用户名: 密码: 验证码:
基于STATCOM改善风电场电压稳定性的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展而产生的日益恶化的环境问题,可再生能源的开发和利用已迫在眉睫。风能作为可再生能源中技术最成熟的利用方式而快速发展,但风电场本身具有随机性和间歇性特点,并网运行会对系统电压稳定性产生一定的影响,另外风电接入地区一般为电网结构薄弱地区,无功不足可能影响电网的电压稳定,甚至造成电压崩溃。静止同步补偿器(STATCOM)可以动态的向电网注入感性或容性无功功率,快速的抑制电压扰动,非常适合风电场的无功补偿,但是,风电场中的STATCOM在控制策略、主电路调制技术以及安装地点和容量优化问题有待进一步深入研究。
     由于STATCOM的核心部分——逆变器具有强耦合的特点,使得其难以快速、准确的抑制风电场电压波动。本文使用线性自抗扰技术(LADRC)实现了逆变器d、q轴电流解耦的自抗扰控制。该方法比传统PI控制具有更好地快速性和鲁棒性,同时使用了参数化方法整定控制参数,简化了控制系统,更便于工程实践应用。
     根据含风电微网系统本身特点,从理论上分析了其与普通风电系统的不同,指出电压波动更易于受有功功率波动的影响,设计了新型基于STATCOM/SMES系统的控制策略。在LADRC解耦控制的基础上使用了指数平均数指标(EXPMA)产生有功功率指令信号,稳定了含风电微网系统的电压稳定性。
     针对STATCOM作为电力电子器件会产生谐波的问题,使用Chebyshev和无限折叠混沌序列形成了一种新的混合混沌序列随机信号。在此基础上,提出了一种基于混沌序列的随机开关频率(RFPWM)调制策略,提高了运行性能,降低了谐波含量,同时减少了电磁噪声。
     考虑经济性问题,提出了一种基于粒子群算法(PSO)和连续潮流(CPF)的STATCOM安装地点和容量的无功优化算法。在考虑多个STATCOM的投资效益的同时,提出了以各节点的负荷参数、容量、电压等级等作为参考指标的目标函数。此方法在保证系统电压稳定性的前提下,可以减少对于无功补偿设备的投资,而且对于系统的其它指标也有一定的提升。
     本论文以上工作对于风电并网电压稳定性控制、补偿设备调制技术的发展、多补偿设备无功优化,以及风力发电大规模的健康发展,均具有一定的理论意义和实用价值。
The development and utilization of renewable energy become imminent whenthe environment of China deteriorates gradually along with the development ofnational economy. Wind energy is rapidly expanding as one of the most maturetechnology in the renewable energy field. Because of the characteristic of randomnessand intermittence, wind farm will influence the voltage stability of the power systemwhen it is connected to the power system extensively. Wind farm is generallyconnected to the power system at the weak point. Therefore, the insufficient reactivepower may affect the voltage stability of power grid, even cause the voltage tocollapse. Static synchronous compensator (STATCOM) can dynamically add theinductive or capacitive reactive power to the grid, which will rapidly suppress thevoltage disturbance. So, it is very suitable for the wind farm reactive powercompensation. However, the problems about the control strategy, the main circuitmodulation technology, the location and the capacity optimization of STATCOM inwind power system need further in-depth study.
     The traditional control strategy is difficult to quickly and accurately suppressthe wind farm voltage fluctuation due to the strong coupling of inverter, the core ofSTATCOM. The linear automatic rejection control (LADRC) is applied to the currentdecoupling of d、q axis of the inverter in the paper. The method has the better rapidityand robustness than the PI control does and the parameterized method is used todetermine the parameters for the controller, which can simplified the control systemand convenient for the practical engineering application.
     According to the characteristics of the micro grid system including wind power,the different points with ordinary wind power system are analyzed theoretically. Thepaper points out that the voltage fluctuation is easily affected by the active powerfluctuation in this power system. A new control strategy based on STATCOM/SMESsystem is designed. The EXPMA is used to produce the active power commandsignals and improve the voltage stability of wind power system on the basis ofLADRC decoupling control.
     In order to solve the harmonics generated by the power electronic devices, anew chaos sequence based on Chebyshev chaotic sequence and infinite chaoticsequence is built. On the basis of this new method, a new RFPWM modulation strategy is proposed to improve running performance and reduce the harmonic contentand electromagnetic noise.
     In the study of three problems above, an optimization method of location andcapacity of STATCOM based on particle swarm optimization (PSO) and continuouspower flow (CPF) is designed for the economic problems. Considering the multipleSTATCOM investment, a new objective function is proposed which takes the nodeload parameters, the capacity, and the voltage level as the indexes. The results provethat the method can reduce the investment and improve other indicators of the system.
     For the voltage stability control of wind power system, the development of thecompensation equipment modulation technology, the optimization of multiple reactivepower compensation equipments, as well as the development of wind power, theresearch have theoretical significance and practical value.
引文
[1]王成福,风电场并入电网的调控理论研究:[博士学位论文],山东;山东大学,2012
    [2]何柞麻,王亦楠,风力发电是我国能源和电力可持续发展战略的最现实选择,上海电力,2005,(1):8~18
    [3] Basheer S,Joseph M.C. Renewable Energy Sources: Technology and Economics.IEEE1994
    [4] http://www.gwec.net/fileadmin/images/Publicatioiis/GWEC_annua_market_update_2010_2nd_edition_April_2011.pdf
    [5] Vladislav Akhmatov. Induction Generators for Wind Power. GE Wind turbinesin Anrenburg, Germany,2009
    [6]李俊峰等,中国风电发展报告2012,北京:中国环境科学出版社,2012.1~32
    [7]中国风能协会,2012年中国风电装机容量统计,中国,北京:2013
    [8] Chuang lin Fang. Practical Problems and coping strategies of wind Powerindustry in China. World Non-Grid-Connected Wind power and EnergyConference,2009,1~5
    [9]迟永宁,刘燕华,王伟胜等,风电接入对电力系统的影响,电网技术,2007(31)3:77~81
    [10] Fadaeinedjad,R., Moschopoulos,G., Moallem,M.. A New Wind Power PlantSimulation Method to Study Power Quality. Canadian Conference on ElectricalAnd Computer Engineering,2007,1433-1436
    [11]何世恩,姚旭,徐善飞,大规模风电接入对继电保护的影响与对策,电力系统保护与控制,2013,41(1):21~27
    [12]朱星阳,刘文霞,张建华,考虑大规模风电并网的电力系统随机潮流,中国电机工程学报,2013,33(7):77~85
    [13] Zamani,M.H., Foroushani,R.Z.. Introduction of a new index for evaluating theeffect of wind dynamics on the Conference and Exposition,2008,1~6
    [14]马幼捷,张继东,周雪松,王新志,风电场的稳定问题,可再生能源,2006,3:37~39
    [15] Linh,N.T.. Power quality investigation of grid connected wind turbines.4thIEEE Conference on Industrial Electronics and Applications,2009,2218~2222
    [16]韩洪,含STATCOM的风电场电压稳定性研究:[硕士学位论文],山东;山东大学,2009
    [17] Daad-Saoud Z,. Application of STATCOMs to Wind Farms. IEE Proceeding:Generation,Transmission and Distribution,1998,145(5):511~518
    [18] Sun Tao, Chen,Z Blaabjerg, F. Flicker Mitigation of Grid Connected WindTurbines Using STATCOM. Second international Conference on powerElectronics, Machines and Drives, Edinburgh, United kingdom,2004,1:175~180
    [19]范高锋,迟永宁,赵海翔等,用STATCOM提高风电场暂态电压稳定性,电工技术学报,2007,22(11):158~162
    [20]刘国辉,级联多电平STATCOM控制系统研究:[硕士学位论文],辽宁;沈阳工业大学,2012
    [21]南亚楠,级联多电平结构的D-STATCOM控制方法研究:[硕士学位论文],天津;天津大学,2011
    [22] H.F Wang, H.Li, H. Chen. Power system voltage control by multipleSTATCOMS based on learning humoral immune response. IEEE Proc Genet.Trans.Distrib,2002,149(4):416~426
    [23]王盛,李立学,郑益慧,基于多模型PI的STATCOM直接电压控制方法,电力自动化设备,2012,32(7):42-46
    [24]刘亮,邓名高,欧阳红林,D-STATCOM自适应检测算法的研究,电力系统保护与控制,2011,39(5):115~119
    [25]单翀皞,王奔,陈丹等,基于滑模控制理论的STATCOM无功补偿控制策略研究,电力系统保护与控制,2010,38(18):150~154
    [26]单翀皞,王奔,邓家泽等,采用模糊滑模变结构控制策略的静止同步补偿器控制方法,电网技术,2010,34(9):105~108
    [27]李正国,基于智能集成控制的同步静止补偿器理论和应用研究:[博士学位论文],湖南;中南大学,2004
    [28] Ali,E.S, Abd-Elazim,S.M. Bacteria foraging: A new technique for optimaldesign of FACTS controller to enhance power system stability. WSEASTransactions on Systems,2013,12(1):42~52
    [29] Arockia Edwin Xavier,S. Venkatesh,P. Saravanan,M. Design of artificialneuron controller for STATCOM in dSPACE environment. Applied SoftComputing Journal,2013,13(4):1750~1758
    [30] Bose S.R. New Sinusoidal Pulse width Modulated Inverter. Proc. IEE,1975:122~123
    [31] Bose S.R&Midoun A. Suboptimal Switching Strategies for Microprocessor-controlled PWM Inverter Driver. Proc.IEE,1985:132~135
    [32] Kazmierkowski M.P., Dzieniakowski M.A., Sulkowski W. Novel Space VectorBased Current Controllers for PWM-Inverters. IEEE Transactions on PowerElectronics,1991,6(1):158-166
    [33] Kheraluwala M.,Divan D.M. Delta Modulation Strategics For Resonant LinkInverters.IEEE Annual Power Electronics Specialists Conference, Blacksbourg,VA,USA,1987,271~278
    [34]蔡巍,何必,乔鸣忠等,换序法在矩阵变化器调制策略中的应用及其优化,2012,27(10):135~141
    [35]刘嘉,程鹏,SVPWM控制技术分析与研究,变频器世界,2012,5:67~71
    [36]汪志勇,二极管箝位多电平STATCOM电压平衡SVPWM算法研究:[硕士学位论文],四川;西南交通大学,2012
    [37] Buja G.S.&Indri G.B. Optimal Pulse width Modulation for Feeding ACMotors.IEEE Trans Ind Appl,1977,IA-13(1):38~44
    [38] Zach F.C. Efficiency Optimal Control for AC Drives with PWMInverters.IEEE Trans Ind Appl,1985. IA-21(4):987~1000
    [39] Wang Z, Chau K T, Liu C. Improvement of electromagnetic compatibility ofmotor drives using chaotic PWM. IEEE Transactions on Magnetics.2007,43(6):2012~2614
    [40]齐琛,陈希有,牟宪民,PWM逆变器混合扩频调制技术,中国电机工程学报,2012,32(24):38~44
    [41]刘洪臣,庄严,孙立山等,基于混沌扩频的双级矩阵变换器调制策略的研究,2012,6:9~13
    [42]刘燕妮,王玮,徐丽杰等,基于遗传算法的风电场无功补偿容量的计算,太阳能学报,2008,29(11):1444~1447
    [43]朱勇,杨京燕,高领军等,含异步风力发电机的配电网无功优化规划研究,电力系统保护与控制,2012,40(5):80~84
    [44] Yanhua Liu, Xu Zhang, Dongmei Zhao, et all. Research on the Wind FarmReactive Power Compensation Capacity and Control Target. Power and EnergyEngineering Conference,2011Asia-pacific.2011:1~5
    [45] Li Ling, Zeng Xiangjun, Zhang Ping. Wind Farms Reactive PowerOptimization Using Genetic/Tabu Hybrid Algorithm[C].2008InternationalConference on Intelligent Computation Technology and Automation.2008:1~5
    [46]江岳文,陈冲,温步瀛,随机模拟粒子群算法在风电场无功补偿中的应用,中国电机工程学报,2008,28(13):47~52
    [47]李玥,李群炬,刘宝柱,风电场无功补偿分析研究,华北电力技术,2012,8:16-20
    [48]朱雪凌,张洋,高昆,李强,杜习周,刘同.风电场无功补偿问题的研究.电力系统保护与控制,2009,37(16):68~73
    [49] Qian Feng,Tang Guangfu,He Zhiyuan. Optimal Location and Capability ofFACTS Devices in a Power System by Means of Sensitivity Analysis andEEAC. The third Intemational Conference on Eleetric Utility Deregulation andRestructuring and Power Technologies, Nanjing, China,2008:3423~3429
    [50] H. C. Leung, T. S. Chung. Optimal placement of FACTS controller in powersystem by a genetic-based algorithm. Proceedings of the InternationalConference on Power Electronics and Drive Systems, Kowloon, Hong Kong1999,2:833~836
    [51] S. Gerbex, R. Cherkaoui, and A. J. Germond. Optimal location of multi-typeFACTS devices in a power system by means of genetic algorithms. IEEETransaction on Power System,2001,16(3):537~544
    [52] H. Mori, Y. Goto. A parallel Tabu search based method for determiningoptimal allocation of FACTS in power systems. Proceedings of InternationalConference on Power System Technology,2000,2:1077~1082
    [53] S.Gerbex, R. Cherkaoui, A.J. Germond. Optimal location of FACTS devices toenhance power system security. IEEE Bologna PowerTech-ConferenceProceedings, Bologna, Italy,2003,3:61~68
    [54] J. G. Singh, S. N. Singh, and S. C. Srivastava. Enhancement of power systemsecurity through optimal placement of TCSC and UPFC. IEEE PowerEngineering Society General Meeting,Tampa,FL,United states,2007
    [55] N. K. Sharma, A. Ghosh and R. K. Varma. A novel placement strategy forFacts controllers. IEEE Transactions Power Delivery,2003,18(3):982~987
    [56]郎永强,张学广,徐殿国,等.双馈电机风电场无功功率分析及控制策略.中国电机工程学报.2007,27(9):77~82
    [57] Tapia A, Tapia G. Reactive power control of wind farms for voltage controlapplications. Renewable Energy,2004,29(3):377~392
    [58] Deeb N I, Shahidehpour S M. An efficient technique for reactive powerdispatch using a revised linear programming approach.Electric Power SystemResearch,1989,15(1):121~134
    [59]宋明曙,电力系统无功优化分析:[硕士学位论文],山东;山东大学,2008
    [60]熊玉辉,陈恳,基于线性规划的电力系统无功优化,南昌大学学报,2005,27(2):80~83
    [61] Wei H, Sasaki H, Yokoyama R. An application of interior point quadraticprogramming algorithm to power systems optimization problems. IEEE Transon Power System,1996,11(1):260~265
    [62] Aul’chenko,S.M. A variation-gradient method for optimization of the shape ofblade Cascades. Journal of Engineering Physics and Thermophysics,2007,80(2):292~297
    [63]熊观佐,应用海森矩阵法求无功功率的最优分配,武汉水利电力学院学报,1980,3(9):65~72
    [64]朱志斌,非线性优化约束变尺度法新进展,桂林电子科技大学学报,2010,30(5):523~527
    [65]史敬涛,带泊松跳跃的正向随机最优控制理论及其应用:[博士学位论文],山东;山东大学,2009
    [66] Rugthaichareoncheep Nattachote, Lantharthong Thong,Ratreepruk Awiruth,Ratchatha Jenwit. Application of Tabu search for placement and sizing ofdistriuted generation for loss redction. Advanced Material Research,2012,433-440,7190~7194
    [67] Cha Yong-jin, Raich Anne,Barroso Luciana,Agrawal Anil. Optimal placementof active control devices and sensors in frame structures using multi-objectivegenetic algorithms. Structural Control and Health Monitoring,2013,20(1):16~44
    [68] Ratnaweera A, Halgamuge S. Self-organizing hierarchical particle swarmoptimizer with time-varying acceleration coefficients. IEEE Trans onEvolutionary Computation,2004,8(3):240~255
    [69]关于近期风电大规模脱网情况的通报,国家电力调度通信中心,2011.5(107)
    [70]韩英铎,严干贵,姜齐荣,等.信息电力与FACTS及DFACTS技术,电力系统自动化,2000,24(19):1~7
    [71]刘森林,级联多电平变频器的控制策略及实现方法:[硕士学位论文],四川;西南交通大学,2007
    [72]李永东等,大容量多电平变换器—原理·控制·应用,北京:科学出版社,2005.1~127
    [73]彭红英,静止同步补偿器(STATCOM)建模与仿真研究:[硕士学位论文],北京;中国电力科学研究院,2012
    [74]杜明军,大容量链式STATCOM主电路及控制策略的研究:[硕士学位论文],北京;北京交通大学,2012
    [75]唐杰,配电网静止同步补偿器(DSTATCOM)的理论与技术研究:[硕士学位论文],湖南;湖南大学,2007
    [76]张国澎,级联H桥整流及其直流侧电容电压平衡控制的研究:[博士学位论文],北京;中国矿业大学,2012
    [77]郭高朋,许留伟,江加福,链式STATCOM直流侧电容电压平衡控制,电源技术,2012,36(1):104~107
    [78]陶兴华,李永东,宋义超,石磊,H桥级联型整流器直流电压平衡控制改进算法,高电压技术,2012,38(2):505~512
    [79]王志冰,于坤山,周孝信,H桥级联多电平变流器的直流母线电压平衡控制策略,中国电机工程学报,2012,32(6):56~63
    [80]林嘉扬,王轩,赵士硕等,大容量静止同步补偿器(STATCOM)的几项关键技术,华东电力,2012,40(6):924~928
    [81]赵波,郭剑波,周飞,链式STATCOM相间直流电压平衡控制策略,中国电机工程学报,2012,32(34):36~41
    [82]胡应宏,任佳佳,申科等,基于电压冗余状态的链式STATCOM直流侧电容电压平衡控制策略,电力自动化设备,2011,31(11):33~37
    [83]许湘莲,基于级联多电平逆变器的STATCOM及其控制策略研究:[博士学位论文],湖北;华中科技大学,2006
    [84]刘丽英,基于级联多电平逆变器的STATCOM及其控制策略研究:[博士学位论文],湖北;华中科技大学,2006
    [85]陈国呈,新型电力电子变换技术,北京:中国电力出版社,2004
    [86]韩京清,自抗扰控制器及其应用,控制与决策,1998,13(1):19~23
    [87]韩京清,一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85~88
    [88]韩京清,王伟,非线性跟踪一微分器,系统科学与数学,1994,14(2):177~183
    [89]黄一,张文革,自抗扰控制器的发展,控制理论与应用,2002,19(4):484~492
    [90]韩京清,从PID技术到“自抗扰控制”技术,控制工程,2002,9(3):13~18
    [91]韩京清,非线性状态误差反馈控制律—NLSEF,控制与决策,1995,10(3):221~225
    [92] Shen Zhao, Zhiqiang Gao. An active disturbance rejection based approach tovibration suppression in two-inertia systems. American Control Conference,2010,1520~1525
    [93] Goforth,F.J., Zhiqiang Gao. An Active Disturbance Rejection Control solutionfor hysteresis compensation. American Control Conference,2008,2202~2208
    [94] Zhiqiang Gao. Scaling and Bandwidth-Para-meterization Based ControllerTuning. Proceedings ofAmerican Control Conference,2003,4989~4996
    [95]汪晓风,王京,李润,立辊电液伺服系统的线性自抗扰控制,机床与液压,2010,38(20):94~97
    [96]黄浦,葛文奇,李友一,航空相机前向像移补偿的线性自抗扰控制,光学精密工程,2011,19(4):812~818
    [97]刘丽英,线性自抗扰控制策略在异步电机调速系统中的应用研究:[硕士学位论文],天津;天津大学,2010
    [98]王丽,刘会金,王陈,瞬时无功功率里路的研究综述,高电压技术,2006,32(2):98~100
    [99] Wu Jinglai, Zhang Yunqing, Chen Liping,et al. A Chebyshev interval methodfor nonlinear dynamic systems under uncertainty. Applied MathematicalModelling,2013,37(6):4578~4591
    [100]雷利华,马冠一,蔡晓静等,基于Chebyshev映射的混沌序列研究,计算机工程,2009,35(24):4~6
    [101]汤小民,混沌序列分析、数字化及FPGA电路实现:[硕士学位论文],云南;云南大学,2011
    [102]王丽杰,宫芳,杨翠娥,Chebyshev混沌序列性能研究,仪器仪表用户,2008,02(55):94~96
    [103]张涛,基于混沌的序列密码算法,计算机应用,2010,30(5):1221~1223
    [104]郭小丛,基于混沌的数字图像实时加密算法研究:[硕士学位论文],河南,河南科技大学,2012
    [105]郭锦娣,周雁舟,基于混合混沌序列的对称图像加密算法设计,第三届可信计算与信息安全学术会议论文集,河南:2008,1084~1087
    [106]张学清,梁军,风电功率时间序列混沌特性分析及预测模型研究,物理学报,2012,61(19):190703-1~12
    [107]曹光辉,胡凯,基于混沌序列加权抽样和排序变换的图像置乱,北京航空航天大学学报,2012,1(6):1~6
    [108]Rong,H.W, Meng,G.,Wang,X.D.,et al..Largest Lyapunov exponent for secongd-order linear systems under combined harmonic and radom parametricexcitations. Journal of Sound and Vibration,2005,283(3-5):1250~1256
    [109]Filizadeh, S., Gole, A.M.. Harmonic performance analysis of an OPWM-controlled STATCOM in network applications. IEEE Transactions on PowerDelivery,2005,20(0):1001~1008
    [110]Ma,Fengmin,Wu Zhengguo,Li Yumei. Analusis and design of the randomfrequency PWM inverters. Zhongguo Dianji Gongcheng Xuebao,2008,28,(15):67~71
    [111]崔巍,王建宽,江建中等,使用混沌调制方法实现交流电机电磁干扰抑制,上海大学学报(英文版),2007,11(5):502~505
    [112]Kirlin R L,Bech M M,Trzynadlowski AM.Analysis of power and powerspectral density in PWM inverters with randomized switchingfrequency[J].IEEE Trans.on Industry Electronics,2002,49(2):486~499
    [113]Liaw,C.M. Lin,Y.M,Wu,C,H.. Analysis,design,and implementation of a randomfrequency PWM inverter. IEEE Transaction on Power Electronics,2000,15(5):843~854
    [114]马丰民,吴正国,李玉梅等,随机频率PWM逆变器的分析设计,中国电机工程学报,2008,28(15):67~71
    [115]朱明秀,孔繁虹,许哲雄,随机开关频率PWM(RFPWM)逆变器的研究及仿真,自动化技术与应用,2008,27(6):50~53
    [116]黄弘扬,杨汾艳,徐政等,基于改进轨迹灵敏度指标的动态无功优化配制方法,2012,36(2):88~94
    [117]赵渊,董力,谢开贵,FACTS元件的可靠性成本/效益分析及其优化配置模型研究,电力系统保护与控制,2012,40(1):107~114
    [118]中华人民共和国国家经济贸易委员会,DL755-2001电力系统安全稳定导则,北京:中国电力出版社,2001
    [119]CIGRE TF38.02.10. Modeling of Voltage Collapse Including DynamicPhenomena Eleetra, No.147, APril,1993
    [120]IEEE Committee report,Voltage Stability of PowerSystems: ConeePts,Analytical Tools,and Industry Experrnce. IEEE/PES93TH0358-2-PWR,1990
    [121]IEEE/CIGRE Joint Task Force on StabilityTerms and Definitions.Definitionand Classification of Power Systerm Stability. IEEE Trasactions on PowerSysterm,2004,19(2):1387~1401
    [122]冯治鸿,周双喜,大规模电力系统电压失稳区的确定方法,中国电机工程学报,1997,17(3):152~156
    [123]AjjaraPu V,Christy C. The continuation Power fiow: a tool for steady statevoltage Stability analysis, IEEE Transactions on Power Systems,1992,7(1):416~423
    [124]Li Zengguo,Wang Rui, Xing Weirong. Voltage stability analysis based oncontinuation power flow and madal analysis. Electric Power AutomationEquipment,2009,29(9):81~84
    [125]钱峰,基于FACTS装置在电网中接入点、容量及类型选择方法研究:[博士学位论文],北京;中国电力科学研究院,2009
    [126]李林,基于连续潮流的电力系统电压稳定性研究:[硕士学位论文],四川;西南交通大学,2008
    [127]庞敏,考虑静止同步补偿器影响的电力系统电压稳定性研究:[硕士学位论文],广西;广西大学,2008
    [128]董晓明,连续潮流算法改进及工程应用:[硕士学位论文],山东;山东大学,2009
    [129]薛振宇,放大中,大型交直流互联电力系统双向迭代连续潮流算法,电网技术,2012,36(10):141~146
    [130]熊传平,张晓华,孟元景,考虑大规模风电接入的系统静态电压稳定性分析,2012,40(21):132~137
    [131]王红燕,蔡亮,祁中建,求取电力系统PV曲线的改进连续潮流算法,2011,7:28~31
    [132]Mori H., Yamada S., Continuation Power flow with the nonlinear Predictor ofthe Lagrange’s polynomial interpolation formula. Transmission andDistribution Conference and Exhibition2002: Asia Pacific, IEEE/PES,2:1133~1138
    [133]张丽娟,三种插值方法的应用与比较,赤峰学院学报,2010,26(3):1~3
    [134]张洪波,插值法应用的实例分析,华北科技学院学报,2010,7(3):71~73
    [135]KermedyJ, EberhartR.C. Particle swam optimization. Proceeding of IEEEinternational conference on neutral networks,Perth,Australia,1995,1942~1948
    [136]Hackwood S, Beni G. Self-organization of sensors for swarm intelligence.IEEE International conference on Robotics and Automation, Piscataway, NJ:IEEE Press,1992,1:819~829
    [137]Reynolds C W. Flocks, herds and schools: A distributed behavioral mode.Computer Graphics,1987,21(4):25~34
    [138]Bonabeau E, Dorigo M, Theraulaz G. Swarm Intelligence: From natural toartificial systems. Oxford University Press, New York,1999
    [139]Kennedy J, Eberhart R, Shi Y. Swarm intelligence. Morgan KaufmannPublishers, San Francisco,CA,2004
    [140]段海滨等,仿生智能计算,北京:科学出版社,2011,1~154
    [141]刘旭旺,全局优化理论集中算法的改进与研究,:[硕士学位论文],辽宁;辽宁工程技术大学,2009
    [142]邢文训,谢金星,现代优化计算方法,北京:清华大学出版社,2007,1~80
    [143]玄光南,程润伟著,于歆杰,周根贵译.遗传算法与工程优化.北京:清华大学出版社,2006,1~102
    [144]张长春,苏昕,易克初,粒子群算法和蚁群算法的结合及其在组合优化中的应用,2007,2:76~80
    [145]Yao X, Liu Y, Lin G M. Evolutionary programming made faster. IEEETransaction on Evolutionary Computation,1999,3(2):81~102
    [146]张勇德,黄莎白,一种改进的基于约束支配的多目标优化算法,计算机工程,2004,30(16):19~21
    [147]Shi Y H, Eberhart R. A modified particle swarm optimizer. EvolutionaryComputation Proceedings. The1998IEEE International Conference onComputational Intelligence, Anchorage, AK, USA,1998:69~73
    [148]Shi Y H, Eberhart R. Empirical study of particle swarm optimization.Proceeding of Congress on Evolutionary Computation, Washington, DC,1999,3:1945~1950
    [149]Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topologyon Particle SwarmPerformance. Proceedings of IEEE Congress onEvolutionary Computation (CEC1999),1999:1931~1938
    [150]Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particleswarm optimizer for global optimization of multimodal functions. IEEETransactions on Evolutionary Computation,2006,10(3):281~295

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700