用户名: 密码: 验证码:
横观各向同性地层声波测井波场模拟与地层渗透率反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声波测井是地球物理测量和油气储层勘探的主要方法之一。为了改进测井技术、根据测井信号准确反演地层信息,必须深入研究弹性波在流-固柱面分层介质中的传播规律。鉴于地壳表层岩石通常呈现横观各向同性(TI),本文以TI地层声波测井为应用背景,在对井孔声场进行解析和数值模拟的基础上,分析柱面导波的激发、频散和衰减,研究由井内波场反演井外地层渗透率的方法。主要进行了以下几方面的工作:
     首先对弹性地层中井轴平行于TI对称轴的井孔(竖直井)声场进行了分析,其中各模式导波频散曲线由井孔声场函数的极点获得。前人的算例结果显示在TI介质井孔中单极源伪瑞利波、偶极源弯曲波和四极源螺旋波在低频极限处的速度等于井孔方向上的横波速度,但缺乏理论证明。本文讨论了多值声场函数在复平面内的支点分布,并根据井内声波在流体-TI固体边界上产生透射横波的条件论述了伪瑞利波、弯曲波和螺旋波的轴向速度上限。结合TI弹性地层井孔声场的模拟结果,证明了当TI地层参数满足δ>ε+c_(44)/2c_(33)时上述导波的低频极限速度小于地层的横波速度,其中c_(33)和c_(44)分别为TI地层对称轴方向上的纵波和横波模量而ε、δ是各向异性系数。时域全波的模拟结果证实了在这类地层中由导波到达时间所测得的地层横波速度总是小于其真实值。
     然后,研究了TI孔隙地层竖直井孔中由单极源激发的声场,计算了井孔声场函数全部极点的分布并由此得到了包括泄漏模式和非泄漏模式在内的导波频散、衰减以及激发强度曲线。非泄漏模式波的轴向传播速度小于等于井孔方向上的横波速度,其衰减仅由弹性孔隙骨架和粘滞流体之间的相对运动而产生;相比之下,速度快于横波的泄漏模式波衰减非常迅速,这是因为它的衰减机制同时包含介质的本征耗散和机械能的几何泄漏。考察了地层、井孔和井内流体各参数分别对非泄漏模式波和临界折射波的影响大小。基于灵敏度分析的结果,在算例中通过拟合斯通利波的时域波形用最小二乘法同时反演了地层的水平渗透率和水平剪切模量。在理论模拟波形时,孔隙度和垂直渗透率的取值对反演精度的影响很小,这体现出反演方法的稳定性。
     然而在实际钻井过程中,井轴往往与TI对称轴方向不一致。为了数值模拟这种情况下的井孔偶极声场,本文采用了三维时域有限差分(FDTD)法。由于快、慢横波的速度差异,在偏离TI对称轴的井孔中偶极子能相应地激发快弯曲波和慢弯曲波,形成弯曲波分裂现象。发现弯曲波的速度和相位与声源偏振方向无关,变化声源方位角只改变两类弯曲波的相对幅度。在大多数情况下,低频偶极子激发的快、慢弯曲波在速度上分别趋近于井轴向的快、慢横波速度。算例结果表明,即使在参数满足δ>ε+c_(44)/2c_(33)的地层中,当井孔倾角足够大时根据弯曲波的波至仍可准确提取地层的横波速度。此外,分别模拟了沿深度梯度非均匀以及水平分层介质中的井孔声场。
     在渗透率呈各向异性的孔隙地层中,如果渗透率主方向与坐标轴不一致,渗流速度各分量都耦合在一起,传统的应力-速度交错网格无法将描述广义达西定律的方程组离散化。本文对FDTD算法作出了改进使得达西定律方程组依然可以写成差分方程的形式。在算例中模拟了渗透率各向异性地层中的井孔声场。当井轴与渗透率的TI对称轴不一致时,可根据正交偶极接收阵列得到的波形幅度及衰减判别岩层沿井周各方向上的径向渗透率大小,并依此确定地层定向裂隙的分布平面。在灵敏度分析结果的基础上,利用弯曲波的衰减反演了TI地层的渗透率。在竖直井孔中,利用弯曲波的衰减能反演地层的水平渗透率,但在反演精度的稳定性方面弯曲波不如斯通利波。在水平井中,利用水平偏振偶极子激发的弯曲波可反演水平渗透率;而根据垂直偏振偶极子的声场则可测得地层的垂直渗透率。当待测渗透率较高时,反演结果具有较高精度;但对于渗透率较低的地层,反演精度将明显受渗透率各向异性的影响,各向异性越强则渗透率的反演误差越大。这些研究为从正交偶极声测井数据中提取储层渗透率提供了参考。
Acoustic logging is a useful method of geophysical measurements and explorations for oil or gas reservoirs. To develop the logging technique and extract reservoir informations, researches on cylindrical elastic-wave propagation along a radially layered medium is of great practical importance. Transverse isotropy (TI) of sedimentary rocks is a typical characteristic in the lithospere medium. In the present thesis, full waves and component waves excited by a multipole source in a borehole is simulated by the analytical and numerical methods. The inversion scheme for formation permeabilities is put forward after studying the influence of each factor on the wave field.
     The wavefields in a vertically extending wellbore are modeled first. In this case, the bore axis is parallel to the TI symmetry axis and the wave equations inside and outside the borehole can therefore be analytically solved. The dispersion of the guided waves can be investigated by finding poles of the borehole acoustic function. Previous works have taken for granted that guided-wave velocities of the pseudo-Rayleigh, flexural, and screw modes equal the shear speed at the low-frequency limits in TI media without proof. With the results of wavefield computations, however, it is revealed that if parameters of a TI formation satisfyδ>ε+c_(44)/2c_(33), asymptotic velocities of those guided waves are lower than the shear speed, where c_(33) and c_(44) are the moduli related to the compressional and shear wave along the TI symmetry axis, respectively, andεandδare the anisotropic coefficients. The simulated full-waves further show that in such a kind of formations, the measurement result of shear speed obtained from those guided-wave arrivals are always smaller than the true value.
     Borehole wavefields in a fluid-saturated porous TI formation excited by a monopole source is then simulated. The dispersion, attenuation, and excitation of all modes, including the unleaky and leaky modes, are investigated. It is revealed that the attenuation of the unleaky modes is caused by the relative motion between the porous skeleton and the viscous pore-fluid while that of the leaky modes includes both the intrinsic dissipation and the geometric leak of mechanical energy. Hence the leaky modes, whose velocities are higher than the shear speed, attenuate rapidly as they propagate. Based on the simulation results of component waves, influences of all parameters on the guided waves as well as the critical refracted waves are investigated. Sensitivity analysis theoretically confirms that Stoneley wave can be used to measure the permeability and the shear modulus on the horizontal plane. In the numerical example, those two parameters are well extracted from Stoneley waveforms in the time-domain by solving a nonlinear least-squares problem. It is shown that the initial estimations of the porosity and the vertical permeability have little effect on the inversion results.
     The borehole, however, is not parallel to the TI symmetry axis in most cases. Dipole acoustic waves in such a borehole are computed by a 3-D finite-difference time-domain (FDTD) algorithm instead of the analytical method. Due to the shear anisotropy, a dipole source can excite a fast and a slow flexural mode if the bore axis deviates from the TI symmetry axis. That is the flexural-wave splitting phenomenon. The dipole orientation has no relation with the velocities or phases of flexural waves. It influences the relative amplitudes of the two modes. In most situations, the fast and slow flexural modes in the low-frequency range travel at the speeds of the fast and slow shear wave, respectively. The numerical results show that even in the formations withδ>ε+c_(44)/2c_(33), extracting the shear velocities from the flexural arrivals is still possible if the borehole deviation is large enough. Moreover, the wavefields in gradient heterogeneous or horizontally layered formations are also modeled by the FDTD code.
     For a permeability anisotropic porous model, once the principal direction of the TI permeability tensor is not consistent with the coordinate axis, all velocity components of pore-fluid flow are coupled together. And the equations of generalized Darcy’s law cannot be discretized using the conventional stress-velocity staggered grids. To solve such a problem, the modified FDTD algorithm is introduced to rewrite Darcy’s equations into the finite-difference formulations. Thus the dipole wavefields in a borehole deviated from the TI symmetry axis can be simulated. According to our numerical examples, it is concluded that the distributing plane of directed cracks can be detected from the attenuation and the amplitudes of flexural-wave signals at the cross dipole array of receivers. Based on the results of sensitivity analysis, it is found that the flexural attenuation can be used to measure the formation permeability. In a vertical well, the horizontal permeability can be obtained, but the inversion accuracy depends on the precision of the porosity and vertical-permeability estimation. So the inversion stability is worse compared with the Stoneley-wave inversion process. In a horizontal well, the flexural wave excited by a horizontally polarized dipole can be used to extract the horizontal permeability; while the vertical permeability can be measured from the flexural attenuation generated by the vertically oriented source. The measurement results of permeabilities are very close to the true values in a highly permeable formation. The inversion accuracy, however, is obviously influenced by the anisotropy level if the formation permeability is lower in a horizontal borehole. The stronger the permeability anisotropy is, the worse the measurement precision is. On the basis of the inversion examples, an effective method is provided to estimate the anisotropic permeabilities from the log data of a cross-dipole sonic tool.
引文
1 L. F. Uhrig, F. A. Van Melle. Velocity Anisotropy in Stratified Media. Geophysics. 1955, 20(4): 774-779
    2 G. W. Postma. Wave Propagation in a Stratified Medium. Geophysics. 1955, 20(4): 780-806
    3 S. Crampin. A Review of Wave Motion in Anisotropic and Crack Elastic-Media. Wave Motion. 1981, 3: 343-391
    4 M. A. Biot. Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. J. Acoust. Soc. Am. 1956, 28(2): 168-178
    5 M. A. Biot. Mechanics of Deformation and Acoustic Propagation in Porous Media. J. Appl. Phys. 1962, 33(4): 1482-1498
    6 M. A. Biot. Propagation of Elastic Waves in a Cylindrical Bore Containing a Fluid. J. Appl. Phys. 1952, 23(9): 997-1005
    7 J. E. White, R. E. Zechman. Computed Response of an Acoustic Logging Tool. Geophysics. 1968, 33(2): 302-310
    8 E. W. Peterson. Acoustic Wave Propagation along a Fluid-Filled Cylinder. J. Appl. Phys. 1974, 45(8): 3340-3350
    9 T. Needham. Visual Complex Analysis. Posts & Telecom Press, 2007
    10 L. Tsang, D. Rader. Numerical Evaluation of the transient Acoustic Waveform due to a Point Source in a Fluid-Filled Borehole. Geophysics. 1979, 44(10): 1706-1720
    11 C. H. Cheng, M. N. Toks?z. Elastic Wave Propagation in a Fluid-Filled Borehole and Synthetic Acoustic Logs. Geophysics. 1981, 46(7): 1042-1053
    12 C. H. Cheng, M. N. Toks?z, and M. E. Willis. Determination of In Situ Attenuation from Full Waveform Acoustic Logs. J. Geophys. Res. 1982, 87(B7): 5477-5484
    13 D. V. Ellis, J. M. Singer. Well Logging for Earth Scientists, 2nd Edition. Springer, 2007
    14 S. Kitsunezaki. A New Method for Shear-Wave Logging. Geophysics. 1980, 45(10): 1489-1506
    15 A. L. Kurkjian, S. Chang. Acoustic Multipole Source in Fluid-Filled Boreholes. Geophysics. 1986, 51(1): 148-163
    16 S. T. Chen. Shear-Wave Logging with Dipole Sources. Geophysics. 1988, 53(5): 659-667
    17 S. T. Chen. Shear-Wave Logging with Quadrupole Sources. Geophysics. 1989, 54(5): 590-597
    18 D. P. Schmitt. Shear Wave Logging in Elastic Formations. J. Acoust. Soc. Am. 1988, 84(6): 2215-2229
    19王克协,董庆德,王爱莲等.柱状双层准弹性介质中声辐射场的理论分析.吉林大学自然科学学报. 1979, (2): 47-56
    20张金钟,郑传汉.裸眼井中弹性波传播的非对称模式的数值研究.地球物理学报. 1988, 31(4): 465-470
    21 H. Zhang, X. Wang, and C. Ying. Leaky Modes and Wave Components of a Fluid-Filled Borehole Embedded in an Elastic Medium. Sci. China Ser. A, 1996, 39(3): 289-300
    22 X. Wang, H. Zhang, and C. Ying. Representation and Isolation of Head Waves in a Borehole. SEG Expanded Abstracts. 1994, 13: BG1-3
    23马俊.井孔声波理论分析与复杂储层单、多极声测井正反演研究.吉林大学博士论文, 1998
    24胡恒山,马俊,王克协.井孔声场计算中的黎曼叶选择.吉林大学自然科学学报. 1999, 4: 66-70
    25 G. Yao, K. Wang, J. Ma, et al. Asympototic Analysis for Shear Waves in a Fluid-Filled Borehole. Geophys. Prospect. 2007, 55: 561-570
    26 G. Yao, K. Wang, J. Ma, et al. SH Wavefields in Cylindrical Double-Layered Elastic Media Excited by a Shear Stress Source Applied to a Borehole Wall. J. Geophys. Eng. 2005, 2: 169-175
    27崔志文,刘金霞,王克协.井孔声波频散方程伪瑞利波的近似解析公式.吉林大学学报(地球科学版), 2008, 38(增刊): 113-116
    28王军,胡恒山,程希.薄圆管压电换能器瞬态响应及其在井中激发声场.地球物理学报, 2009, 52(5): 1333-1340
    29李巍,胡恒山,张碧星.柱面分层流体饱和孔隙地层中的声波测井波场模拟?.声学学报. 2010, 35(4): in press
    30 X. Chen, Y. Quan, J. Harris. Seismogram Synthesis for Radially Layered Medium Using the Generalized Reflection/Transmission Coefficients Method: Theory and Application to Acoustic Logging. Geophysics. 1996, 61(4): 1150-1159
    31 R. Stoneley. The Seismological Implications of Aeolotropy in Continental Structure. Geophys. J. Int. 1949, 5(8): 343-353
    32 P. C. Chou, J. Carleone, and C. M. Hsu. Elastic Constants of Layered Media. J. Compos. Mater. 1972, 6(1): 83-90
    33 A. Nur, G. Simmons. Stress-Induced Velocity Anisotropy in Rocks: An Experimental Study. J. Geophys. Res. 1969, 74(27): 6667-6674
    34 F. A. Dahlen. Elastic Velocity Anisotropic in the Presence of an AnisotropicInitial Stress. Bull. Seis. Soc. Am. 1972, 62(5): 1183-1193
    35 I. N. Gupta. Premonitory Variations in S-Wave Velocity Anisotropy before Earthquakes in Nevada. Science. 1973, 182(4117): 1129-1132
    36 S. Crampin, R. McGonigle, and D. Banford. Estimating Crack Parameters from Observations of P-Wave Velocity Anisotropy. Geophysics. 1980, 45(3): 345-360
    37 L. Thomsen. Weak Elastic Anisotropy. Geophysics. 1986, 51(10): 1954-1966
    38 F. Tsuneyama, G. Mavko. Velocity anisotropy estimation for brine-saturated sandstone and shale. SEG The Leading Edge, 2005, 24: 882-888
    39 C. M. Xiao, J. C. Bancroft, R. J. Brown. Estimation of Thomsen’s Anisotropy Parameters by Moveout Velocity Analysis. SEG Expanded Abstracts, 2005, 24: ANI194-197
    40 J. M. Berryman. Exact Seismic Velocities for Transversely Isotropic Media and Extended Thomsen Formulas for Stronger Anisotropies. Geophysics. 2008, 73(1): D1-D10
    41 H. Chen, X. Wang, W. Lin. Parallel Numerical Simulation of Ultrasonic Waves in a Prestressed Formation. Ultrasonic. 2006, 44: E1013-E1017
    42刘金霞.弹性波折、反射与横向各向同性(VTI)介质井孔导波声弹效应研究.吉林大学博士论文, 2007
    43 J. Liu, Z. Cui, K. Wang. The Relationships between Uniaxial Stress and Reflection Coefficients. Geophys. J. Int. 2009, 179: 1584-1592
    44 J. E. White, C. Tongtaow. Cylindrical Waves in Transversely Isotropic Media. J. Acoust. Soc. Am. 1981, 70(4): 1147-1155
    45 A. K. Chan, L. Tsang. Propagation of Acoustic Waves in a Fluid-Filled Borehole Surrounded by a Concentrically Layered Transversely Isotropic Formation. J. Acoust. Soc. Am. 1983, 74(5): 1605-1616
    46 M. N. Kazi-Aoaul, G. Bonnet, and P. Jouanna. Green’s Functions in an Infinite Transversely Isotropic Saturated Poroelastic Medium. J. Acoust. Soc. Am. 1988, 84(5): 1883-1889
    47 D. P. Schmitt. Acoustic Multipole Logging in Transversely Isotropic Poroelastic Formations. J. Acoust. Soc. Am. 1989, 86(6): 2397-2421
    48 B. Zhang, H. Dong, and K. Wang, Multipole Sources in a Fluid-Filled Borehole Surrounded by a Transversely Isotropic Elastic Solid. J. Acoust. Soc. Am. 1994, 96(4): 2546-2555
    49 B. Zhang, K. Wang, and Q. Dong, Acoustic Multipole Logging in Transversely Isotropic Two-Phase Medium. J. Acoust. Soc. Am. 1995, 97(6): 3462-3472
    50丛令梅. BISQ横向各向同性地层流体井孔中多极源激发声波场的理论求解和数值分析.吉林大学硕士论文, 2005
    51 A. K. Vashishth, P. Khurana. Wave Propagation along a Cylindrical Borehole in an Anisotropic Poroelastic Solid. Geophys. J. Int. 2005, 161: 295-302
    52 E. Kazatchenko, M. Markov, A. Mousatov. Simulation of Full-Waveform Log in Saturated Cracked Formations Using Hudson’s Approach. Geophys. Prospect. 2005, 53: 65-73
    53 J. A. Hudson, T. Pointer, E. Liu. Effective Medium Theories for Fluid-Saturated Materials with Aligned Cracks. Geophys. Prospect. 2001, 49: 509-522
    54陈雪莲,王瑞甲.径向分层TI孔隙介质井孔中激发的模式波的数值研究.地球物理学报. 2008, 51(4): 1270-1277
    55 K. J. Ellefsen, C. H. Cheng, and M. N. Toks?z, Application of perturbation theory to acoustic logging. J. Geophys. Res., 1991, 96(B1): 537-549
    56 B. K. Sinha, A. N. Norris, and S. Chang, Borehole flexural modes in anisotropic formations. Geophysics. 1994, 59(7): 1037-1052
    57张碧星.各向异性介质地层流体井孔中多极源声测井理论和数值研究.吉林大学博士论文, 1994
    58张丽.各向异性地层多极源声测井理论与数值研究.吉林大学博士论文, 2008
    59 C. J. Randall, D. J. Scheibner, and P. T. Wu. Multipole Borehole Acoustic Waveforms: Synthetic Logs with Beds and Borehole Washouts. Geophysics. 1991, 1757-1769
    60 R. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE T. Antenn. Propag. 1966, 14(3): 302-307
    61 H. D. Lesilie, C. J. Randall, Multipole Sources in Boreholes Penetrating Anisotropic Formations: Numerical and Experimental Results. J. Acoust. Soc. Am. 1992, 91(1): 12-27
    62 N. Cheng, C. H. Cheng, and M. N. Toks?z, Borehole Wave Propagation in Three Dimension. J. Acoust. Soc. Am. 1995, 97(6): 3483-3493
    63 X. Wang, B. Hornby, and K. Dodds. Dipole Sonic Response in Deviated Boreholes Penetrating an Anisotropic Formtaion. SEG Expanded Abstracts. 2002, 21: 360
    64 B. K. Sinha, E. ?im?ek, and Q. H. Liu. Elastic-Wave Propagation in Deviated Wells in Anisotropic Formations. Geophysics. 2006, 71(6): D191-D202
    65 J. P. Berenger, A Perfectly Matched Layer for the Absorption of Electro-magnetic Waves. J. Comput. Phys. 1994, 114(2), 185-200
    66陈浩,王秀明.预应力地层井孔偶极子声场的高阶有限差分模拟.中国地球物理学会第22届学术年会,成都, 2006
    67陈浩,王秀明.交叉偶极子预测地应力理论和局限.声学技术. 2008, 27(5): 288-289
    68 J. A. Rice. A Method for Logging Shear Wave Velocity Anisotropy. SEG Expanded Abstracts. 1987, 6, 27-28
    69 K. J. Ellefsen, M. N. Toks?z, K. M. Tubman et al. Estimating a Shear Modulus of a Transversely Isotropic Formation. Geophysics. 1992, 57(11): 1428-1434
    70 J. H. Rosenbaum. Synthetic Microseismograms: Logging in Porous Formations. Geophysics. 1974, 39(1): 14-32
    71 H. Deresiewicz, R. Skalak. On Uniqueness in Dynamic Poroelasticity. Bull. Seis. Soc. Am. 1963, 53(4): 783-788
    72 D. M. Williams, J. Zemanek, F. A. Angona et al. The Long Space Acoustic Logging Tool. 25th Annual Logging Symposium Transactrions. 1984
    73王克协,董庆德.渗透性地层油气井中声场的理论分析与计算.石油学报. 1986, 7(1): 59-69
    74 K. W. Winkler, H. L. Liu, and D. L. Johnson. Permeability and Borehole Stoneley Waves: Comparison between Experiment and Theory. Geophysics. 1989: 54(1): 66-75
    75 D. L. Johnson, J. Koplik, and R. Dashen. Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media. J. Fluid Mech. 1987, 76: 370-402
    76 A. N. Norris. Stoneley-Wave Attenuation and Dispersion in Permeability Formations. Geophysics. 1989, 54(3): 330-341
    77 X. Tang, C. H. Cheng, and M. N. Toks?z. Dynamic Permeability and Borehole Stoneley Waves: A Simplified Biot-Rosenbaum Model. J. Acoust. Soc. Am. 1991, 90(3):1632-1646
    78谢馥励.利用偶极弯曲波求取孔隙VTI介质各向异性渗透率的正、反演研究.吉林大学硕士论文. 2007
    79 F. Wenzlau, T. M. Müller. Finite-Difference Modeling of Wave Propagation and Diffusion in Poroelastic Media. Geophysics. 2009, 74(4): T55-T66
    80 Y. J. Masson, S. R. Pride. Finite-Difference Modeling of Biot’s Poroelastic Equations across all Frequency. Geophysics. 2010, 75(2): N33-N41
    81 R. Martin, D. Komatitsch, A. Ezziani. An Unsplit Convolutional Perfectly Matched Layer Improved at Grazing Incidence for Seismic Wave Propagation in Poroelastic Media. Geophysics. 2008, 73(4): T51-T61
    82 B. Auld.固体中的声场和波,孙承平译.科学出版社, 1982
    83汪德新.数学物理方法,第三版.科学出版社, 2006
    84 W. C. Chew. The Singularities of a Fourier-Type Integral in a Multi-cylindrical Layer Problem. IEEE T. Antenn. Propag. 1983, 31(4): 653-655
    85 W. L. Rover, J. H. Rosenbaum, and T. F. Vining. Acoustic Waves from an Impulsive Source in a Fluid-filled Borehole. J. Acoust. Soc. Am. 1974, 55(6): 1144-1157
    86 A. L. Kurkjian. Numerical Computation of Individual Far-Field Arrivals Excited by an Acoustic Source in a Borehole. Geophysics. 1985, 50(5): 852-866
    87 Q. H. Liu, C. Chang. Compressional Head Waves in Attenuative Formations: Forward Modeling and Inversion. Geophysics. 1996, 61(6): 1908-1920
    88 S. Chi, X. Tang. Stoneley-Wave Speed Modeling in General Anisotropic Formations. Geophysics. 2006, 71(4): F67-F77
    89 C. V. Kimball, T. L. Marzetta. Semblance processing of borehole acoustic array data. Geophysics. 1986, 49(3): 274-281
    90 F. L. Paillet, C. H. Cheng. A Numerical Investigation of Head Waves and Leaky Modes in Fluid-Filled Boreholes. Geophysics. 1986, 51(7): 1438-1449
    91 B. A. Auld. Acoustic Fields and Waves in Solids, Vol. II. Johon Whiley & sons. 1973
    92诸国贞,郭宏智,陈丽英.流体饱和孔隙材料的Biot弹性常数的声学测定.应用声学. 1998, 17(6): 1-8
    93 A. Cheng. Material Coefficients of Anisotropic Poroelastic. In. J. Rock. Min. Sci. 1997, 34(2): 199-205
    94 X. Zhang, H. Zhang, X. Wang. Leaky modes and their contributions to the compressional head wave in a borehole excited by a dipole source. Sci. China. Ser. G. 2009, 52(5): 676-684
    95 X. Zhang, H. Zhang, X. Wang. Acoustic mode waves and individual arrivals excited by a dipole source in fluid-filled boreholes. Sci. China. Ser. G. 2009, 52(6): 822-831
    96 K. Aki, P. G. Richards. Quantitative Seismology: Theory and Methods. W. H. Freeman and Co. 1980
    97 Z. Wang. Seismic Anisotropy in Sedimentary Rocks, Part 2: Laboratory Data. Geophysics. 2002, 67(5): 1423-1440
    98唐晓明,郑传汉.定量测井声学.赵晓敏译.石油工业出版社, 2004
    99伍先运,王克协,郭立等.利用声全波测井资料求取储层渗透率的方法与应用研究.地球物理学报. 1995, 38(supp. 1): 224-231
    100 G. Mavko, T. Mukerji, J. Dvorikin.岩石物理手册:孔隙介质中地震分析工具,徐海滨,戴建春译.中国科学技术大学出版社, 2008
    101 M. R. J. Wyllie, A. R. Gregory, and L. W. Gardner. Elastic Wave Velocities in Heterogeneous and Porous Media. Geophysics. 1965, 21(1): 41-70
    102 J. Geertsma. Velocity-Log Interpretation: The Effect of Rock BulkCompressibility. Soc. Pet. Eng. J. 1961, 1: 235-248
    103 J. P. Castagna, M. Backus. Offset dependent reflectivity– thery and practive of AVO analysis. Tulsa, Oklahoma: Investigations in Geophysics, 1993, 8, 3-36
    104 Y. H. Chen, W. C. Chew, and Q. H. Liu. A three dimensional finite difference code for the modeling of sonic logging tools, J. Acoust. Soc. Am. 1998, 103(2): 702-712
    105李太宝.计算声学:声场的方程和计算方法.科学出版社, 2005
    106葛德彪,闫玉波.电磁波时域有限差分法,第二版.西安电子科技大学出版社, 2005
    107 J. Virieux. P-SV Wave Propagation in Heterogeneous Media: Velocity-Stress Finite-Difference Method. Geophysics. 1986, 51(4): 889-901
    108 D. Pissarenko, G. V. Reshetova, and V. A. Tcheverda, 3D Finite-Difference Synthetic Acoustic Logging in Cylindrical Coordinates. Geophys. Prospect. 2009, 57: 367-377
    109 T. Wang, X. Tang. Finite-Difference Modeling of Elastic Wave Propagation: A Nonsplitting Perfectly Matched Layer Approach. Geophysics. 2003, 68, 1749-1755
    110 Z. Qin, M. Lu, X. Zheng, et al. The Implementation of an Improved NPML Absorbing Boundary Condition in Elastic Wave Modeling. Appl. Geophys. 2009, 6(2): 113-121
    111 W. C. Chew, Q. H. Liu. Perfectly Matched Layers for Elastodynamics: A New Absorbing Boundary Condition. J. Computat. Acoust. 1996, 4: 341-359
    112 S. Kostek. Modeling of Elastic Wave Propagation in a Fluid-Filled Borehole Excited by a Piezoelectric Transducer, Master thesis, Massachusetts Institute of Technology, 1991
    113关威.孔隙介质弹性波-电磁场耦合效应测井的波场模拟研究.哈尔滨工业大学博士论文, 2009
    114 Q. H. Liu, E. Schoen, F. Daube et al. A Three-Dimensional Finite Difference Simulation of Sonic Logging. J. Acoust. Soc. Am. 1996, 100(1): 72-79
    115 W. Guan, H. Hu. Finite-Difference Modeling of the Electroseismic Logging in a Fluid-Saturated Porous Formation. J. Comput. Phys. 2008, 227: 5633-5648
    116 K. J. Ellefsen, C. H. Cheng, and M. N. Toks?z. Elastic Wave Propagation along a Borehole in an Anisotropic Medium. SEG Expanded Abstracts. 1990: 14-17
    117胡恒山,王克协.孔隙介质声学理论中的动态渗透率.地球物理学报. 2001, 44(1): 135-141
    118 Y. Q. Zeng, Q. H. Liu. A Staggered-Grid Finite-Difference Method with Perfectly Matched Layers for Poroelastic Wave Equations. J. Acoust. Soc. Am. 2002,
    119 R. Song, J. Ma, K. Wang. The Application of the Nonsplitting Perfectly Matched Layer in Numerical Modeling of Wave Propagation in Poroelastic Media. Appl. Geophys. 2005, 2(4): 216-222
    120宋若龙.非轴对称套管井声场并行计算及声波固井质量评价理论与方法研究.吉林大学博士论文, 2008
    121 J. Lu, X. Ju, X. Cheng. Design of a Cross-Dipole Array Acoustic Logging Tool. Petroleum Science, 2008, 5(2): 105-109
    122 X. Tang, R. K. Chunduru. Simultaneous Inversion of Formation Shear-Wave Anisotropy Parameters from Cross-Dipole Acoustic-Array Waveform Data. Geophysics. 1999, 64(5): 1502-1511
    123朱正亚,郑传汉, M. N. Toks?z.弯曲模式波在各向异性井孔中传播的实验研究.地球物理学报. 1994, 37(6): 811-819
    124 Z. Zhu, S. Chi, M. N. Toks?z. Sonic Logging in Deviated Boreholes Penetrating an Anisotropic Formation: Laboratory Study. Geophysics. 2007, 72(4): E125-E134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700