用户名: 密码: 验证码:
识别氨基酸序列的aptamer蛋白配体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们设计了一种新的蛋白配体,这种配体能够识别蛋白质的氨基酸序列并捕获蛋白。这种方法的原理是能够识别三肽的DNA aptamer可以识别蛋白内部的相同序列。我们使用小鼠Cathepsin D蛋白来验证这个方法。根据发表的Cathepsin D蛋白的氨基酸序列选择四个三肽:Leu-Ala-Ser(LAS)、Asp-Gly-Ile(DGI)、Gly-Glu-Leu(GEL)和Lys-Ala-Ile(KAI)。通过指数富集的配体系统进化(Systematic Evolution of Ligands of Exponential enrichment,SELEX)技术筛选能够结合LAS、DGI、GEL和KAI这些三肽的DNA aptamer。用structure-switch signaling aptamer的方法进行检测,结果表明这种筛选得到的aptamer能够识别Cathepsin D蛋白中的相应序列,并且Cathepsin D蛋白可以被多种aptamer包被的磁珠捕获。这四个aptamer能够通过滚环DNA复制的方法检测到fM浓度的Cathepsin D蛋白。这是一种非常有潜力的蛋白芯片配体,可以应用到蛋白芯片技术中。
     筛选能够识别三肽的aptamer
     LAS、DGI、GEL和KAI三肽合成后分别偶联到HiTrap NHS活化柱上。起始单链DNA随机库为96个碱基短链核苷酸的混合物,其中含有60个随机插入序列。洗脱与三肽结合的单链DNA后进行PCR扩增,再进行单链PCR,得到的单链PCR产物进一步使用三肽亲和柱筛选,这样可以生成亚库。筛选过程重复了12次后,对最后得到的产物进行克隆和测序。选择GEL-aptmer、KAI-aptmer、DGI-aptamer和LAS-aptamer四个aptamer作为配体,以此来验证根据蛋白质氨基酸序列识别和捕获蛋白的技术。
     验证aptamer与蛋白之间的相互作用
     我们推测能够结合三肽的aptamer同样可以结合蛋白中所含有的相同序列。采用structure-switching signaling aptamer的方法来验证aptamer与蛋白之间的相互作用。在这个实验中,当蛋白和aptamer相互作用时会产生可以被检测到的荧光信号。结果表明加入Cathepsin D蛋白可以增加荧光信号而且随浓度升高荧光增强,但是加入的BSA即使在高浓度也不会生成荧光信号。这个结果表明与三肽相互作用的aptamer可以结合蛋白中所含有的相同序列,并且它们之间的相互作用具有特异性。
     Aptamer组合可以捕获Cathepsin D蛋白
     我们推测四个aptamer可以与Cathepsin D蛋白上的四个三肽序列结合,所以将对Cathepsin D蛋白有最高的亲和性。依此类推,三个aptamer将会比两个aptamer的亲和性高。在部分纯化的小鼠Cathepsin D蛋白中混入大量BSA蛋白和溶菌酶形成混合蛋白溶液,将生物素标记的aptamer结合到链霉素亲和素标记的磁珠上,这个蛋白溶液与磁珠相互作用,通过盐浓度梯度洗脱后用NaOH溶液洗脱并收集蛋白。实验结果表明四个aptamer组合比其它组合富集的蛋白多。随后,我们把表达重组Cathepsin D蛋白的大肠杆菌裂解液直接与磁珠相互作用,结果三个aptamer组合与四个aptamer组合在相同的洗脱条件下具有相近的蛋白捕获效率。
     利用基于滚环DNA复制的多个aptamer检测Cathepsin D蛋白
     根据proximity-dependent DNA连接的原理,所有四个aptamer结合Cathepsin D蛋白后能够被连接成环状单链DNA,并且可以使用滚环DNA复制的方法扩增。我们推测根据structure-switch原理设计两臂,使两臂分别与aptamer互补,可以降低背景连接反应。合成四个根据structure-switch原理设计的aptamer进行实验,结果表明Cathepsin D蛋白能够在fM水平促进这四个aptamer连接成环状单链DNA,这样就可以通过滚环DNA复制检测。对照组为只含有三个三肽的重组Cathepsin D蛋白,即使在nM水平也没有得到扩增。表明这个检测体系的背景非常低,并且对Cathepsin D蛋白具有较高的灵敏性和特异性。
We have designed and developed a technology that could capture proteins based on the amino acid sequences (CPAS). Mouse cathepsin D was used for the proof of principle experiment. Four tripeptides, LAS, DGI, GEL, and KAI, were selected based on the published sequence of mouse cathepsin D. DNA aptamers against the tripeptides were isolated using Systematic Evolution of Ligands of Exponential enrichment method. We have demonstrated that the aptamers targeted to sythesized tripepetide was able to recognize tripeptides in protein by structure-switch signaling method. Furthermore, cathepsin D could be captured by the magnetic beads which were coated with biotin-labeled aptamers. The aptamers have also been successfully used to detect cathepsin D protein at fM level using rolling circle amplification method. This technology is potential to be applied for protein array development.Isolation of DNA aptamers against tripeptides.The tripeptides were synthesized and coupled to HiTrap NHS-activated column. The starting DNA pool was a mixture of 96-mer single-stranded DNA (ssDNA) molecules that had randomized 60-nucleotide inserts. The ssDNA molecules that bound to the tripeptides were eluted and amplified by PCR. The PCR products were further selected using the tripeptide affinity columns for sub-library generation. The selection procedure was repeated twelve times and the final products were cloned and sequenced. Four aptamers, GEL-aptmer, KAI-aptmer, DGI-aptamer and LAS-aptamer, were used for proof of principle analysis of CPAS technology.Detection of aptamer-protein interaction.We postulated that the DNA aptamer targeting to tripeptide should be able to interact with proteins containing the tripeptide sequences. The structure-switching method was used to test the interaction. In this assay, the fluorescence signals can be detected when the aptamers interact with proteins. Our results demonstrated that addition of the protein resulted in the elevation of fluorescence signals in a dose response manner while the added BSA did not induce any fluorescence signal even at relatively high concentration. These results suggested that DNA aptamers targeting to tripcpetidcs could interact with the proteins containing the tripcptide sequences and the interactions between the aptamers and proteins were specific.
     Capture of the mouse Cathepsin D protein by combination of several aptamers.
     We postulated that the combination of four aptamers could interact with all four tripeptide sequences of Cathepsin D, and therefore had the highest affinity for the protein. Similarly, three aptamers should have higher affinity than two aptamers and so on. The partially purified recombinant mouse Cathepsin D protein in a solution containing excess amount of BSA and lysozyme was applied to the magnetic beads which was coated with streptividin and was able to bind biotin-labeled aptamers. The beads were washed with increasing concentrations of salt and finally the protein was eluted with NaOH solution. Our results showed that four aptamers could capture more Cathepsin D protein than three or less aptamers. Next, we directly applied recombinant E. coli iysis containing the mouse Cathepsin D protein to the beads. Three aptamers, LAS, KAI and GEL, could capture the protein as efficiently as four aptamers with the same stringency wash condition.
     Detection of Cathepsin D protein by RCA based proximity-dependent multiple aptamers ligation assay.
     Based on proximity-dependent DNA ligation principle, all four aptamers binding to Cathepsin D protein would be ligated to a circle and then can be amplified by rolling circle amplification. We postulated that structure-switch arms, two arms annealing to the aptamer itself, will decrease the background. Four aptamers with structure-switch arms were synthesized. The Cathepsin D protein could enhance the ligation at fM level and can be detected by rolling circle amplification. Recombinant Cathepsin D protein with 3 tripeptieds could not generate any signal even at nM level. The background ligation was very low and the assay was much more sensitive and specific for the Cathepsin D protein.
引文
1. Dieckman LJ, Hanly WC, Collart ER: Strategies for high-throughput gene cloning and expression. Genet Eng (N Y) 2006, 27: 179-190.
    2. Doyle SA: High-throughput cloning for proteomics research. Methods Mol Biol 2005, 310: 107-113.
    3. Betton JM: High throughput cloning and expression strategies for protein production. Biochimie 2004, 86(9-10): 601-605.
    4. Dieckman L, Gu M, Stols L, Donnelly MI, Collart FR: High throughput methods for gene cloning and expression. Protein Expr Purif 2002, 25(1): 1-7.
    5. Guerrera IC, Kieiner O: Application of mass spectrometry in proteomics. Biosci Rep 2005, 25(1-2): 71-93.
    6. Heck AJ, Krijgsveld J: Mass spectrometry-based quantitative proteomics. Expert Rev Proteomics 2004, 1(3): 317-326.
    7. Qian WJ, Camp DG, 2nd, Smith RD: High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry. Expert Rev Proteomics 2004, 1(1): 87-95.
    8. Lane CS: Mass spectrometry-based proteomies in the life sciences. Cell Mol Life Sci 2005, 62(7-8): 848-869.
    9. Pierce WM, Cai J: Applications of mass spectrometry in proteomics. Contrib Nephrol 2004, 141: 40-58.
    10. Smith RD: Trends in mass spectrometry instrumentation for proteomics. Trends Biotechnol 2002, 20(12 Suppl): S3-7.
    11. Li ZB, Flint PW, Boluyt MO: Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics. Electrophoresis 2005, 26(18): 3572-3585.
    12. Schauder S, Penna L, Ritton A, Manin C, Parker F, Renauld-Mongenie G: Proteomics analysis by two-dimensional differential gel electrophoresis reveals the lack of a broad response of Neisseria meningitidis to in vitro-produced AI-2. J Bacteriol 2005, 187(1): 392-395.
    13. Dowsey AW, Dunn MJ, Yang GZ: ProteomeGRID: towards a high-throughput proteomics pipeline through opportunistic cluster image computing for two-dimensional gel electrophoresis. Proteomics 2004, 4(12): 3800-3812.
    14. Fievet J, Dillmann C, Lagniel G, Davanture M, Negroni L, Labarre J, de Vienne D: Assessing factors for reliable quantitative proteomics based on two-dimensional gel electrophoresis. Proteomics 2004, 4(7): 1939-1949.
    15. Van den Bergh G, Arckens L: Fluorescent two-dimensional difference gel electrophoresis unveils the potential of gel-based proteomics. Curr Opin Biotechnol 2004, 15(1): 38-43.
    16. Bernard KR, Jonscher KR, Resing KA, Ahn NG: Methods in functional proteomics: two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients, in-gel digestion and identification of proteins by mass spectrometry. Methods Mol Biol 2004, 250: 263-282.
    17. Camacho-Carvajal MM, Wollscheid B, Aebersold R, Steimle V, Schamel WW: Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 2004, 3(2): 176-182.
    18. Klein E, Klein JB, Thongboonkerd V: Two-dimensional gel electrophoresis: a fundamental tool for expression proteomics studies. Contrib Nephrol 2004, 141: 25-39.
    19. Chang J, Van Remmen H, Cornell J, Richardson A, Ward WF: Comparative proteomics: characterization of a two-dimensional gel electrophoresis system to study the effect of aging on mitochondrial proteins. Mech Ageing Dev 2003, 124(1): 33-41.
    20. Rabilloud T: Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2002, 2(1): 3-10.
    21. Wheeler AR, Moon H, Bird CA, Loo RR, Kim CJ, Loo JA, Garrell RL: Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 2005, 77(2): 534-540.
    22. Zubritsky E: Microfluidics and signature poptides for proteomics. J Proteome Res 2004, 3(1): 19.
    23. Seong SY, Choi CY: Current status of protein chip development in terms of fabrication and application. Proteomics 2003, 3(11): 2176-2189.
    24. Zhu H, Snyder M: Protein chip technology. Curr Opin Chern Biol 2003, 7(1): 55-63.
    25. Zhou H, Roy S, Schulman H, Natan MJ: Solution and chip arrays in protein profiling. Trends Biotechnol 2001, 19(10 Suppl): S34-39.
    26. Scarlett CJ, Smith RC, Saxby A, Nielsen A, Samra JS, Wilson SR, Baxter RC: Proteomic classification of pancreatic adenocarcinoma tissue using protein chip technology. Gastroenterology 2006, 130(6): 1670-1678.
    27. Kim M, Park K, Jeong EJ, Shin YB, Chung BH: Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein. Anal Biochem 2006, 351(2): 298-304.
    28. Moscova M, Marsh DJ, Baxter RC: Protein chip discovery of secreted proteins regulated by the phosphatidylinositol 3-kinase pathway in ovarian cancer cell lines. Cancer Res 2006, 66(3): 1376-1383.
    29. Combaret V, Bergeron C, Brejon S, Iacono I, Perol D, Negrier S, Puisieux A: Protein chip array profiling analysis of sera from neuroblastoma patients. Cancer Lett 2005, 228(1-2): 91-96.
    30. Jung GY, Stephanopoulos G: A functional protein chip for pathway optimization and in vitro metabolic engineering. Science 2004, 304(5669): 428-431.
    31. Nilsson P, Paavilainen L, Larsson K, Odling J, Sundberg M, Andersson AC, Kampf C, Persson A, Al-Khalili Szigyarto C, Ottosson J et al: Towards a human proteome atlas: high-throughput generation of mono-specific antibodies for tissue profiling. Proteomics 2005, 5(17): 4327-4337.
    32. Liao W, Guo S, Zhao XS: Novel probes for protein chip applications. Front Biosci 2006, 11: 186-197.
    33. Dias RL, Fasan R, Moehle K, Renard A, Obrecht D, Robinson JA: Protein ligand design: from phage display to synthetic protein epitope mimetics in human antibody Fc-binding peptidomimetics. J Am Chem Soc 2006, 128(8): 2726-2732.
    34. Renberg B, Shiroyama I, Engfeldt T, Nygren PK, Karlstrom AE: Affibody protein capture microarrays: synthesis and evaluation of random and directed immobilization of affibody molecules. Anal Biochem 2005, 341(2): 334-343.
    35. Tomizaki KY, Usui K, Mihara H: Protein-detecting microarrays: current accomplishments and requirements. Chembiochem 2005, 6(5): 782-799.
    36. Ella G, Silacci M, Scheurer S, Scheuermann J, Neri D: Affinity-capture reagents for protein arrays. Trends Biotechnol 2002, 20(12 Suppl): S19-22.
    37. Eker F, Cao X, Nafie L, Schweitzer-Stenner R: Tripeptides adopt stable structures in water. A combined polarized visible Raman, FTIR, and VCD spectroscopy study. J Am Chem Soc 2002, 124(48): 14330-14341.
    38. Eker F, Griebenow K, Schweitzer-Stenner R: Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy. J Am Chem Soc 2003, 125(27): 8178-8185.
    39. Huizenga DE, Szostak JW: A DNA aptamer that binds adenosine and ATP. Biochemistry 1995, 34(2): 656-665.
    40. Ye X, Gorin A, Frederick R, Hu W, Majumdar A, Xu W, McLendon G, Eilington A, Patel DJ: RNA architecture dictates the conformations of a bound peptide. Chem Biol 1999, 6(9): 657-669.
    41. Katahira M, Kobayashi S, Matsugami A, Ouhashi K, Uesugi S, Yamamoto R, Taira K, Nishikawa S, Kumar P: Structural study of an RNA aptamer for a Tat protein complexed with ligands. Nucleic Acids Symp Ser 1999(42): 269-270.
    42. Robertson DL, Joyce GF: Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344(6265): 467-468.
    43. Ellington AD, Szostak JW: In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346(6287): 818-822.
    44. Tuerk C, Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249(4968): 505-510.
    45. Sun S: Technology evaluation: SELEX, Gilead Sciences Inc. Curr Opin Mol Ther 2000, 2(1): 100-105.
    46. Mann D, Reinemann C, Steltenburg R, Strehlitz B: In vitro selection of DNA aptamers binding ethanolamine. Biochem Biophys Res Commun 2005, 338(4): 1928-1934.
    47. Mannironi C, Di Nardo A, Fruscoloni P, Tocchini-Valentini GP: In vitro selection of dopamine RNA ligands. Biochemistry 1997, 36(32): 9726-9734.
    48. Berens C, Thain A, Schroeder R: A tetracycline-binding RNA aptamer. Bioorg Med Chem 2001, 9(10): 2549-2556.
    49. Flinders J, DeFina SC, Brackett DM, Baugh C, Wilson C, Dieckmann T: Recognition of planar and nonplanar ligands in the malachite green-RNA aptamer complex. Chembiochem 2004, 5(1): 62-72.
    50. Fukusho S, Furusawa H, Okahata Y: In vitro selection and analysis of RNA aptamer recognize arginine-rich motif(ARM) model peptide on a QCM. Nucleic Acids Symp Ser 2000(44): 187-188.
    51. Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S: Characterization and Application of a Novel RNA Aptamer against the Mouse Prion Protein. J Biochem (Tokyo) 2006, 139(3): 383-390.
    52. Li JJ, Fang X, Tan W: Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 2002, 292(1): 31-40.
    53. Yamamoto R, Baba T, Kumar PK: Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 2000, 5(5): 389-396.
    54. Lebruska LL, Maher LJ, 3rd: Selection and characterization of an RNA decoy for transcription factor NF-kappo B. Biochemistry 1999, 38(10): 3168-3174.
    55. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L: A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligunds by exponential enrichment. Proc Natl Acad Sci USA 2003, 100(26): 15416-15421.
    56. Hermann T, Patel DJ: Adaptive recognition by nucleic acid aptamers. Science 2000, 287(5454): 820-825.
    57. Suess B, Fink B, Berens C, Stentz R, Hillen W: A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 2004, 32(4): 1610-1614.
    58. Hanson S, Berthelot K, Fink B, McCarthy JE, Suess B: Tetracycline-aptamer-mediated translational regulation in yeast. Mal Microbial 2003, 49(6): 1627-1637.
    59. Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, Borkowski S, Hilger CS, Cook G, Warren S et al: Tumor targeting by an aptamer. J Nucl Med 2006, 47(4): 668-678.
    60. Ulrich H: RNA aptamers: from basic science towards therapy. Handb Exp Pharmacol 2006(173): 305-326.
    61. Joshi PJ, Fisher TS, Prasad VR: Anti-HIV inhibitors based on nucleic acids: emergence of aptamers as potent antivirals. Curr Drug Targets Infect Disord 2003, 3(4): 383-400.
    62. Kim DS, Gusti V, Pillai SG, Gaur RK: An artificial riboswitch for controlling pre-mRNA splicing. Rna 2005, 11(11): 1667-1677.
    63. Stadtherr K, Wolf H, Lindner P: An aptamer-based protein biochip. Anal Chum 2005, 77(11): 3437-3443.
    64. Murphy MB, Fuller ST, Richardson PM, Doyle SA: An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. Nucleic Acids Res 2003, 31(18): e110.
    65. Ellington AD, Szostak JW: Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 1992, 355(6363): 850-852.
    66. Ylera F, Lurz R, Erdmann VA, Furste JP: Selection of RNA aptamers to the Alzheimer's disease amyloid poptide. Biochem Biophys Res Commun 2002, 290(5): 1583-1588.
    67. Drolet DW, Jenison RD, Smith DE, Pratt D, Hicke BJ: A high throughput platform for systematic evolution of ligands by exponential enrichment (SELEX). Comb Chum High Throughput Screen 1999, 2(5): 271-278.
    68. Zhang H, Hamasaki A, Toshiro E, Aoyama Y, Ito Y: Automated in vitro selection to obtain functional oligonucleotides. Nucleic Acids Symp Ser 2000(44): 219-220.
    69. Eulberg D, Buchner K, Maasch C, Klussmann S: Development of an automated in vitro selection protecoi to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res 2005, 33(4): e45.
    70. Williamson JR: G-quartet structures in telomerie DNA. Annu Rev Biophys Biomol Struct 1994, 23: 703-730.
    71. Dempsey LA, Sun H, Hanakahi LA, Maizels N: G4 DNA binding by LRI and its subunits, nucleolin and hnRNP D, A role for G-G pairing in immunoglobulin switch recombination. J Biol Chem 1999, 274(2): 1066-1071.
    72. Kettani A, Kumar RA, Patel DJ: Solution structure of a DNA quadruplex containing the fragile Ⅹ syndrome triplet repeat. J Mol Biol 1995, 254(4): 638-656.
    73. Simonsson T, Pecinka P, Kubista M: DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 1998, 26(5): 1167-1172.
    74. Hanakahi LA, Sun H, Maizels N: High affinity interactions of nucleolin with G-G-paired rDNA. J Biol Chem 1999, 274(22): 15908-15912.
    75. Catasti P, Chen X, Moyzis RK, Bradbury EM, Gupta G: Structure-function correlations of the insulin-linked polymorphic region. J Mol Biol 1996, 264(3): 534-545.
    76. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 2002, 99(18): 11593-11598.
    77. Shafer RH, Smirnov I: Biological aspects of DNA/RNA quadruplexes. Biopolymers 2000, 56(3): 209-227.
    78. Blackburn EH: Telomeres: no end in sight. Cell 1994, 77(5): 621-623.
    79. Sen D, Gilbert W: Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 1988, 334(6180): 364-366.
    80. Kilpatrick MW, Torri A, Kang DS, Engler JA, Wells RD: Unusual DNA structures in the adenovirus genome. J Biol Chem 1986, 261(24): 11350-11354.
    81. Fry M, Loeb LA: The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc Natl Acad Sci U S A 1994, 91(11): 4950-4954.
    82. Perry PJ, Jenkins TC: Recent advances in the development of telomerase inhibitors for the treatment of cancer. Expert Opin Investig Drugs 1999, 8(12): 1981-2008.
    83. Shi DF, Wheelhouse RT, Sun D, Hurley LH: Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J Med Chem 2001, 44(26): 4509-4523.
    84. White LK, Wright WE, Shay JW: Telomerase inhibitors. Trends Biotechnol 2001, 19(3): 114-120.
    85. Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF et al: Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA 2001, 98(6): 3062-3067.
    86. Read M, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH, Reszka AP, Wilson WD, Kelland LR, Neidle S: Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci USA 2001, 98(9): 4844-4849.
    87. Burgess TL, Fisher EF, Ross SL, Bready JV, Qian YX, Bayewitch LA, Cohen AM, Herrera CJ, Hu SS, Kramer TB et al: The antiproliferative activity of c-myb and c-myc antisense oligonucleotides in smooth muscle cells is caused by a nonantisense mechanism. Proc Natl Acad Sci USA 1995, 92(9): 4051-4055.
    88. Anselmet A, Mayat E, Wietek S, Layer PG, Payrastre B, Massoulie J: Non-antisense cellular responses to oligonucleotides. FEBS Lett 2002, 510(3): 175-180.
    89. Benimetskaya L, Berton M, Kolbanovsky A, Benimetsky S, Stein CA: Formation of a G-tetrad and higher order structures correlates with biological activity of the RelA (NF-kappaB p65) 'antisense' oligodeoxynucleotide. Nucleic Acids Res 1997, 25(13): 2648-2656.
    90. Saijo Y, Uchiyama B, Abe T, Satoh K, Nukiwa T: Contiguous four-guanosine sequence in c-myc antisense phosphorothioate oligonucleotides inhibits cell growth on human lung cancer cells: possible involvement of cell adhesion inhibition. Jpn J Cancer Pes 1997, 88(1): 26-33.
    91. Bates PJ, Kahlon JB, Thomas SD, Trent JO, Miller DM: Antiproliferative activity of G-rich oligonucleotides corrclates with protein binding. J Biol Chem 1999, 274(37): 26369-26377.
    92. Giraldo R, Suzuki M, Chapman L, Rhodes D: Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Proc Nati Acad Sci USA 1994, 91(16): 7658-7662.
    93. Fang G, Cech TR: Characterization of a G-quartet formation reaction promoted by the beta-subunit of the Oxytricha telomere-binding protein. Biochemistry 1993, 32(43): 11646-11657.
    94. Fang G, Cech TR: The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 1993, 74(5): 875-885.
    95. Cherepanov P, Este JA, Rando RF, Ojwang JO, Reekmans G, Steinfeld R, David G, De Clercq E, Debyser Z: Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1. Mol Pharmacol 1997, 52(5): 771-780.
    96. Mazumder A, Neamati N, Ojwang JO, Sunder S, Rando RF, Pommier Y: Inhibition of the human immunodeficiency virus type 1 integrase by gnanosine quartet structures. Biochemistry 1996, 35(43): 13762-13771.
    97. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992, 355(6360): 564-566.
    98. Dapic V, Abdomerovic V, Marrington R, Peberdy J, Rodger A, Trent JO, Bates PJ: Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. Nucleic Acids Res 2003, 31(8): 2097-2107.
    99. Keniry MA: Quadruplex structures in nucleic acids. Biopolymers 2000, 56(3): 123-146.
    100. Baneyx F, Mujacic M: Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 2004, 22(11): 1399-1408.
    101. Shinnick TM, Sutcliffe JG, Green N, Lerner RA: Peptide-elicited protein-reactive antibodies in molecular biology and medicine. J Invest Dermatol 1984, 83(1 Suppl): 112s-115s.
    102. Lerner RA: Antibodies of predetermined specificity in biology and medicine. Adv Immunol 1984, 36: 1-44.
    103. Nutiu R, Li Y: Structure-switching signaling aptamers. J Am Chem Soc 2003, 125(16): 4771-4778.
    104. Deisingh AK: Aptamer-based biosensors: biomedical applications. Handb Exp Pharmacol 2006(173): 341-357.
    105. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G: Quantum-dot/aptamer-based uitrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 2006, 128(7): 2228-2229.
    106. Bang GS, Cho S, Kim BG: A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 2005, 21(6): 863-870.
    107. Nutiu R, Li Y: Aptamers with fluorescence-signaling properties. Methods 2005, 37(1): 16-25.
    108. Collett JR, Cho EJ, Ellington AD: Production and processing of aptamer microarrays. Methods 2005, 37(1): 4-15.
    109. Tombelli S, Minunni M, Luzi E, Mascini M: Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 2005, 67(2): 135-141.
    110. Tombelli S, Minunni M, Mascini M: Analytical applications of aptamers. Biosens Bioelectron 2005, 20(12): 2424-2434.
    111. Ikebukuro K, Kiyohara C, Sode K: Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 2005, 20(10): 2168-2172.
    112. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD: Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 2004, 76(14): 4066-4075.
    113. Savran CA, Knudsen SM, Eliington AD, Manalis SR: Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 2004, 76(11): 3194-3198.
    114. Nutiu R, Li Y: Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 2004, 10(8): 1868-1876.
    115. McCauley TG, Hamaguchi N, Stanton M: Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 2003, 319(2): 244-250.
    116. Liss M, Petersen B, Wolf H, Prohaska E: An aptamer-based quartz crystal protein biosensor. Anal Chem 2002, 74(17): 4488-4495.
    117. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP: A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 2000, 15(11-12): 549-578.
    118. Potyraiio RA, Conrad RC, Ellington AD, Hieftje GM: Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 1998, 70(16): 3419-3425.
    119. Radi AE, Acero Sanchez JL, Baldrich E, O'Sullivan CK: Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 2006, 128(1): 117-124.
    120. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ: A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 2005, 127(51): 17990-17991.
    121. Ho HA, Leclerc M: Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 2004, 126(5): 1384-1387.
    122. Fang X, Sen A, Vicens M, Tan W: Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. Chembiochem 2003, 4(9): 829-834.
    123. Jiang Y, Fang X, Bai C: Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 2004, 76(17): 5230-5235.
    124. Gatto GJ, Jr., Berg JM: Nonrandom tripeptide sequence distributions at protein carboxyl termini. Genome Res 2003, 13(4): 617-623.
    125. Jenison RD, Gill SC, Pardi A, Polisky B: High-resolution molecular discrimination by RNA. Science 1994, 263(5152): 1425-1429.
    126. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M: RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996, 24(6): 1029-1036.
    127. Wang J, Cao Z, Jiang Y, Zhou C, Fang X, Tan W: Molecular signaling aptamers for real-time fluorescence analysis of protein. IUBMB Life 2005, 57(3): 123-128.
    128. Nutiu R, Li Y: In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed Engl 2005, 44(7): 1061-1065.
    129. Gabrielsen OS, Huet J: Magnetic DNA affinity purification of yeast transcription factor. Methods Enzymol 1993, 218: 508-525.
    130. Gabrielsen OS, Hornes E, Korsnes L, Ruet A, Oyen TB: Magnetic DNA affinity purification of yeast transcription factor tau-a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res 1989, 17(15): 6253-6267.
    131. Safarik I, Safarikova M: Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2004, 2(1): 7.
    132. Blank M, Weinschenk T, Priemer M, Schluesener H: Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen, J Biol Chem 2001, 276(19): 16464-16468.
    133. Qi X, Bakht S, Devos KM, Gale MD, Osbourn A: L-RCA (ligntion-rolling circle amplification): a general method for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res 2001, 29(22): E116.
    134. Nilsson M, Dahl F, Larsson C, Gullberg M, Stenberg J: Analyzing genes using closing and replicating circles. Trends Biotechnol 2006, 24(2): 83-88.
    135. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U: Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 2002, 20(5): 473-477.
    136. Rosler A, Bailey L, Jones S, Briggs J, Cuss S, Horsey I, Kenrick M, Kingsmore S, Kent L, Pickering J et al: Rolling circle amplification for scoring single nucleotide polymorphisms. Nucleosides Nucleotides Nucleic Acids 2001, 20(4-7): 893-894.
    137. Faruqi AF, Hosono S, Driscoll MD, Dean FB, Alsmadi O, Bandaru R, Kumar G, Grimwade B, Zong Q, Sun Z et al: High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification. BMC Genomics 2001, 2(1): 4.
    138. Thomas DC, Nardone GA, Randall SK: Amplification of padlock probes for DNA diagnostics by cascade rolling circle amplification or the polymerase chain reaction. Arch Pathol Lab Med 1999, 123(12): 1170-1176.
    139. Wang B, Potter SJ, Lin Y, Cunningham AL, Dwyer DE, Su Y, Ma X, Hou Y, Saksena NK: Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification. J Clin Microbiol 2005, 43(5): 2339-2344.
    140. Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M: Circle-to-circle amplification for precise and sensitive DNA analysis.Proc Natl Acad Sci USA 2004, 101(13): 4548-4553.
    141. Dean FB, Nelson JR, Giesler TL, Lasken RS: Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multipiy-primed rolling circle amplification. Genome Res 2001, 11(6): 1095-1099.
    142. Phelan ML, Nock S: Generation of bioreagents for protein chips. Proteomics 2003, 3(11): 2123-2134.
    143. Winter G. Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol 1994, 12: 433-455.
    144. Clayton R, Cooke ID, Partridge LJ, Moore HD: A combinatorial phage display library for the generation of specific Fab fragments recognizing human spermatozoa and inhibiting fertilizing capacity in vitro. Biol Reprod 1998, 59(5): 1180-1186.
    145. Viti F, Nilsson F, Demartis S, Huber A, Neri D: Design and use of phage display libraries for the selection of antibodies and enzymes. Methods Enzymol 2000, 326: 480-505.
    146. Tomlinson IM, Holt LJ: Protein profiling comes of age. Genome Biol 2001, 2(2): REVIEWS1004.
    147. Weng S, Gu K, Hammond PW, Lohse P, Rise C, Wagner RW, Wright MC, Kuimelis RG: Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. Proteomics 2002, 2(1): 48-57.
    148. Nord K, Gunneriusson E, Ringdahl J, Stahl S, Uhlen M, Nygren PA: Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1907, 15(8): 772-777.
    149. Skerra A: 'Anticalins': a new class of engineered ligand-binding proteins with antibody-like properties. J Biotechnol 2001, 74(4): 257-275.
    150. Petach H, Gold L: Dimeusionality is the issue: use of photoaptamers in protein microarrays. Curr Opin Biotechnol 2002, 13(4): 309-314.
    151. Golden MC, Collins BD, Willis MC, Koch TH: Diagnostic potential of PhotoSELEX-evolved ssDNA aptamers. J Biotechnol 2000, 81(2-3): 167-178.
    152. Bowser MT: SELEX: just another separation? Analyst 2005, 130(2): 128-130.
    153. Bock C, Coleman M, Collins B, Davis J, Foulds G, Gold L, Greef C, Heil J, Heilig JS, Hicke B et al: Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics 2004, 4(3): 609-618.
    154. Stoltenburg R, Reinemann C, Strehlitz B: FluMag-SELEX as an advantageous method for DNA aptamer selection. Anal Bioanal Chem 2005, 383(1): 83-91.
    155. Mosing RK, Mendonsa SD, Bowser MT: Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 2005, 77(19): 6107-6112.
    156. Berezovski M, Musheev M, Drabovich A, Krylov SN: Non-SELEX selection of aptamers. J Am Chem Soc 2006, 128(5): 1410-1411.
    157. Eulberg D, Klussmann S: Spiegelmers: biostable aptamers. Chembiochem 2003, 4(10): 979-983.
    158. Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP: Mirror-image RNA that binds D-adenosine. Nat Biotechnol 1996, 14(9): 1112-1115.
    159. Nolte A, Klussmann S, Bald R, Erdmann VA, Furste JP: Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 1996, 14(9): 1116-1119.
    160. Williams KP, Liu XH, Schumacher TN, Lin HY, Ausiello DA, Kim PS, Bartel DP: Bioactive and nuclease-resistant L-DNA ligand of vasopressin. Proc Natl Acad Sci USA 1997, 94(21): 11285-11290.
    161. Di Giusto DA, Wlassoff WA, Gooding JJ, Messerle BA, King GC: Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res 2005, 33(6): e64.
    162. Gullberg M, Gustafsdottir SM, Schallmeiner E, Jarvius J, Bjarnegard M, Betsholtz C, Landegren U, Fredriksson S: Cytoldne detection by antibody-based proximity ligation. Proc Natl Acad Sci USA 2004, 101(22): 8420-8424.
    163. Gustafsdottir SM, Schallmeiner E, Fredriksson S, Gullberg M, Soderberg O, Jarvius M, Jarvius J, Howell M, Landegren U: Proximity ligation assays for sensitive and specific protein analyses. Anal Biochem 2005, 345(1): 2-9.
    164. Smolina IV, Demidov VV, Cantor CR, Broude NE: Real-time monitoring of branched rolling-circle DNA amplification with peptide nucleic acid beacon. Anal Biochem 2004, 335(2): 326-329.
    165. Nallur G, Luo C, Fang L, Cooley S, Dave V, Lambert J, Kukanskis K, Kingsmore S, Lasken R, Schweitzer B: Signal amplification by rolling circle amplification on DNA microarrays. Nucleic Acids Res 2001, 29(23): E118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700