:753-765
    132. Grewal T S, Rossnagel B G, Pozniak C J, Scoles G J. Mapping quantitative trait loci associated with barley net blotch resistance [J]. Theoretical and Applied Genetics,2008,116:529-539
    133.Ivandic V, Hackett C A, Nevo E, Keith R, Thomas W T B, Forster B P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent:associations with ecology, geography and flowering time [J]. Plant Molecular Biology,2002,48:511-527
    134. Jun T H, Van K, Kim M Y, Lee S H, Walker D R. Association analysis using SSR markers to find QTL for seed protein content in soybean [J]. Euphytica, DOI 10.1007/s10681-007-9491-6
    135. Lee G J, Boerma H R, Villagarcia M R, Zhou X, Carter Jr T E, Li Z, Gibbs M O. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars [J]. Theoretical and Applied Genetics,2004,109:1610-1619
    136. Leonard J M, Watson C J W, Carter A H, Hansen J L, Zemetra R S, Santra D K, Campbell K G, Riera-Lizarazu O. Identification of a candidate gene for the wheat endopeptidase Ep-D1 locus and two other STS markers linked to the eyespot resistance gene Pchl [J]. Theoretical and Applied Genetics,2008,116:261-270
    137. Li D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja Alleles [J]. Crop Science,2008,48:571-581
    138. Li Z L, Nelson R L. Genetic diversity among soybean accessions from three countries measured by RAPDs [J]. Crop Science,2001a,41:1337-1347
    139. Li Z L, Qiu L J, Thompon J A, Welsh M M, Nelson R L. Molecular genetic analysis of the U.S. and Chinese soybean ancestral lines [J]. Crop Science,2001b,41:1330-1336
    140. Liu K J, Muse S V. PowerMarker:an integrated analysis environment for genetic marker analysis [J]. Bioinformatics,2005,21(9):2128-2129
    141. Lu H, Bernardo R. Molecular marker diversity among current and historical maize inbreds [J]. Theoretical and Applied Genetics,2001,103:613-617
    142. Lutts S, Kinet J M, Bouharmont J. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance [J]. Annals of Botany.1996,78:389-398
    143. Maccaferri M, Sanguineti M C, Noli E, Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection [J]. Molecular Breeding,2005,15:271-289
    144. Nei M, Takezaki N, Estimation of genetic distance and phylogenetic tree from DNA analysis [M]. Proc.5th World Cong. Genet. Appl. Livestock Prod.1983,21:405-412
    145. Pritchard J K, Stephens M and Donnelly P. Inference of population structure using multilocus genotype data [J]. Genetics,2000,155:945-959
    146. Reif J C, Hamrit S, Heckenberger M, Schipprack W, Maurer H P, Bohn M, Melchinger A E. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years [J]. Theoretical and Applied Genetics,2005,111:838-845
    147. Roy J K, Bandopadhyay R, Rustgi S, Balyan H S, Gupta P K. Association analysis of agronomically important traits using SSR, SAMPL and AFLP markers in bread wheat [J]. Current Science,2006,90(5):683-689
    148. Russell J R, Ellis R P, Thomas W T B, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W. A retrospective analysis of spring barley germplasm development from'foundation genotypes'to currently successful cultivars [J]. Molecular Breeding,2000,6:553-568
    149. Saha B C, Bothast R J. Purification and characterization of a novel thermostable a-L-Arabinofuranosidase from a color-variant strain of Aureobasidium pullulans [J]. Applied and Environmental Microbiology,1998,64(1):216-220
    150. Smalley M D, Fehr W R, Cianzio S R, Han F, Sebastian S A, Streit L G. Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm [J].Crop Science,2004,44:436-442
    151. Thomson M J, Septiningsih E M, Suwardjo F, Santoso T J, Silitonga T S, McCouch S R. Genetic diversity analysis of traditional and improved Indonesian rice (Oryza sativa L.) germplasm using microsatellite markers [J]. Theoretical and Applied Genetics,2007,114:559-568
    152. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S. Dwar/8 polymorphisms associate with variation in flowering time [J]. Nature Genetics,2001,28:286-289
    153. Ude G N, Kenworthy W J, Costa J M, Cregan P B, Alvernaz J. Genetic diversity of soybean cultivars from China, Japan, North America, and North American ancestral lines determined by amplified fragment length polymorphism [J]. Crop Science,2003,43:1858-1867
    154. Vasilas B L, Nelson R L, Fuhrmann J J, Evans T A. Relationship of nitrogen utilization patterns with soybean yield and seedfill period [J]. Crop Science,1995,35:809-813
    155. Wahid A, Rao A R, Rasul E. Identification of salt tolerance traits in sugarcane lines [J]. Field Crops Research.1997,54:9-17
    156. Wang J, McClean P E, Lee R, Goos R J, Helms T. Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines [J]. Theoretical and Applied Genetics,2008,116:777-787
    157. Wang L X, Guan R X, Liu Z X, Chang R Z, Qiu L J. Genetic diversity of Chinese cultivated soybean revealed by SSR markers [J]. Crop Science,2006,46:1032-1038
    158. Weir B S, Hill W G. Estimating F-statistics [J]. Annual Review of Genetics,2002,36:721-750
    159. Widholm J. Status of soybean transformation methods [M]. In:Kauffman H E, Superior Printing, Champain, Illinois. World Soybean Research Conferences Ⅵ Symposium,1999,62-67
    160. Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association [J]. The Plant Cell, 2004,16(10):2719-2733
    161. Winter S M J, Shelp B J, Anderson T R, Welacky T W, Raj can I. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B [J]. Theoretical and Applied Genetics,2007,114:461-472
    162. Xie H, Guan R X, Chang R Z, Qiu L J. Genetic diversity of Chinese summer soybean germplasm revealed by SSR markers [J]. Chinese Science Bulletin,2005,50:526-535
    163. Yan W K, Rajcan I. Prediction of cultivar performance based on single- versus multiple-year tests in soybean [J]. Crop Science,2003,43(2):549-555
    164. Yuan J, Ali M L, Taylor J, Liu J, Sun G, Liu W, Masilimany P, Gulati-Sakhuja A, Pauls K P. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize(Zea mays L.) [J]. Theoretical and Applied Genetics,2008,116:465-479
    165. Zhang W, Dubcovsky J. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain [J]. Theoretical and Applied Genetics,2008,116: 635-645
    166. Zhou X L, Carter Jr T E, Cui Z L, Miyazaki S, Burto J W. Genetic diversity patterns in Japanese soybean cultivars based on coefficient of parentage [J]. Crop Science,2002,42(4):1331-1342
    167. Zhu Y L, Song Q J, Hyten D L, Van Tassell C P, Matukumalli L K, Grimm D R, Hyatt S M, Fickus E W, Young N D, Cregan P B. Single-nucleotide polymorphisms in soybean [J]. Genetics,2003, 163:1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700