用户名: 密码: 验证码:
等离子体中的原子与光子以及电子相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子体中光辐射吸收、电子的输运等基本物理过程都涉及原子与光子以及原子和电子之间的相互作用。本文使用密耦合的R-矩阵理论研究了原子与光子以及原子与慢电子的相互作用,包括慢电子被原子散射截面以及光电离和光分解过程的计算。对于低Z元素,非相对论的R-矩阵方法就可以给出与实验符合很好的结果,但是对于高Z元素,相对论效应在阈值附近对共振结构的影响很大,此时电子散射以及光电离或光分解的研究必须考虑相对论效应。
     本文首先使用非相对论的R-矩阵方法研究了氮原子的光电离过程。计算中包含了电子价实关联,得到了与实验符合较好的结果,并细致分析了阈值附近的2s2p3 5So np?4P几个里德堡自电离态共振结构。对于高Z元素,使用全相对论R-矩阵方法研究了人们一直以来很关心的碱土金属钡负离子的光分解截面和电子与钡原子碰撞散射截面以及卤素碘负离子的光分解截面和电子与碘原子碰撞散射截面。计算得到Ba—6s26p 2P3/2和Ba—6s26p 2P1/2的亲合能的相对论分裂结果为57 meV,与实验结果的55 meV十分接近。结果表明,考虑了相对论效应以后,钡负离子的光分解截面在阈值附近共振结构有明显的相对论分裂,而这是非相对论方法所无法给出的结果。文中同时给出了温度对光分解总截面的影响,这对理论和实验之间的定量比较十分重要。在电子与钡原子的碰撞研究中发现,阈值附近的共振结构同样有着明显的精细结构分裂。在入射电子能量高于1.5 eV以后,相对论R-矩阵结果和非相对论R-矩阵结果相差不大,与实验结果却相差一倍左右,希望能有更精确的实验结果或者理论计算能够澄清其中的差别。对于碘负离子的光分解过程,考虑了相对论效应以及电子价实关联后,光分解截面在阈值附近与实验结果吻合的很好,但是在5 eV以后,本文计算结果与前人计算结果都比实验结果要低。本文推测实验中所谓由碘负离子自电离态而导致的结构可能源自于实验中CsI蒸汽中其他元素带来的某些物理过程。慢电子与碘原子的碰撞散射截面给出了电子与重惰性气体以及碱土金属碰撞相类似的结构。
     当光子与相邻近的两个原子相互作用时,出射的电离电子可能会发生类似于杨氏双缝干涉实验中的干涉效应。本文以相邻一定距离的两个氮原子为例,以R-矩阵方法计算得到的氮原子的光电离截面为基础,研究了相邻原子间外壳层电子光电离过程中的干涉效应。研究发现,当两个原子距离与氮分子间距类似时,由于原子外壳层电子参与成键,两个单中心的干涉叠加在外壳层电子光电离过程中并不适用。但是当两个原子间距变大,原子间不再成键而又不能被当作两个独立的原子时,双中心干涉效应应该对总截面有所影响。结果表明,当出射电子动能较小时,由于干涉效应,总截面由于干涉效应,振荡振幅较大,约为两个独立氮原子光电离截面之和的两倍。当出射电子动能越来越大时,干涉截面振荡振幅越来越小,直至消失,最后总截面与两倍单个氮原子截面大小相同,干涉效应完全消失。当两个原子间的间距越来越大时,由于干涉而引起的振荡振幅也会越来越小,直到干涉效应消失。
     在高温稠密等离子体中,粒子间的距离较近,这时近邻粒子间的光电离过程中就有可能发生干涉效应。在光电离吸收(束缚-自由)过程占主导地位的等离子体中,这种干涉效应就会对等离子体的辐射不透明度产生影响。针对50 eV四种不同密度的铝等离子体,使用改进的平均原子模型计算了考虑了光电离过程中的干涉效应后的等离子体辐射不透明度。应用Monte Carlo方法模拟不同条件下的等离子体环境,得到等离子体中的两个粒子间距的最近邻分布。由这最近邻分布应用相邻粒子光电离截面的干涉公式,计算了最终的辐射不透明度。研究发现,在同一温度下当等离子体密度较小时,干涉效应对等离子体辐射不透明度影响几乎可以忽略不计;当等离子体密度增大时,干涉效应对等离子体辐射不透明度影响增加。而对等离子体辐射不透明度的影响取决于由粒子间距和出射电子动量一同决定的干涉因子是相消还是相长的。
The interactions between atoms and photon or electron are involved in some basic physics processes in plasma, such as photon radiative absorption, electronic transport and so on. By using the close-coupling R-matrix method, the interactions between atom and photon also atom and slow electron are studied, including the electron scattering cross sections and the photodetachment (or photoionization) cross sections. For low-Z elements, the non-relativistic R-matrix method can give fairly good prediction compared with experimental result. For high-Z elements, however, the relativistic effects influence the resonance structure near threshold very much. For more accurate theoretical calculation on electron scattering and photodetachment (or photoionization) cross section, the relativistic effects much be considered.
     The photoionization cross sections of nitrogen atom are studied by using the non-relativistic R-matrix method. The core-valence electron correlations are included in the calculation and fairly good photoionization cross sections are obtained compared with experimental results. One of the Rydberg 2s2p3? 5So ? np? 4P autoionization resonance states,?2s2p3? 5So ?3p?4P,?is?compared?with?the?experimental?result?and?discussed?in?detail.?For?high‐Z?elements,?the?photodetachment?cross?sections?of?negative?barium?ion?‐?which?is?focused?widely?because?of?the?stable?negative?ion?formed?by?a?closed?shell?obtaining?an?extra?electron,?and?negative?iodine?ion,?are?studied? by? using? the? fully? relativistic? R‐matrix? method.? At? the? same? time,? the?electron?scattering?cross?sections?from?barium?and?iodine?atom?are?given?in?the?same?theoretical?scheme.?For?the?photodetachment?process?of?negative?barium?ion,?the?spin‐orbital?splitting?of?the?electron?affinity?of?Ba—6s26p 2P3/2 and Ba—6s26p 2P1/2 is 57 meV, very close to the experimental result of 55 meV. The results show that, after considering the relativistic effects, the photodetachment cross sections of Ba- near threshold predict an obvious spin-orbital splitting of the resonance structure, which can’t be obtained by the non-relativistic method. The total photodetachment cross sections dependent on temperature, which is important for a quantitative comparison between theory and experiment, are also given in the present thesis. In the study on the electron scattering from barium atom, the resonance structure near threshold also shows apparent relativistic splitting. For collision energies above 1.5 eV, both the present fully relativistic R-matrix and the former non-relativistic R-matrix results are almost twice of the experimental results. More precise experimental results or theoretical calculation are required to clarify the discrepancy between experiment and theory. As for the photodetachment process of I-, after considering the relativistic effects and electron core-valence correlation, the calculated photodetachment cross sections near threshold agree with the experimental results very well. But after the photon energies of 5 eV, both the present fully relativistic R-matrix results and former other theoretical results are lower than the experimental results. We suggest that the proposed autoionization resonance structure near 5.5 eV in the experimental results might come from other physics process in the CsI gas used in the experiment. The electron scattering cross sections from iodine atom give structures similar to that from heavy rare gas and heavy alkaline-earth metal elements.
     When the photon interacts with two atoms close to each other, the interference effects might occur to the outgoing electron, which is similar to the Young’s two-slit interference experiment. Based on the calculated valence photoionization cross section of atomic nitrogen, the interference effects are studied between two neighboring nitrogen atoms. It is found that when the distance between the two atoms is close to that of the nitrogen molecule, leading the valence electrons of the atomic nitrogens forming a bonding, the interference effects from two centers can’t be used to explain the photoionization cross section of the nitrogen molecule. But when the distance of the two atoms gets bigger, the interference effects should have influence on the total photoionization cross section of these two atoms. Because at that time, the valence electrons no longer form a bonding while these two atoms can’t be treated as two independent atoms. The results show that when the energy of the outgoing electron is relatively small, because of the interference effects, the oscillate amplitude is big and the total cross sections of the two atoms are almost twice of the sum of that of the two independent nitrogen atoms. As the increasing of the energies of the outgoing electron, the oscillate amplitude of totals cross section caused by interference effects decreases and disappears at last. The total cross sections then are the same as twice of that of single nitrogen atom. When the distance between two nitrogen atoms gets bigger, the oscillate amplitude of totals cross section caused by interference effects decreases and disappears at last, too.
     In high and dense plasma, the distance of two particles usually makes them shouldn’t be simply treated as two independent particles. The interference effects will occur during the photoionization process. When the radiative opacityof the plasma is dominated by bound-free photon absorption, the interference effects may influence the opacity of plasma. Taking the aluminum plasma with temperature of 50 eV and four different densities as example, the opacity of plasma is calculated considering interference effects by using a modified average-atom (AA) model. The distance distribution of two ions in plasma is simulated by Monte Carlo method. Based on the distance distribution obtained by Monte Carlo simulation, the opacity of the plasma is obtained by applying the interference formula for the two neighboring atoms photoionization cross section. With the same temperature, the results show that when the densities are relatively low, the interference effects have almost no influence on the radiative opacity; while the densities are getting higher, the influence is increasing. Whether the influence on the radiative opacity of plasma is constructive or deconstructive interference depends on the interference factor, which is decided by the distance between two ions and the momentum of outgoing electron together.
引文
[1] Kruer W L, The Physics of Laser Plasma Interaction, 1987
    [2]袁建奎, Study on Plasma Opacity.中国工程物理研究院博士论文, 1996
    [3]吴泽清, Non-Local Theermodynamic Equilibrium Effect on Opacity.中国工程物理研究院博士论文, 2000
    [4]曾交龙.使用细致谱项模型研究铝等离子体的辐射不透明度.国防科学技术大学博士论文, 2001
    [5] Nicolaides C A, Theoretical approach to the calculation of energies and widths of resonant (Autoionizing) states in many-electron atoms. Phys. Rev. A, 1972, 6(6): 2078-2092
    [6] Schulz G J, Resonances in electron impact on atoms. Rev. Mod. Phys., 1973, 45(3): 378-422
    [7] Henry R G W, Applying large computers to problems in physics: electron collision cross sections in atomic physics. Rep. Prog. Phys., 1993: 327-362
    [8] Robinson E J, Electron scattering by the metastable rare gases. Phys. Rev., 1969, 182(1): 196-200
    [9] Hunt J and Moiserwitsch B L, Negative ions and shape resonances. J. Phy. B, 1970, 3(7): 892-903
    [10] Bui T D and Stauffer A D, The scattering equations for charged particles colliding with many body systems. Can. J. Phys., 1975, 53(17): 1615-1623
    [11] Walker D W, Low-energy electron scattering from mercury. J. Phys. B, 1975, 8(9): L161-163
    [12] Bui T D, Computer calculations of slow electrons scattering by sodium atoms. Can. J. Phys., 1977, 55(7-8): 742 -746
    [13] Rescigno T N, McCurdy Jr. C W and Orel A E, Extensions of the complex-coordinate method to the study of resonances in many-electron systems. Phys. Rev. A, 1978 17(6): 1931-1938
    [14] Sinfailam L T, Shape resonances in elastic scattering of slow electrons by Be, Mg, Zn and Cd. J. Phys. B. 1981, 14(13): L437-L440
    [15] Kurtz H A and Jordan K D, Theoretical study of low-energy electron and positron scattering on Be, Mg and Ca. J. Phys. B, 1981, 14(22): 4361-4376
    [16] Yuan J and Zhang Z, The low-lying shape resonances in low-energy electron scattering with Be, Mg and Ca atoms. J. Phys. B, 1989, 22(17): 2751-2758
    [17] Moores D L and Norcross D W, The scattering of electrons by sodium atoms. J. Phys. B, 1972, 5(8): 1482-1505
    [18] Moores D L and Norcross D W, Alkali-metal negative ions. I. Photodetachment of Li-, Na-, and K-. Phys. Rev. A, 1974, 10(5): 1646-1656
    [19] Taylor K T and Norcross D W, Alkali-metal negative ions. IV. Multichannel calculations of K- photodetachment. Phys. Rev. A, 1986, 34(5): 3878-3891
    [20] Rountree S P and Henry R J W, Electron-impact excitation cross sections for atomic oxygen: P3-3s 3So. Phys. Rev. A, 1972, 6(6): 2106-2109
    [21] Ormonde S, Smith K, B. Torres W and Davies A R, Configuration-interaction effects in the scattering of electrons by atoms and ions of nitrogen and oxygen. Phys. Rev. A, 1973, 8(1): 262-295
    [22] Le Dourneuf M, These de Doctorat d’état (UniversitéParis), 1976
    [23] Burkman S J and Clark C W, Atomic negative-ion resonances. Rev. Mod. Phys., 1994, 66(2): 539-655
    [24] Patterson T A, Hotop H, Kasdan A, Norcross D W and Lineberger W C, Resonances in alkali negative-ion photodetachment and electron affinities of the corresponding neutrals. Phys. Rev. Lett., 1974, 32(5): 189-192
    [25] Slater J, Read F H, Novick S E and Lineberger W C, Alkali negative ions. III. Multichannel photodetachment study of Cs- and K-. Phys. Rev. A, 1978, 17(1): 201-213
    [26] Andersen T, Atomic negative ions: structure, dynamics and collisions. Phys. Rep., 2004, 394: 157-313
    [27] Messiah A, Quantum Mechanics. North-Hollan, Amsterdam, Vol. II, 1970, pp. 848-852
    [28] Cohen H D and Fano U, Interference in the photo-ionization of molecules. Phys. Rev., 1966, 150(1): 30-33
    [29] Stolterfoht N, Sulik B, Hoffmann V, Skogvall B, Chesnel J Y, Rangama J, Fre?mont F, Hennecart D, Cassimi A, Husson X, Landers A L, Tanis J A, Galassi M E, and Rivarola R D, Evidence for interference effects in electron emission from H2 colliding with 60 MeV/u Kr34+ ions. Phys. Rev. Lett., 2001, 87(2): 153201(1-4)
    [30] Hossain S, Alnaser A S, Landers A L, Pole D J, Hnutson H, Robison A, Stamper B, Stolterfoht N, Tanis J A, Interference effects in electron emission from H2 by 3 and 5 MeV H+ impact. Nucl. Instrum. Methods Phys. Res. B, 2003, 205: 484-487
    [31] Misra D, Kadhane U, Singh Y P, Tribedi L C, Fainstein P D, and Richard P, Interference effect in electron emission in heavy ion collisions with H2detected by comparison with the measured electron spectrum from atomic hydrogen. Phys. Rev. Lett., 2004, 92: 153201 (1-4)
    [32] Kamalou O, Chesnel J Y, Martina D, Hanssen J, Stia C R, Fojo?n O, Rivarola R D and Fre?mont F, Evidence for interference effects in both slow and fast electron emission from D2 by energetic electron impact. Phys. Rev. A, 2005, 71: 010702 (R)
    [33] Rolles D, Braune M, Cvejanovic? S, Ge?ner O, Hentges R, Koria S, Langer B, Lischke T, Prumper G, Reinkoster A, Viefhaus J, Zimmermann B, McKoy V and Becker U, Isotope-induced partial localization of core electrons in the homonuclear molecule. Nature, 2005, 437: 711-715
    [34] Liu X J, Cherepkov N A, Semenov S K, Kimberg V, Gel’mukhanov F, Prumper G, Lischke T, Tanaka T, Hoshino M, Tanaka H and Ueda K, Young's double-slit experiment using core-level photoemission from N2: revisiting Cohen-Fano's two-centre interference phenomenon. J. Phys. B, 2006, 39(23): 4801-4818
    [35] Liu X J, Prumper G, Gel’mukhanov F, Cherepkov N A, Tanaka H and Ueda K, Young's double-slit experiment using two-center core-level photoemission: Photoelectron recoil effects. J. Electr. Spectrosc. Relat. Phenom., 2007, 156-158: 73-77
    [36] Schoffler M S, Titze J, Petridis N, Jahnke T, Cole K, Schmidt L Ph H, Czasch A, Akoury D, Jagutzki O, Williams J B, Cherepkov N A, Semenov S K, McCurdy C W, Rescigno T N, Cocke C L, Osipov T, Lee S, Prior M H, Belkacem A, Landers A L, Schmidt-Bocking H, Weber Th, and Dorner R, Ultrafast probing of core hole localization in N2. Science, 2008, 320: 920-923
    [37] Kaplan G and Markin, Sov. Phys. Dokl. 1969, 14: 36
    [38] Walter M and Briggs J, Photo-double ionization of molecular hydrogen. J. Phys. B, 1999, 32(12): 2487-2502
    [39] Fojo?n O, Ferna?ndez J, Palacios A, Rivarola R D and Mart??n F, Interference effects in H2 photoionization at high energies. J. Phys. B, 2004, 37(15): 3035-3042
    [40] Nagy L, Borde?ly S and Po?ra K, Interference effects in the photoionization of molecular hydrogen. Phys. Lett. A, 2004, 327: 481-489
    [41] Fojo?n O, Palacios A, Ferna?ndez J, Rivarola R D and Mart??n F, Interferences inthe photoelectron spectrum of H2+ molecules at high energy. Phys. Lett. A, 2006, 350(5-6): 371-374
    [42] Ferna?ndez J, Fojo?n O, Palacios A and Mart??n F, Interferences from fast electron emission in molecular photoionization. Phys. Rev. Lett., 2007, 98: 043005 (1-4)
    [1] Messiah A,Quantum Mechanics. North-Hollan, Amsterdam, Vol. II, 1970
    [2]王福恒,王嵩薇,近代科学技术中的原子分子辐射理论.成都:成都科技大学出版社, 1991
    [3]曾谨言,量子力学卷1和卷2.北京:科学出版社, 2000
    [4]周世勋,量子力学教程,北京:高等教育出版社, 1985
    [5]喀兴林,高等量子力学,北京:高等教育出版社, 2000
    [6] Cowan R D, Theory of Atomic Spectra. University of California Press, Berkley, 1981
    [7] Friedrich H, Theoretical Atomic Physics. Springer-Valag, Berlin, 1990
    [1] Friedrich H, Theoretical Atom Physics. Springer-Verlad, 1991
    [2] Bransden B H, Atomic Collision Theory. The Benjamin/Cummings Publishing Company, Inc., 1983
    [3] Joachain C J, Quantum collision theory. North-Holland Publishing Company, 1983
    [1]赵伊君,张志杰,原子结构的计算.北京:科学出版社, 1987
    [2]张志杰,赵伊君,原子的Xα波函数.北京:原子能出版社, 1983
    [3]赵伊君,张志杰,角动量与原子能量.北京:科学出版社, 1982
    [4] Condon E U and Shortley G H, The Theory of Atomic Spectra. The Syndics of the Cambridge University press, Cambridge, 1979
    [5] Cowan R D, Theory of Atomic Spectra. University of California Press, Berkley, 1981
    [6] Friedrich H, Theoretical Atomic Physics. Springer-Verlag Berlin, 1990
    [7]白铭复,陈健华,田成林,高等量子力学I.湖南长沙:国防科技大学出版社, 1994
    [8] Hibbert A, CIV3 - A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun., 1975, 9(3): 141-172
    [9] Fischer C F, The MCHF atomic-structure package. Comput. Phys. Commun., 1991, 64(3): 369-398
    [10] Burke P G, The R-matrix method in atomic physics. Comput. Phys. Commun., 1974, 6(6): 288-302
    [11] Berrington K and Crees M, Recent developments in electron collision calculation. Comput. Phys. Commun., 1979, 17(1-2): 181-205
    [12] Burke P G, Berrington K A and Sukumar C V, Electron-atom scattering at intermediate energies. J. Phys. B, 1981, 14(2): 289-306
    [13] Le Dourneuf M, Launay J M and Burke P G, A two-dimensional R-matrix propagator. Implementation and test on the s-wave model for e-H scattering. J. Phys. B, 1990, 23(18): L559-565
    [14] Fon W C, Berrington K A, Burke P G and Kingston A E, Total cross sections for electron excitation transitions between the 11S, 23S, 21S, 23P and 21P states of atomic helium. J. Phys. B, 1981, 14(16): 2921-2934
    [15] Johnson C T and Kingston A E, Electron impact excitation of the 3s23p4 levels of Ar III. J. Phys. B, 1990, 23(19): 3393-3406
    [16] Aggarwal K M and Keenan F P, Electron impact excitation of Mg-like iron. J. Phys. B, 1999, 32(14): 3585-3600
    [17] Badnell N R and Griffin D C, Breit-Pauli and intermediate-coupling collision strengths for the correlation resonances that arise in the electron-impact excitation of Ni4+. J. Phys. B, 1999, 32(9): 2267-2276
    [18] Aggarwal K M, Deb N C, Keenan F P and Msezane A Z, Electron impact excitation of Mg-like iron. J. Phys. B, 1999, 32(22): 5257-5270
    [19] Fursa D V and Bray I, Excitation of the 31P state of magnesium by electron impact from the ground state. Phys. Rev. A, 2001, 63(3): 032708(1-7)
    [20] Brown G J N, Scott M P and Berringston K A, Excitation and ionization of Li+ by electron impact: an R-matrix with pseudo-states calculation. J. Phys. B, 1999, 32(3): 737-748
    [21] Burke P G, Fon W C and Kingston A E, The contribution of electron excitation of resonance levels to electron ionisation cross sections of nickel ions. J. Phys. B, 1987, 20(11): 2579-2588
    [22] Bartschat K and Burke P G, The R-matrix method for electron impact ionization. J. Phys. B, 1987, 20(13): 3191-3200
    [23] Terao M and Burke P G, R-matrix calculation of dielectronic recombination rate coefficients. Application to Li-like Al. J. Phys. B, 1990, 23(11): 1815-1830
    [24] Le Dourneuf M, Vo Ky Lan, Taylor K T and Burke P G, The photoionization of neutral aluminium. J. Phys. B, 1975, 8(16): 2640-2653
    [25] Miecznik G, Berrington K A, Burke P G and A Hibbert, Photoionization of the ground state of singly ionized calcium. J. Phys. B, 1990, 23(19): 3305-3314
    [26] Zeng J, Yuan J, Zhao Z, and Lu Q, Energy levels and optical oscillator strengths of inner-shell excited states and photoionizations of the ground and first excitedstates of C IV ion. Euro. Phys. J. D, 2000, 11(2): 167-173
    [27] Zeng, J, Yuan J, and Lu Q, Photoionization for the ground state of Al VII from threshold to the K shell. Phys. Rev. A, 2001, 64(4): 042704 (1-8)
    [28]曾交龙,袁建民,赵增秀,陆启生, C II的光电离截面的理论计算.强激光与粒子束, 2000, 12(6): 689-693
    [29] Zeng J and Yuan J, Resonance energies, oscillator strengths and autoionization width of the 1s-2p excitations from O IV low-lying states. J. Phys. B, 2000, 35(14): 3041-3054
    [30] Yuan J, Core-valence electron correlation effects in photodetachment of Ca- ions. Phys. Rev. A, 2000, 61(1): 012704(1-6)
    [31] Zeng J, Yuan J, and Lu Q, Photodetachments of the metastable nsnp2 4P states of Be-, Mg-, and Ca- ions. Phys. Rev. A, 2000, 62(2): 022713(1-8)
    [32] Bell K L, Burke P G and Kingston A E, Free-free transitions of an electron in the presence of an atomic system. J. Phys. B, 1977, 10(15): 3117-3128
    [33] Gerratt J, R-matrix theory of charge transfer. Phys. Rev. A, 1984, 30(4): 1643-1660
    [34] Berrington K A, Burke P G, Chang J J, Chivers A T, Robb W D, and Taylor K T, A general program to calculate atomic continuum processes using the R-matrix method. Comput. Phys. Commun.,1974 8(3): 149-198
    [35] Burke P G and Seaton M J, Numerical solutions of the integro-differential equations of electron-atom collision theory. Methods Comput. Phys., 1971, 10: 1-80
    [36] Burke P G, Hibbert A and Robb W D, Electron scattering by complex atoms. J. Phys. B, 1971, 4(2): 153-161
    [37] Burke P G and Robb W D, The R-matrix theory of atomic processes. Adv. At. Mol. Phys., 1975, 11: 143-214
    [38] Berrington K A, Burke P G, Le Dourneuf M, Robb W D, Taylor K T, and Vo Ky Lan, Comput. Phys. Commun., 1978, 14(5-6): 367-412
    [39] Scott N S and Taylor K T, A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. Comput. Phys. Commun., 1982, 25(4): 347-387
    [40] Scott N S and Burke P G, Electron scattering by atoms and ions using the Breit-Pauli Hamiltonian: an R-matrix approach. J. Phys. B, 1980, 13(21):4299-4314
    [41] Seaton M J, Atomic data for opacity calculations. I. General description. J. Phys. B, 1987, 20(23): 6363-6378
    [42] Berrington K A, Burke P G, Butler K, Seaton M J, Storey P J, Taylor K T and Yan Y, Atomic data for opacity calculations. II. Computational methods. J. Phys. B, 1987 20(23): 6379-6398
    [43] Hummer D G, Berrington K A, Eissner W, Pradhan A K, Saraph H E, and Tully J A, Atomic data from the IRON Project. 1: Goals and methods. Astron. and Astrophys., 1993, 278: 298-309
    [44] Berrington K A, Essiner W B, and Norrington P H, RMATRX1: Belfast atomic R-matrix codes. Comput. Phys. Commun., 1995, 92(2-3): 290-420
    [45] Bates D R and Seaton M J, The quantal theory of continuous absorption of radiation by various atoms in their ground states. II. Further calculations on oxygen, nitrogen and carbon. Mon. Not. Astron. Soc., 1949, 109: 698
    [46] Henry R J W, Photoionization cross sections for C-, N, and O+. J. Chem. Phys., 1966, 44(11): 4357-4359
    [47] Henry R J W, Photoionization cross sections for N and O+. J. Chem. Phys., 1968, 48(8): 3635-3638
    [48] Thomas G M and Helliwell T M, Photoionization cross sections of nitrogen, oxygen, carbon and argon for the Slater-Klein-Brueckner potential. J. Quant. Spectrosc. Radiat. Transfer, 1970, 10(5): 423-448
    [49] Kahler H, The computation of photoionization cross sections by means of the scaled Thomas-Fermi potential. J. Quant. Spectrosc. Radiat. Transfer, 1971, 11: 1521-1535
    [50] Koppel U, Photoionization cross sections for the ground state configuration of atomic nitrogen and oxygen. J. Chem. Phys., 1971, 55(1): 123-132
    [51] Ganas P S, Photoionization of Atomic Nitrogen and Atomic Oxygen. Phys. Rev. A, 1973, 7(3): 928-932
    [52] Le Dourneuf M, Vo Ky Lan, and Hibbert A, Photoionization of ground-state nitrogen atoms. J. Phys. B, 1976, 9(12): L359-362
    [53] Ehler A W and Weissler G L, Ultraviolet absorption of atomic nitrogen in its ionization continuum. J. Opt. Soc. Am., 1955, 45: 1035-1043
    [54] Comes F J and Elzer A, Photoionization of atomic nitrogen. Phys. Lett., 1967,25A: 334-335
    [55] Samson J A R and Angel G C, Single- and double-photoionization cross sections of atomic nitrogen from threshold to 31 . Phys. Rev. A, 1990, 42(3): 1307-1312
    [56] Dehmer P M, Berkowitz J, and Chupka W A, Photoionization of atomic nitrogen. J. Chem. Phys., 1974, 60(7): 2676-2679
    [57] E. Clementi and C. Roetti, At. Data. Nucl. Data Tables, 1974, 14: 177
    [58] Wu J, Yuan J, and Vo Ky Lan, Near threshold photodetachment cross section of negative atomic oxygen ions. Chin. Phys., 2003, 12(12): 1390-1394
    [59] Ralchenko, Yu., Jou, Kelleher, Kramida D E, Musgrove A E, A., Reader, J., Wiese, W. L., and Olsen, K., NIST Atomic Spectra Database (Version 3.1.3), 2007, [Online]. Available: http://physics.nist.gov/asd3. National Institute of Standards and Technology, Gaithersburg, MD
    [60] Eriksson K B S and Pettersson J, E, New Measurements in the Spectrum of the Neutral Nitrogen Atom, Phys. Scr., 1971, 3(5): 211-217
    [61] Angel G C, and Samson J A R, Total photoionization cross sections of atomic oxygen from threshold to 44.3 . Phys. Rev. A, 1988, 38(11): 5578-5585
    [62] Carroll P K, Huffman R E, Larrabee J C, and Tanaka Y, Astrophys. J., 1966, 146: 533-541
    [63] Smith K and Ormonde S, Multiconfiguration close-coupling calculations of the autoionizing states of atomic nitrogen. Phys. Rev. Lett., 1970, 25(9): 563-567
    [1] Hibbert A, CIV3 - A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun. 1975, 9(3): 141-172
    [2] Scott N S and Burke P G, Electron scattering by atoms and ions using the Breit-Pauli Hamiltonian: an R-matrix approach. J. Phys. B, 1980, 13(21): 4299-4314
    [3] Scott N S and Taylor K T, A general program to calculate atomic continuum processes incorporating model potentials and the Breit-Pauli Hamiltonian within the R-matrix method. Comput. Phys. Commun., 1982, 25(4): 347-387
    [4] Seaton M J, Atomic data for opacity calculations. I. General description. J. Phys. B, 1987, 20(23): 6363-6378
    [5] Pelan J P, The IRON Project, Word Wide Web homepage: http://www.am.qub.ac.uk/projects/iron , 1996
    [6] Chang J J, The R-matrix theory of electron-atom scattering using the Dirac Hamiltonian. J. Phys. B, 1975, 8(14): 2327-2335
    [7] Chang J J, Relativistic R-matrix theory of photoionisation: application to neon. J. Phys. B, 1977, 10(16): 3195-3204
    [8] Dyall K G, Grant I P, Johnson C T, Parpia F A, and Plummer E P, GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun., 1989, 55(3): 425-456
    [9] Young I G, The Solution of Relativistic Asymptotic Equations in Electron-Ion Scattering, PhD Thesis, The Queen University of Belfast, 1992
    [10] Szmytkowski R and Hinze J, Convergence of the non-relativistic and relativistic R-matrix expansions at the reaction volume boundary. J. Phys. B, 1996, 29(4): 761-778
    [11] Grant I P, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation. Springer, New York, 2007
    [12] Henry R J W. and Lipsky L, Multichannel Photo-Ionization of Atomic Systems. Phys. Rev., 1967, 153(1): 51-56
    [13] Burke P G and Moiseiwitsch B L (Ed.), Atomic Process and Applications. North-Holland, 1976, chap. 7, P.202
    [14] Robinson E J and Geltman S, Single- and Double-Quantum Photodetachment of Negative Ions. Phys. Rev., 1967, 153(1): 4-8
    [15] ?Radojevic? V, Kelly H P and Johnson W R, Photodetachment of negative halogen ions. Phys. Rev. A, 1987, 35(5): 2117-2121
    [16] Radojevic? V and Kelly H P, Photodetachment of the negative iodine ion including relaxation effects. Phys. Rev. A, 1992, 46(1): 662-665
    [17] Kutzner M, Brown J T and Thorarinson J, Relaxation and polarization effects in photodetachment of the negative iodide ion. Phys. Rev. A, 2003, 68(4): 042713(1-5)
    [18] Ivanov V K, Many-body effects in negative ion photodetachment. J. Phys. B, 1999, 32(12): R67-102
    [19] Mandl A and Hyman H A, Direct Observation of an Autodetaching State of I-. Phys. Rev. Lett., 1973 31(7): 417-419
    [20] Neiger M, Z. Naturforsch. A, 1975, 3: 474
    [21] Wu J and Yuan J, The resonance structures in the cross sections of slow electron interaction with barium atoms: a fully relativistic R-matrix study. J. Phys. B, 2006, 39(11): 2493-2503
    [22] Zeng J, Zhao G and Yuan J, Photoionization of the ground and first two metastable levels for Sc III: Configuration-interaction and relativistic effects. Phys. Rev.A, 2003, 68(2): 022714(1-7)
    [23] Zeng J, Wu J, Jin F, Zhao G and Yuan J, Cross sections for electron-impact excitation of krypton from the levels of 4p6, 4p55s, and 4p55p configurations. Phys. Rev. A, 2005, 72(4): 042707(1-8)
    [24] Moore E (ed.), Atomic Energy Levels, NBS Title Series no III. Washington, DC: US Government Printing Office, 1970, p.105
    [25] Webster R, Mcdermid I S and Rettner C T, Laser optogalvanic photodetachment spectroscopy: A new technique for studying photodetachment thresholds with application to I-. J. Chem. Phys., 1983, 78(2): 646-651
    [26] Hanstorp D and Gustafsson M, Determination of the electron affinity of iodine. J.Phys. B, 1992, 25(8): 1773-1784
    [27] Norrington P H and Grant I P, Low-energy electron scattering by Fe XXIII and Fe VII using the Dirac R-matrix method. J. Phys. B, 1987, 20(18): 4869-4882
    [28] Wijesundera W P, Parpia F A, Grant I P and Norrington P H, Electron scattering by Kr XXIX (oxygen-like krypton) using the Dirac R-matrix method. J. Phys. B, 1991, 24(7): 1803-1816
    [29] Grant I P, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation. New York: Springer, 2007
    [30] Burgess A, Hummer D G, and Tully J A, Electron impact excitation of positive ions. Philos. Trans. R. Soc. London, Ser. A, 1970, 266(1175): 225-279
    [31] Burgess A and Sheorey V B, Electron impact excitation of the resonance lines of alkali-like positive ions. J. Phys. B, 1974, 7(17): 2403-2416
    [32] Drukarev G F, in Collisions of Electrons with Atoms and Molecules, edited by Burke P G and Kleinpoppen H. Plenum, New York, 1987
    [33] Ramsauer C and Kollath R, The cross section of the gas molecule in comparison with electrons under 1 volt, addition. Annalen Der Physik, 1930, 7(2): 176-182
    [34] Townsend J S and Bailey V A, Phil Mag., 1922, 43: 593-600
    [35] Townsend J S and Bailey V A, Phil Mag., 1922, 44: 1033-1052
    [36] Pegg J, Thompson J S, Compton R N and Alton G D, Evidence for a stable negative ion of calcium. Phys. Rev. Lett., 1987, 59(20): 2267-2270
    [37] Fischer F, Lagowski J B and Vosko S H, Ground states of Ca- and Sc- from two theoretical points of view. Phys. Rev. Lett.,1987, 59(20): 2263-2266
    [38] Fischer C F, Binding energies for p electrons in negative alkaline-earth elements. Phys. Rev. A, 1989, 39(3): 963-970
    [39] Kim L and Greene C H, Stable negative ions of the heavy alkaline-earth atoms. J. Phys. B, 1989, 22(8): L175-182
    [40] Johnson W R, Sapirstein J and Blundell S A, Many-body theory applied to negative ions. J. Phys. B, 1989, 22(15): 2341-2348
    [41] Gribakin G F, Gul’stev B V, Ivanov V K and Kuchiev M Yu, Zh. Eksp. Teor. Fiz. Pis’ma Red. 1989, 15: 32
    [42] Fuentealba P, Savin A, Stoll H and Preuss H, Electron affinities of alkaline-earth-metal atoms. Phys. Rev. A, 1990, 41(3): 1238-1241
    [43] Cowan R and Wilson M, Simple estimates of atomic negative ion structures.Phys. Scr. 1991, 43(3): 244-247
    [44] Dzuba V A, Flambuam F, Gribakin G F and Sushkov D, Fine structure of negative ions of alkaline-earth-metal atoms. Phys. Rev. A, 1991, 44(5): 2823-2827
    [45] Dzuba V A and Gribakin G F, Fine structure of Ca-, Sr-, Ba-, and Ra- from the many-body theory calculation. Phys.Rev. A, 1997, 55(3): 2443-2446
    [46] Van der Hart H W, Laughlin C and Hansen J E, Influence of core polarization on the electron affinity of Ca. Phys. Rev. Lett., 1993, 71(10): 1506-1509
    [47] Sundholm D, Core-valence correlation effects on the ground-state electron affinities of strontium and barium. J. Phys. B, 1995, 28(12): L399-404
    [48] Salomonson S, Warston H and Lindgren I, Many-Body Calculations of the Electron Affinity for Ca and Sr. Phys. Rev. Lett., 1996, 76(17): 3092-3095
    [49] Nadeau M J, Zhao X L, Garwan M and Litherland A, Ca negative-ion binding energy. Phys. Rev. A, 1992, 46(7): R3588-3590
    [50] Petrumin V V, Anderson H H, Balling P and Anderson T, Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-Structure Splitting. Phye. Rev. Lett., 1996, 76(5): 744-747
    [51] Petrumin V V, Voldstad J D, Balling P, Kristensen P, Anderson T and Haugen H K, Resonant Ionization Spectroscopy of Ba-: Metastable and Stable Ions. Phys. Rev. Lett., 1995, 75(10): 1911-1914
    [52] Fabrikant I I, Atominiye Protsessi (Riga Zinatne), P. 80, 1975
    [53] Fabrikant I I, Electron impact formation of metastable atoms. Phys. Rep., 1998, 159(1-2): 1-97
    [54] Romanyuk N I, Shpenik O B and Zapesochyi I P, Pis’ma Zh. Eksp. Theor. Fiz., 1980, 32: 472
    [55] Kurtz H A and Jordan K D, Theoretical study of low-energy electron and positron scattering on Be, Mg and Ca J. Phys. B, 1981, 14(22): 4361-4376
    [56] Amusia M Ya, Sosnivker V A, Cherepokov N A and Chernysheva L V, Zh. Tekh. Fiz. 1985, 55: 2304-2311
    [57] Yuan J and Zhang Z, The low-lying shape resonances in low-energy electron scattering with Be, Mg and Ca atoms. J. Phys. B, 1989, 22(17): 2751-2758; Yuan J and Zhang Z, Alternative static-exchange formalism: Low-energy electron scattering with heavy alkaline-earth atoms. Phys. Rev. A, 1990, 42(9):5363-5373; Yuan J, Intra-atomic relativistic effects on the spin polarization in low-energy electron scattering from Ca, Sr, Ba, and Yb atoms. Phys. Rev. A, 1995, 52(6): 4647-4655
    [58] Johnston A R, Gallup G A and Burrow P D, Low-lying negative-ion states of calcium. Phys. Rev. A, 1989, 40(8): 4770-4773
    [59] Gribakin F, Gul’stev B V, Ivanov V K, Kuchiev M Yu and Tancic? A R, Momentum transfer cross sections for slow electron elastic scattering on Ca, Sr and Ba atoms. Phys. Lett. A, 1992, 164: 73-82
    [60] Dzuba V A, Flambaum V V and Suchkov O P, Resonance enhancement of relativistic effects for the scattering of very slow electrons by heavy atoms. Phys. Rev. A, 1991, 44(7): 4224-4227
    [61] Dzuba V A, Gribakin G F, Correlation-potential method for negative ions and electron scattering. Phys. Rev. A, 1994, 49(4): 2483-2492
    [62] Szmytkowski R and Sienkiewicz J E, Elastic scattering of electrons by strontium and barium atoms. Phys. Rev. A, 1994, 50(5): 4007-4012
    [63] Kelemen V I, Yu Remeta E and Sabad E P, Scattering of electrons by Ca, Sr, Ba and Yb atoms in the 0-200 eV energy region in the optical potential model. J. Phys. B, 1995, 28(8): 1527-1546
    [64] Fursa V and Bray I, Calculation of electron scattering from the ground state of barium. Phys. Rev. A, 1999, 59(1): 282-294
    [65] Adibzadeh M and Theodosiou C E, Elastic electron scattering from Ba and Sr. Phys. Rev. A, 2004, 70(5): 052704(1-11)
    [66] Heinicke E, Kaiser H J, Rachwits R and Feldmann D, Photodetachment of negative calcium ions. Phys. Lett. A, 1974, 50(4): 265-266
    [67] Walter C W and Peterson J R, Shape resonance in Ca- photodetachment and the electron affinity of Ca (1S). Phys. Rev. Lett., 1992, 68(15): 2281-2284; Peterson J R, Aust. J. Phys., 1992, 40: 293-307
    [68] Kristensen P, Brodie C A, Pederson U V, Petrunin V V and Anderson T, State-Selective Depletion Spectroscopy of Negative Ions: First Observation of the 4P State in Ca- and Sr-. Phys. Rev. Lett., 1997, 78(12): 2329-2332
    [69] Lee D H, Pegg D J and Hanstorp D, Fast ion-beam photoelectron spectroscopy of Ca-: Cross sections and asymmetry parameters. Phys. Rev. A, 1998, 58(3): 2121-2127
    [70] Gribakin F, Gul’stev B V, Ivanov V K and Yu Kuchiev M, Interaction of an alkaline-earth atom with an electron: scattering, negative ion and photodetachment. J. Phys. B, 1990, 23(24): 4505-4520
    [71] Fischer C F and Hansen H E, Photodetachment cross section for Ca-. Phys. Rev. A, 1991, 44(3): 1559-1564
    [72] Yuan J and Fritsche L, Electron scattering by Ca atoms and photodetachment of Ca- ions: An R-matrix study. Phyes. Rev. A, 1997, 55(2): 1020-1027; Yuan J, Core-valence electron correlation effects in photodetachment of Ca- ions. Phys. Rev. A, 2004, 61(1): 012704(1-6)
    [73] Yuan J and Lin C D, Effect of core-valence electron correlation in low-energy electron scattering with Ca atoms. Phys. Rev. A, 1998, 58(4): 2824-2827
    [74] Yuan J, The resonance structures of electron interaction with Sr and Ba atoms: low-energy electron scattering and photodetachment of the negative ions. J. Phys. B, 2003, 36(10): 2053-2072
    [75] Moore C E (ed), Atomic Energy Levels, NBS Title Series no III. Washington, DC: US Government Printing Office, 1970, P.131
    [1] Messiah A, Quantum Mechanics. North-Hollan, Amsterdam, Vol. II, 1970, pp. 848-852
    [2] Cohen H D and Fano U, Interference in the photo-ionization of molecules .Phys. Rev. 1966, 150(1): 30-33
    [3] Stolterfoht N, Sulik B, Hoffmann V, Skogvall B, Chesnel J Y, Rangama J, Fre?mont F, Hennecart D, Cassimi A, Husson X, Landers A L, Tanis J A, Galassi M E, and Rivarola R D, Evidence for interference effects in electron emission from H2 colliding with 60 MeV/u Kr34+ ions. Phys. Rev. Lett. 2001, 87(2): 153201(1-4)
    [4] Hossain S, Alnaser A S, Landers A L, Pole D J, Hnutson H, Robison A, Stamper B, Stolterfoht N, Tanis J A, Interference effects in electron emission from H2 by 3 and 5 MeV H+ impact. Nucl. Instrum. Methods Phys. Res. B, 2003, 205: 484-487
    [5] Misra D, Kadhane U, Singh Y P, Tribedi L C, Fainstein P D, and Richard P, Phys. Rev. Lett. Interference effect in electron emission in heavy ion collisions with H2detected by comparison with the measured electron spectrum from atomic hydrogen 2004, 92: 153201 (1-4)
    [6] Kamalou O, Chesnel J Y, Martina D, Hanssen J, Stia C R, Fojo?n O, Rivarola R D and Fre?mont F, Evidence for interference effects in both slow and fast electron emission from D2 by energetic electron impact. Phys. Rev. A, 2005, 71: 010702 (R)
    [7] Rolles D, Braune M, Cvejanovic? S, Ge?ner O, Hentges R, Koria S, Langer B, Lischke T, Prumper G, Reinkoster A, Viefhaus J, Zimmermann B, McKoy V and Becker U, Isotope-induced partial localization of core electrons in the homonuclear molecule. Nature, 2005, 437: 711-715
    [8] Schoffler M S, Titze J, Petridis N, Jahnke T, Cole K, Schmidt L Ph H, Czasch A, Akoury D, Jagutzki O, Williams J B, Cherepkov N A, Semenov S K, McCurdy C W, Rescigno T N, Cocke C L, Osipov T, Lee S, Prior M H, Belkacem A, Landers A L, Schmidt-Bocking H, Weber Th, and Dorner R, Ultrafast probing of core hole localization in N2. Science, 2008, 320: 920-923
    [9] I. G. Kaplan and A. Markin, Sov. Phys. Dokl., 1969, 14: 36
    [10] Walter M and Briggs J, Photo-double ionization of molecular hydrogen. J. Phys. B, 1999, 32(12): 2487-2502
    [11] Fojo?n O, Ferna?ndez J, Palacios A, Rivarola R D and Mart??n F, Interference effects in H2 photoionization at high energies. J. Phys. B, 2004, 37(15): 3035-3042
    [12] Nagy L, Borde?ly S and Po?ra K, Interference effects in the photoionization of molecular hydrogen. Phys. Lett. A, 2004, 327: 481-489
    [13] Fojo?n O, Palacios A, Ferna?ndez J, Rivarola R D and Mart??n F, Interferences in the photoelectron spectrum of H2+ molecules at high energy. Phys. Lett. A, 2006, 350(5-6): 371-374
    [14] Ferna?ndez J, Fojo?n O, Palacios A, and Mart??n F, Interferences from Fast Electron Emission in Molecular Photoionization,Phys. Rev. Lett., 2007, 98: 043005(1-4)
    [15] Samson J A R, Masuoka T, Pareek P N and Angel G C, Total and dissociative photoionization cross sections of N2 from threshold to 107 eV. J. Chem. Phys., 1987, 86(1): 6128-6132
    [16] Liu X J, Cherepkov N A, Semenov S K, Kimberg V, Gel’mukhanov F, PrumperG, Lischke T, Tanaka H, Hoshino M, Tanaka H and Ueda K, Young's double-slit experiment using core-level photoemission from N2: revisiting Cohen-Fano's two-centre interference phenomenon. J. Phys. B, 2006, 39(23): 4801-4818
    [17] Liu X J, Prumper G, Gel’mukhanov F, Cherepkov N A, Tanaka H, and Ueda K, Young’s double-slit experimental using two center core-level photoemission: Photoelectron scattering effects. J. Electr. Spectrosc. Relat. Phenom., 2007, 156-158: 73
    [1]曾交龙,使用细致谱项模型研究铝等离子体的辐射不透明度.湖南长沙:国防科技大学出版社,2005
    [2] Kramers H A, Phil. Mag., 1923, 46: 836-871
    [3] Gaunt J A, Continuous Absorption, Phil. Trans. R. Soc., 1930, A29: 163
    [4] Stromgren B, The opacity of stellar matter and the hydrogen content of the stars. Z. Astrophysik, 1932, 4: 118
    [5] Menzel D H and Pekeris C L, Mon. Not. R. Astro. Soc., 1937, 96: 77
    [6] Morse P M, The opacity of gas mixtures in stellar interiors. Astrophys. J., 1940, 92(1): 27-49
    [7] Mayer H, Methods of Opacity Calculations. Los Alamos Scientific Laboratory Report LA-647 (AECD-1870), 1947
    [8] Green J M, The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom. J. Quant. Spectrosc. Radiat. Trans., 1964, 4(5): 639-662
    [9] Fetter A L and Walecka J D, Quantun Theory of Many-Particale Systems. MacGraw Hill, New York, 1971
    [10] Rozsnyai B F, Relativistic Hartree-Fock-Slater Calculations for Arbitrary Temperature and Matter Density. Phys. Rev. A, 1972, 5(3): 1137-1149
    [11] Lokke W A and Grassberger W H, Report UCRL-52276, Livermore: Lawrence Livermore National Laboratory, 1977
    [12] Zimmermann G B and More R M, Pressure ionization in laser-fusion target simulation. J. Quant. Spectrosc. Radiat. Trans., 1980, 23(5): 517-522
    [13] Negele J H and Orland H, Quantum Many-Particle Systems. Addison-Wesley, New York, 1988
    [14] Gross E K U, Runge E and Heinonen O, Many-Particle Theory. Adam Hilger, Bristol, 1991
    [15] Rozsnyai B F et al., Atomic, Molecular, and Nuclear Physics. Lawrence Livermore Laboratory, Report UCRL-50035, 1975
    [16] Sturrock P A, Physics of the Sun, Vol. 1. D. Reidel Publishing Company, 1986
    [17] Huebner H F et al., Report on the Los Alamos Equation-of-State Library. Los Alamos National Laboratory, SESAME 1983, 1983
    [18] Simon N R, A plea for reexamining heavy element opacities in stars. Astrophys. J., 1982, 260: L87-90
    [19] Iglesias C A, Rogers F J and Wilson B G, Astrophys. J., 1987, 322: L45-L48
    [20] Bauche-Arnoult C, Bauche J and Klapisch M, Mean wavelength and spectral width of transition arrays in XUV atomic spectra. J. Opt. Soc. Am., 1978, 68: 1136-1139
    [21] Bauche-Arnoult C, Bauche J and Klapisch M, Variance of the distributions of energy levels and of the transition arrays in atomic spectra. Phys. Rev. A, 1979, 20(6): 2424-2439
    [22] Bar-Shalom A, Oreg J, Goldstein W H, Shvarts D, and Zigler A, Super-transition-arrays: A model for the spectral analysis of hot, dense plasma.Phys. Rev. A, 1989, 40(6): 3183-3193
    [23] Bar-Shalom A, Oreg J, Goldstein W H, in 4th International Workshop on Radiative Properties of Hot Dense Matter, Sarasota, 1990, edited by Goldstein H, Hooper C, Gautier J, Seely J, and Lee RW, World Scientific, Singapore, 1990, p. 163.
    [24] Oreg J, Goldstein W H, Bar-Shalom A, and Klapisch M, Configuration average of general n-body symmetrical tensor operators. J. Comput. Phys., 1990, 91(2): 460-477
    [25] Bar-Shalom A, Oreg J, Goldstein W H, in Atomic Processes in Plasmas, 8th Topical Conference of APS, Porland Maine, 1991, edited by Marmar E S and Terry J L, AIP, New York, 1991, p. 68
    [26] Bar-Shalom A, Oreg J, Goldstein W H, and Shvarts D, Configuration interaction in LTE spectra of heavy elements. J. Quant. Spectrosc. Radiat. Trans. 51(1-2): 27-39
    [27] Bar-Shalom A and Oreg J, Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas. Phys. Rev. E, 1995, 51(5): 4882-4890
    [28] Bar-Shalom A, Oreg J, Seely J F, Feldman U, Brown C M, Hammel B A, Lee R W, and Back C A, Interpretation of hot and dense absorption spectra of a near-local-thermodynamic-equilibrium plasma by the super-transition-array method. Phys. Rev. E, 1995, 52(6): 6686-6691
    [29] Bar-Shalom A and Oreg J, Photoelectric effect in the super transition array model. Phys. Rev. E, 1996, 54(2): 1850-1856
    [30] Oreg J, Bar-Shalom A, and Klapisch M, Operator technique for calculating superconfiguration-averaged quantities of atoms in plasmas. Phys. Rev. E, 1997, 55(5): 5874-5882
    [31] Hummer D G, Berrington K A, Eissner W, Pradhan A K, Saraph H E, and Tully J A, Atomic data from the IRON Project. 1: Goals and methods. Astron. and Astrophys., 1993, 279(1): 298-309
    [32] Information on the Iron Project and publications is at the following homepages: www.usm.uni-muenchen.de/people/ip/iron-project.html and www.astronomy.ohio.-state.edu/~pradhan.
    [33] Wiese W L, Kelleher D. E, and Paquette D. R, Detailed Study of the Stark Broadening of Balmer Lines in a High-Density Plasma. Phys. Rev. A, 1972, 6(3):1132-1153
    [34] Delamater N D, Hooper Jr. C F, Joyce R F, Woltz L A, Ceglio N M, Kauffman R L, Lee R W, and Richardson M C, Opacity effects on hydrogenlike x-ray lines emitted from laser-driven implosions. Phys. Rev A, 1985, 31(4): 2460-2463
    [35] Hauer A and Cowan R D, Yaakobi B, Barnouin O, and Epstein R, Absorption-spectroscopy diagnosis of pusher conditions in laser-driven implosions. Phys. Rev. A, 1986, 34(1): 411-422
    [36] Chenais-Popovics C, Fievet C, Geindre J P, Gauthier, Wyart J F and Luc-Koenig E, Proc. SPIE Int. Soc. Opt. Eng., 1987, 831: 30
    [37] Audebert P et al., Proc. SPIE Int. Soc. Opt. Eng., 1987, 831: 9
    [38] Jannitti E, Nicolosi P, and Tondello G, An experiment for absorption spectroscopy of ionized species using two laser-produced plasmas. Physica C (Amsterdam), 1984, 124(1): 139-147
    [39] Jannitti E, Nicolosi P, and Tondello G, Xuv absorption spectra of carbon ions. J. Phys. (Paris), 1988, 41(C1): 71-74
    [40] Davidson S J, Foster J M, Smith C C, Warburton K A and Rose S J, Investigation of the opacity of hot, dense aluminum in the region of its K edge. Appl. Phys. Lett., 1988, 52(10): 847-849
    [41] Davidson S J et al., in Laser Interaction with Matter. Edited by Velarde G, Minguez E, and Perlado J M, World Scientific, Singapore, 1989
    [42] Bruneau J, Chenais-Popovics C, Desenne D, Gauthier J C, Geindre J P, Klapisch M, Le Breton J P, Louis-Jacquet M, Naccache D, and Perrine J P, Time-resolved L-shell absorption spectroscopy: A direct measurement of density and temperature in agermanium laser-produced plasma. Phys. Rev. Lett., 1990, 65(12): 1435-1438
    [43] Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart Jr R E, Kilkenny J D, and Lee R W, Opacity measurements in a hot dense medium. Phys. Rev. Lett., 1991, 67(27): 3784-3487
    [44] Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, and Stewart R E, Spectroscopic absorption measurements of an iron plasma. Phys. Rev. Lett., 1992, 69(26): 3735-3738
    [45]郭毓飞,铝原子和离子的微观结构及铝蒸汽的状态方程.硕士学位论文,国防科学技术大学二系, 1984
    [46]王平,高温铝蒸汽连续不透明度的计算.硕士学位论文,国防科学技术大学二系, 1985
    [47]杨力,铝原子、离子能级结构的MQDT分析及高温铝蒸汽的研究.硕士学位论文,国防科学技术大学二系, 1987
    [48]李世昌,高温辐射物理与量子辐射理论.北京:国防工业出版社, 1992
    [49]孙永盛,袁建奎,高Z元素辐射不透明度.计算物理, 1997, 14(6): 765-769
    [50]袁建奎,等离子体不透明度研究.博士论文,北京:中国工程物理研究院, 1996
    [51] Zhao L B and Zou Y, Resonant photoionization in the average-atom model. J. Quant. Spectrosc. Radiat. Transfer, 2001, 69(2): 131-135
    [52] Pei W and Chang T, Improved calculation for ion configuration distribution from the average-atom model. J. Quant. Spectrosc. Radiat. Transfer, 2000, 64(1): 15-23
    [53]孟续军,宗晓萍,白云,孙永盛和张景琳,混合物质原子结构的自洽场计算.物理学报, 2000, 49(11): 2133-2138
    [54]贾洪祥,孟续军,一种含势阱具有混合交换势形式的平均原子模型.物理学报, 2005, 54(1): 70-77
    [55]朱希睿,孟续军,田明峰,王志刚,姜旻昊,等离子体电子压强的Hartree-Fock-Slater自洽场计算.物理学报, 2005, 54(9): 4101-4107
    [56]朱希睿,孟续军,田明峰,姜旻昊,中低温等离子体原子能量的分波法计算.物理学报, 2007, 56(4): 2053-2060
    [57]朱希睿,孟续军,田明峰,包含过渡区的等离子体电子状态方程的理论研究.物理学报, 2008, 57(7): 4049-4058
    [58]吴泽清,Non-Local Thermodynamic Equilibrium Effect on Opacity.博士论文,北京:中国工程物理研究院, 2000
    [59]杨向东,刘小红,程新路,王红斌,李三伟,郑志坚,不可分辨跃迁阵模型下类镍金离子M带谱的理论计算.强激光与粒子束, 1998, 10: 253-257
    [60]程新路,刘小红,杨向东,王红斌,李三伟,郑志坚,激光金等离子体谱中3d-5f、3p-5s跃迁矩阵计算.强激光与粒子束, 1999, 01: 87-91
    [61]刘小红,程新路,焦荣珍,杨向东,王红斌,李三伟,郑志坚, UTA模型下金M带谱的理论计算.强激光与粒子束, 1998, 03: 119-122
    [62]孟川明,程新路,杨莉,王藩侯,杨向东,用STA模型计算Au等离子体的不透明度.高压物理学报, 2000, 2: 115-118
    [63]姜明,程新路,唐钰,杨向东,闫安英,稠密Ar等离子体不透明度的计算.原子分子物理学报, 2005, 3: 578-581
    [64]闫安英,姜明,程新路,杨向东, Au混合物Rosseland平均不透明度的计算.核聚变与等离子体物理, 2006, 26(1): 42-46
    [65]颜君,屈一至,李家明,激光产生的等离子体透射谱模拟.强激光与粒子束, 1999, 11(1): 65-70
    [66] Li J, Yan J, and Peng Y, Spectral resolved X-ray transmission in hot dense plasmas. Radiat. Phys. & Chem., 2000, 59: 181-184
    [67] Yan J and Li J, Theoretical simulation of the transmission spectra of Fe and Ge plasmas. Chin. Phys. Lett., 2000, 17(3): 194-196
    [68] Zeng J, Yuan J, Zhao Z, and Lu Q, Energy levels and optical oscillator strengths of inner-shell excited states and photoionizations of the ground and first excited states of C IV ion. Eur. Phys. J. D, 2000, 11(2): 167-173 (2000).
    [69]曾交龙,袁建民,赵增秀,陆启生, CIV共振谱线的电子碰撞展宽的理论计算.强激光与粒子束,2001, 13(1): 60-63
    [70] Zeng J, Yuan J, and Lu Q, Photodetachments of the metastable nsnp2 4P states of Be-, Mg-, and Ca- ions. Phys. Rev. A, 2000, 62(2): 022713(1-8)
    [71] Zeng J, Yuan J, and Lu Q, Photoionization for the ground state of Al VII from threshold to the K shell. Phys. Rev. A, 2001, 64(4): 042704(1-8)
    [72] Zeng J, Wu J, Jin F, Zhao G and Yuan J, Cross sections for electron-impact excitation of krypton from the levels of 4p6, 4p55s, and 4p55p configurations. Phys. Rev. A, 2005 72: 042707(1-8)
    [73] Wu J and Yuan J, The resonance structures in the cross sections of slow electron interaction with barium atoms: a fully relativistic R-matrix study. J. Phys. B, 2006 39(11): 2493-2503
    [74] Wu J and Yuan J, Fully relativistic R-matrix study of the interaction between a slow electron and atomic iodine: Scattering and photodetachment. Phys. Rev. A, 2007, 76: 024702(1-4)
    [75] Zeng J, Jin F, Yuan J, and Lu Q, Detailed-term-accounting-approximation simulation of x-ray transmission through laser-produced Al plasmas. Phys. Rev. E, 2000, 62(5): 7251-7257
    [76] Zeng J, Jin F, and Yuan J, Detailed Spectral Line Effects on the Radiative Opacity of Laser-Produced Al Plasmas. Chin. Phys. Lett., 2001, 18(7): 924-926
    [77] Zeng J, Yuan J, and Lu Q, Photoionization for the ground state of Al VII from threshold to the K shell. Phys. Rev. E, 2001, 64(6): 066412(1-9)
    [78] Zeng J and Yuan J, Detailed-term-accounting approximation calculations of the radiative opacity of aluminum plasmas: A systematic study. Phys. Rev. E, 2002, 66(1): 016401(1-9)
    [79] Jin F, Zeng J, and Yuan J, Radiative opacities and configuration interaction effects of hot iron plasma using a detailed term accounting model. Phys. Rev. E, 2003, 68(6): 066401(1-8)
    [80] Jin F, Zeng J and Yuan J, A detailed simulation for the transmission spectrum of hot aluminium plasma. Phys. Plasmas, 2004, 11(9): 4318-4322
    [81] Zeng J, Zhao G, and Yuan J, Influence of detailed line treatment on the opacity of iron plasmas in the 2p-3d energy region. Phys. Rev. E, 2004, 70(2): 027401(1-4)
    [82] Jin F, Zeng J, Yuan J, Han G, Wu Z, Yan J, Wang M, and Peng Y, L to M shell transitions and model comparisons for radiative opacities of sodium fluoride plasma. J. Quant. Spectrosc. Radiat. Transfer, 2005, 95(2): 241-253
    [83] Zeng J, Zhao G, and Yuan J, Configuration interaction effects on the energy levels and oscillator strengths of lowly charged gold ions: Au11+ as an example. J. Quant. Spectrosc. Radiat. Transfer, 2006, 102(2): 172-180
    [84] Zeng J, Yuan J, Radiative opacity of gold plasmas studied by a detailed level-accounting method. Phys. Rev. E, 2006, 74: 025401(R)
    [85] Wang F, Chen J, Meng X, Zhou X, Li X, Sun Y and Jing F, Opacity of shock-Generated Argon Plasmas. Chin. Phys. Lett., 2001, 18(7): 921-923
    [86] Yang J, Xu Y, Ding Y, Lai D, Ding Y, Jiang S, Zheng Z and Miao W. Radiation Heat Waves in Gold Plasma. Chin. Phys. Lett., 2003, 20(1): 90-92
    [87] Yang J, Xu Y, Ding Y, Ding Y, Jiang S, Zheng Z and Miao W. Radiation Rosseland mean opacity of a high-Z mixture plasma. Chin. Phys. Lett., 2003, 20(2): 256-258
    [88]张继彦,郑志坚,杨国洪,杨家敏,汪艳,韦敏习,胡广月,张文海,丁耀南,金激光等离子体冕区电离态特性研究.强激光粒子束, 2006, 18(5): 789-794
    [89]杨家敏,张继彦,吴泽清,杨国洪,颜君,丁耀南,李军,郑志坚,薄铝埋点等离子体K线光谱半定量实验测量.强激光粒子束, 2007, 19(10): 1639-1642
    [90]胡智民,杨家敏,张继彦,张文海,李三伟,丁耀南,安竹,高温铝等离子体X光发射谱实验.强激光粒子束, 2007, 19(12): 2027-2030
    [91]张继彦,杨家敏,许琰,杨国洪,颜君,孟广为,丁耀南,汪艳,辐射加热Al等离子体的吸收谱实验.物理学报, 2008, 57(2): 985-989
    [92]夏江帆,张杰,强激光天体物理学研究-在强激光实验室中模拟某些天体物理过程(I).物理, 2001, 30(4): 210-216;夏江帆,张杰,强激光天体物理学研究-在强激光实验室中模拟某些天体物理过程(II).物理, 2001, 30(6): 340-348
    [93]曾先才,核爆模拟-惯性约束聚变在核武器上的应用.物理, 2001, 30(7): 426-431
    [94] Mayer H L, Opacity of Nitrogen by hand calculation. J. Quant. Spectrosc. Radiat. Trans., 1965, 5(1): 39-47
    [95] Yuan J, Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture. Phys. Rev. E, 2002, 66(4): 047401(1-4)
    [96]徐钟济,蒙特卡罗方法.上海:上海科学技术出版社, 1985
    [97]张孝泽,蒙特卡罗方法在统计物理中的应用.河南:河南科学出版社, 1991
    [98] Landau D P and Binder K, A Guide to Monte Carlo Simulation in Statistical Physics. Cambridge Unversity Press, 2000
    [99] Frenkel D and Simth B, Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2002
    [100] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A N and Teller E, Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 1953, 21(6): 1087-1092
    [101]“Radiative Properties of Hot Dense Matter”, special issue of J. Quant. Spectrosc. Radiat. Transf. 99, III, 2006
    [102] Hou Y, Yuan J, Alternative ion-ion pair-potential modle applied to molecular dynamics simulations of hot and dense plasma: Al and Fe as example. Submitted to Phys. Rev. E

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700