用户名: 密码: 验证码:
超细氢氧化铝的制备及提高其热稳定性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国主要采用铝酸钠溶液晶种分解法制备超细氢氧化铝,生产中易存在产品粒度分布宽、颗粒形貌难以有效控制等问题。由于氢氧化铝分解温度低,在与有机高聚物加工过程中易分解,影响产品的使用性能,限制了其应用范围。为了解决超细氢氧化铝在生产和应用过程中存在的问题,为生产工艺优化和新产品开发提供理论指导,对其制备过程进行了系统研究,并开发了提高其热稳定性技术。
     论文利用激光粒度分析仪、扫描电子显微镜、表面电位仪、动态光散射粒度分析仪、浆体分散稳定性分析仪、电子束微区分析(EDS)等测试手段和分析方法,首次对铝酸钠溶液晶种分解制备超细氢氧化铝过程进行了系统研究,开发了氢氧化铝颗粒形貌控制及提高氢氧化铝阻燃剂热稳定性技术。主要结论和创新点如下:
     1)研究了分解温度、凝胶种子率、分解时间、铝酸钠溶液浓度等主要因素对铝酸钠溶液分解析出氢氧化铝过程中分解率、析出氢氧化铝粒度的影响。首次系统研究了凝胶晶种在分解过程中的作用,通过在线检测反应过程中体系的温度变化,结合铝酸钠溶液分解过程中分解液成分分析等,提出了凝胶晶种制备超细氢氧化铝的可能机理。
     2)根据分形理论,将粒度分布维数与超细氢氧化铝粒度分布的质量相关联,系统研究了温度、种子率等主要因素对铝酸钠溶液分解析出超细氢氧化铝粒度分布分维数的影响。发现从铝酸钠溶液中析出超细氢氧化铝的粒度分布具有分形特征,粒度分布宽度与其粒度分布分维数是对应的,粒度分布分维数可为颗粒粒度分布质量提供更为可靠的判据。
     3)系统研究了铝酸钠溶液中Na_2CO_3和Na_2SO_4杂质对铝酸钠溶液分解过程中分解率、析出氢氧化铝粒度分布的影响,对其影响机理进行了分析。Na_2CO_3和Na_2SO_4杂质的存在,降低了铝酸钠溶液的分解率,使分解析出氢氧化铝的粒度粗化,析出氢氧化铝晶体颗粒群的分维数随溶液中碳酸钠和硫酸钠杂质浓度的增加而不断增大。Na_2SO_4对分解率及超细氢氧化铝粒度分布的影响均大于Na_2CO_3。
     4)首次对铝酸钠溶液添加凝胶晶种分解制备超细氢氧化铝动力学进行了系统研究。通过研究分解温度、苛性碱浓度、种子率以及铝酸钠溶液浓度等对分解动力学的影响,得到了铝酸钠溶液添加凝胶晶种分解动力学方程。根据动态光散射粒度检测和扫描电镜结果,提出了种分制备超细氢氧化铝晶体生长机理。
     5)系统研究了电解质分散剂、高分子表面活性剂对超细氢氧化铝粉体的表面电性能、分散稳定性及水基浆体流变性的影响。电解质浓度及种类影响粉体的表面电位值,高价离子对粉体表面电位有较大的影响。添加少量的电解质类分散剂可以使粉体依靠静电排斥机制而分散。另外,浆体中加入适量的无机电解质和高分子表面活性剂可以改善浆体的流变行为,降低浆体表观粘度,并提出了添加剂对浆体流变性影响的作用机理。
     6)研究了超细氢氧化铝粉体颗粒形貌控制技术。通过在铝酸钠溶液分解过程中添加少量的多羟基或羧基类有机添加剂作为晶习改性剂,控制晶体的生长,制取了片状氢氧化铝;采用微乳液法,使氢氧化铝晶体在模板剂的作用下定向生长,制备出了球形的微米级氢氧化铝,并研究了有机添加剂对晶体生长过程的影响机理。
     7)紧密结合现有的氢氧化铝生产流程,开发了以单流反向加料、添加分散剂和有机改性剂为关键技术的高热稳定性氢氧化铝镁复合阻燃剂制备新工艺,解决了超细粉体的分散与团聚问题,提高了无机材料与有机高分子材料间的相容性,为改善超细氢氧化铝阻燃剂的使用性能提供了经济可行的技术。
Super-fine aluminum hydroxide is mainly produced by seeded precipitation from sodium aluminate solution in China. There are many shortcomings in that the particle size of the products is too widely distributed and morphology of particles can not be controlled effectively during the production process of super-fine aluminum hydroxide. Aluminum hydroxide is easily decomposed when it is mixed with hot organic polymer materials. Its lower decomposition temperature limits its application performance and application field. In order to solve the problems presented in the production and application of super-fine aluminum hydroxide, preparation process of super-fine aluminum hydroxide was studied systematically and the technique for the improvement of its thermal stability was developed in this dissertation.
     Laser particles size analyzer, scanning electron microscopy(SEM), zeta potential analyzer, dynamic light scatter particle size analyzer, slurry dispersion stability analyzer, energy dispersive spectrometer(EDS) and other measure methods were utilized to study the precipitation process of super-fine aluminum hydroxide from sodium aluminate solutions with gel-seed, the technology for the control of particle morphology and for the enhancement of the decomposition temperature of super-fine aluminum hydroxide was developed. The main conclusions and innovations are as follows:
     1) The effects of the main factors such as precipitation temperature, gel-seed ratio, precipitation time and the concentration of the solution etc on the precipitation ratio and the particle size of the precipitated aluminum hydroxide from sodium aluminate solution were investigated. The action of gel-seeds in the precipitation process was studied for the first time, the possible mechanism for the precipitation of super-fine aluminum hydroxide from sodium aluminate solution with gel-seeds was proposed based on the temperature change and the analysis results of the liquors.
     2) According to fractal theory, the granularity distribution quality of super-fine aluminum hydroxide was associated with its fractal dimension of particle size distribution (PSD).The effects of the main process parameters, namely precipitation temperature, gel-seed amount, precipitation time and the concentration of the solution, on the PSD of super-fine aluminum hydroxide precipitated from sodium aluminate solution were investigated. It was found that the PSD of aluminum hydroxide precipitated from the liquor had the fractal characteristics of particle group, the results of PSD were in correspondent with its fractal dimension. So the fractal dimension of PSD can provide a credible criterion to the quality of the PSD.
     3) The influence of the impurities of sodium carbonate and sodium sulfate in sodium aluminate solution on the precipitation ratio and the PSD of super-fine aluminum hydroxide precipitation was studied, and their impact mechanism on PSD was analyzed. Both sodium carbonate and sodium sulfate in sodium aluminate solution could reduce the precipitation ratio and make the size of aluminum hydroxide precipitation coarser. The fractal dimension of PSD went up with the increase of the concentration of sodium carbonate or sodium sulfate. Sodium sulfate had greater effect on the precipitation ratio and PSD than sodium carbonate.
     4) Kinetics of super-fine aluminum hydroxide precipitation from sodium aluminate solution with gel-seed was studied. By studying the effects of precipitation temperature, the concentration of caustic soda, gel-seed ratio and the concentration of solution on the seeded precipitation kinetics, kinetic equation of super-fine aluminum hydroxide seeded precipitation from sodium aluminate solution was put forward. Based on the results of dynamics light scatter and SEM, the crystal growth mechanism of super-fine aluminum hydroxide from sodium aluminate solution with gel-seeds was obtained.
     5) The surfacial electrical property of super-fine aluminum hydroxide and the rheological behavior of its aqueous suspension were studied. It was found that both the content and the category of electrolytes affected the surfacial electrical property and surfacial potential. Highly charged ions had greater effect on the surface potential. The addition of small amount of electrolytes could make the super-fine powder disperse better by electrostatic repulsion. Proper amount of inorganic electrolytes and macromolecule surfactants in the slurry could improve its rheological behavior and reduce its viscosity. The mechanism how additives affected the rheology of the slurry was explored.
     6) The technology for the control of the morphology of super-fine aluminum hydroxide by seeded precipitation was developed. Super-fine aluminum hydroxide with plate shape was prepared via adding a small amount of organic additives with hydroxyl groups or carboxyl groups which acted as the crystal habit modifier agents for the control of the growth of aluminum hydroxide crystal. Spherical super-fine aluminum hydroxide was prepared with micro emulsion where aluminum hydroxide crystals could grow directionally under the mediating of organic templates. The action mechanism of organic additives on the crystal growth of aluminum hydroxide was also investigated.
     7) Combining with the current production process of aluminum hydroxide in China, a novel method to prepare aluminum magnesium hydroxide composite flame retardant with high thermal stability was developed with the key technologies such as adverse feeding with single flow, addition of dispersants and surface modifier additives. The difficulties namely dispersion and aggregation of super-fine powder were overcome, and the compatibility between inorganic material and organic polymer material was enhanced. The economical and feasible technology to improve the application performance of super-fine aluminum hydroxide flame retardant was provided.
引文
[1]聂福德,李凤生,宋洪昌,等.超细粉体在液相中的分散性研究进展[J].化工进展,1996(4):24-28
    [2]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [3]李学峰,陈绪煌,周密.氢氧化铝阻燃剂在高分子材料中的应用[J].中国塑料.1999,13(6):80-84
    [4]柳学义,刘亚青,卫芝贤.超细氢氧化铝粉末的制备及其阻燃性能[J].化工进展,2006,25(2):218-222.
    [5]欧育湘.国外无卤阻燃剂最新研究进展[J].精细与专用化学品,2000(9):7-8
    [6]强娜,陶海霞,林良勇.超细无机阻燃粉体的研究进展[J].惠州学院学报,2007(6):54-57
    [7]吴金坤.氢氧化铝的精细化及其在无卤化阻燃技术中的应用[J].化工进展,1999(2):50-53
    [8]朱红,王芳辉.干燥方法对氢氧化铝和氧化铝形貌的影响[J].北方交通大学学报,2004,28(3):56-59
    [9]陈海焱,陈文梅.超细粉颗粒形貌控制技术的研究[J].金刚石与磨料磨具工程,2003(4):65-68.
    [10]李小斌,龙远志,杨重愚,等.铝酸钠溶液晶种分解动力学初步研究[J].轻金属,1988(11):10-13.
    [11]毕诗文,薛红,杨毅宏,等.拜耳法铝酸钠溶液分解动力学[J].中国有色金属学报,1998,8(1):131-134.
    [12]方敬东,吴素芳,王樟茂.铝酸钠溶液分解反应研究[J].高校化学工程学报,2002,16(1):33-36,59
    [13]陈国辉,陈启元,尹周澜等.铝酸钠溶液晶种分解过程中的分形动力学[J].中南工业大学学报(自然科学版),2002,33(2):157-159
    [14]Mordini J,Cristol B.Mathematical model of alumina trihydrate precipitation from Bayer aluminate liquors[A].Proceedings of 4th Yugoslav International Symposium on Aluminum Titograd[C],1982:82-85.
    [15]C.Vernon,G.Parkinson,D.Lau.Towards a fundamental rate equation for gibbsite growth in Bayer Liquors[A],Proceedings of the Fifth Alumina Quality Workshop[C],Bunbury,Australia,1999:129-139.
    [16]Audet D R.,Larocque J E.Development of model for prediction of productivity of alumina hydrate precipitation[J].Light Metals,1989:21-31.
    [17]King WR.Some studies of alumina trihydrate precipitation kinetics[J].Light Metals,1973:551-563.
    [18]Crama W.J.,Visser J.Modeling and computer simulation of alumina trihydrate precipitation[J].Light Metals,1994:73-82.
    [19]李小斌,陈滨,周秋生,等.铝酸钠溶液碳酸化分解过程动力学[J].中国有色金属学报,2004,14(5):848-853.
    [20]赵苏,毕诗文,杨毅宏,等.种分过程添加剂对氢氧化铝粒度强度的影响[J].东北大学学报(自然科学版),1998,8(1):131-134.
    [21]Vadim A L,Viktor I D,Andrey A K.Special requirements to aluminum hydroxide of non-metallurgical application[J].Light Metals,2002:169-173.
    [22]L.D.HART.Alumina Chemicals science and technology handbook[M].Published by The American Ceramic Society,US,Ohio,1990
    [23]卢立山,刘妍,姜春贤.超细改性Al(OH)_3阻燃剂的研究[J].弹性体,1998(4):20-23
    [24]裴秀中.氢氧化铝超细粉体填料表面改性[J].安徽工业大学学报,2003,20(2):133-134
    [25]刘丽君,郭奋,陈建峰.纳米氢氧化铝阻燃剂表面改性及其在聚丙烯中的应用[J].中国塑料,2004,18(2):74-77
    [26]A.H.Landrock.Handbook of Plastics Flammability and Combustion Toxicology[M].New Jersey,USA Noyes Publication,1983:20.
    [27]黄东,南海,吴鹤.氢氧化铝的阻燃性质与应用研究[J].材料开发与应用,2004,19(3):33-37
    [28]邓邵平.Al(OH)_3对树脂型阻燃剂的阻燃增效作用[J].福建林学院学报,2003,23(1):75-78
    [29]李友凤,罗娟,胡小莲.超细氢氧化铝阻燃剂的应用及发展[J].中国材料科技与设备.2008,5(4):1-3
    [30]赵连权,储绍彬.Al(OH)_3脱水机理研究[J].化工冶金,1991,12(3):269-271
    [31]周文辉.机械磨在氢氧化铝粉碎中的应用[J].有色冶金节能,2004,21(5):53-55
    [32]徐羽展.超细粉体的制备方法[J].浙江教育学院学报,2005(5):53-59.
    [33]薛茹君,陈晓玲,吴玉程.W/O型微乳液在煤矸石制取超细氧化铝中的应用[J].矿产综合利用,2008(2):34-37
    [34]陆胜,方荣利,解晓斌.W/O型微乳液碳化法制备超细氢氧化铝与氧化铝粉体[J].无机盐工业,2003,35(5):18-20
    [35]甘礼华,岳天仪.微乳液法制备Y-Al_2O_3超细粉及其表征[J].同济大学学报(自然科学版),1996,24(2):194-197
    [36]陈龙武,周恩绚.微乳液反应法制备氧化铝(含水)超细微粒[J].高等学校化学学报,1995,16(1):13-16
    [37]宁桂玲,林源.醇盐水解制备Al_2O_3纳米粉的先驱物体系及控制工艺研究[J].大连理工大学学报,1997,37(3):269-274.
    [38]刘卫,吴贤熙,陈肖虎,等.醇盐水解工艺制备超微细氢氧化铝的研究[J].轻金属,2004(1):11-13
    [39]李友凤,罗娟,周继承,等.螺旋通道型旋转床制备纳米氢氧化铝的研究[J].材料导报,2006,20(F11):181-184
    [40]李艳,刘有智,张丽萍.超重力法制备纳米材料的研究现状[J].化学工业与工程技术,2006,27(3):4-6
    [41]张立新,刘有智.超重力场中合成超细Al(OH)_3的粒度控制研究[J].化学工程师,2001(2):10-11
    [42]张鹏远,公延明,陈建峰.超重力碳分制备纳米氢氧化铝[J].华北工学院学报.2002,23(4):235-239
    [43]卫芝贤,胡双启,金宠,等.室温固相法制备高纯超细氢氧化铝[J].应用基础与工程科学学报,2003,11(2):122-125
    [44]张泽强,胡文祥,沈上越.超声波雾化碳分法制备纳米氢氧化铝[J].化工进展,2007,26(5):699-701.
    [45]李淑萍.用碳分法制备超细氢氧化铝[J].山西化工,2002,22(2):46-47
    [46]裴秀中.碳分法制取超细氢氧化铝粉体[J].上海化工,2004,29(2):30-32
    [47]林齐,张磊.二段种分法生产超细氢氧化铝微粉[J].轻金属,2002(10):15-17
    [48]权昆,刘亚平,李小斌,等.超细氢氧化铝研制生产[J].有色矿冶,2004,20(4):48-51
    [49]杨长付,程宝玲,董增分.两段种子分解法制备超细氢氧化铝微粉工艺研究[J].中国粉体技术,2008,14(5):26-29
    [50]陈肖虎,张春.晶种分解法制以超细氢氧化铝粉实验[J].贵州科学,1999,17(3):190-193.
    [51]J.K.Pradhan,P.K.Gochhayat,I.N.Bhattacharya,et al.Study on the various factors affecting the quality of precipitated non-metallurgical alumina trihydrate particles[J].Hydrometallurgy,2001,60(2):143-153
    [52]I.N.Bhattacharya,J.K.Pradhan,E K.Gochhayat,et al.Factors controlling precipitation of finer size alumina trihydrate[J].International Journal of Mineral Processing,2002,65(2):109-124
    [53]王建立,和凤枝,陈启元.阻燃剂用超细氢氧化铝的制备、应用及展望[J].中国粉体技术,2007,13(1):38-42
    [54]吴健松,李海民.无机盐超细粉体制备技术的回顾与展望[J].盐湖研究,2004,12(3):50-54
    [55]杨致芬,郭春绒.超重力技术研究进展[J].安徽农业科学,2008,36(20):8432-8435
    [56]邹海魁,邵磊,陈建峰.超重力技术进展——从实验室到工业化[J].化工学报,2006,57(8)):1810-1815
    [57]阳鹏飞,周继承,谢放华.超重力技术在合成纳米材料中的应用[J].材料导报,2004,18(F04):6-8
    [58]高建阳.Al(OH)_3的物化指标对其制品的影响[J].化学工程师,2006(1):62-64
    [59]李立全,梁小伟.我国超细氢氧化铝的生产现状及发展趋势[J].阻燃材料与技术,2003(6):14-17.
    [60]代培刚,刘志鹏,陈英杰,等.无机阻燃剂发展现状[J].广东化工,2008,35(7):62-64
    [61]汪关才,卢忠远,胡小平,等.在塑料中应用的无机阻燃剂研究进展[J].现代塑料加工应用,2007,19(1):62-64
    [62]王二星,刘焦萍,武福运.氢氧化铝在造纸及有机材料领域的应用[J].非金属矿,1999,22(5):27-29
    [63]杨占明,宁云峰,江基旺.化学品氧化铝[M].香港:世华天地出版社,2004.
    [64]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1993(第二版)
    [65]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2006.
    [66]陈滨,吴晓华,李小斌,等.铝酸钠溶液晶种分解过程宏观动力学的研究进展[J].甘肃冶金,2006,28(3):1-4.
    [67]C.Misra,E.T.White.Crystallisation of bayer aluminum trihydroxide[J].Journal of Crystal Growth,1971,8(2):172-178.
    [68]N.Brown.Crystal growth and nucleation of aluminum trihydroxide from seeded caustic aluminate solutions[J].Journal of Crystal Growth,1972,12(1):39-45
    [69]C Misra,E T White.Kinetics of crystallization of aluminum trihydroxide from seeded caustic aluminate solution[J].Chemical engineering progress symposium Series,1970,110:53-56.
    [70]A Halfon,S Kaliaguine.Alumina trihydrate crystallization part 1:Secondary nucleation and growth rate kinetics[J].The Canadian Journal of Chemical Engineering,1976,54(6):160-167.
    [71]T.G Pearson.The chemical background to the aluminum industry[M].London:Royal Institute of Chemistry Monograph,1955.50-55.
    [72]E.T White,S.H.Bateman.Effect of caustic concentration on the growth rate of Al(OH)_3 particles.Light metals,1988:157-162
    [73]S.Veesler,R.Boistelle.Growth kinetics of hydrargillite Al(OH)_3 from caustic soda solutions[J].Journal of Crystal Growth,1994,142(1-2):177-183.
    [74]Huixin Li,Jonas Addai-Mensah,John C.Thomas,et al.The influence of Al(Ⅲ)supersaturation and NaOH concentration on the rate of crystallization of Al(OH)_3precursor particles from sodium aluminate solutions[J].Journal of Colloid and Interface Science.2005,286(2):511-519.
    [75]N.Brown.A quantitative study of new crystal formation in seeded caustic aluminate solutions[J].Journal of Crystal Growth,1975,29(3):309-315.
    [76]Jun Li,Clive A.Prestidge,Jonas Addai-Mensah.Secondary nucleation of gibbsite crystals from synthetic Bayer liquors:effect of alkali metal ions[J].Journal of Crystal Growth,2000(219):451-464
    [77]I.Nikoli,D.Blei,N.Blagojevi,V.Radmilovi,et al.Influence of oxalic acid on the kinetics of Al(OH)_3 growth from caustic soda solutions[J].Hydrometallurgy,2004,74(1-2):1-9
    [78]P.G.Smith,H.R.Watling,P.Crew.The effects of model organic compounds on gibbsite crystallization from alkaline aluminate solutions:polyols[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects.1996,111(1-2):119-130.
    [79]Helen Watling.Gibbsite crystallization inhibition:2.Comparative effects of selected alditols and hydroxycarboxylic acids.Hydrometallurgy,2000,55(3):289-309.
    [80]Isabelle Seyssiecq,Stéphane Veesler,Gérard Pèpe,et al.The influence of additives on the crystal habit of gibbsite[J].Journal of Crystal Growth,1999,196(1):174-180.
    [81]Anne-Margot Paulaime,Isabelle Seyssiecq,Stéphane Veesler.The influence of organic additives on the crystallization and agglomeration of gibbsite[J].Powder Technology,2003,130(1-3):345-351.
    [82]李洁,陈启元,尹周澜.过饱和铝酸钠溶液中氢氧化铝自发成核动力学规律的研究[J].高等学校化学学报,2003,24(9):1652-1656
    [83]周秋生,李小斌,彭志宏.高浓度铝酸钠溶液分解动力学研究[J].中南大学学报,2004,35(4):557-561
    [84]LI Xiaobin,LIU Zhijian,XU Xiaohui,et al.Model of apparent crystal growth rate and kinetics of seeded precipitation from sodium aluminate solution[J].J.CENT.SOUTH UNIV.TECHNOL.2005,12(6):662-666
    [85]Jishu Zeng,Zhoulan Yin,Qiyuan Chen.Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether[J].Hydrometallurgy,2007,89(1-2):107-116
    [86]赵继华,陈启元.超声场对种分反应动力学过程的影响[J].中国有色金属学报,2002,12(4):822-826
    [87]孙素琴,胡鑫尧,洪梅,等.NIR FT-Raman研究铝酸钠溶液的碳酸化过程.光谱学与光谱分析,1994,14(5):35-37
    [88]张声俊,孙素琴,胡鑫尧,等.铝酸钠溶液碳酸化过程的红外光谱研究.光谱学与光谱分析,1996,16(4):21-23
    [89]Andrea R.Gerson,John Ralston,Roger St.C.Smart.An investigation of the mechanism of gibbsite nucleation using molecular modelling[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,110(1):105-117.
    [90]James A.Counter,Jonas Addai-Mensah,John Ralston.The formation of Al(OH)_3crystals from supersaturated sodium aluminate solutions revealed by cryovitrification-transmission electron microscopy[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,154(3):389-398.
    [91]Huixin Li,Jonas Addai-Mensaha,John C.Thomas,et al.The crystallization mechanism of Al(OH)_3 from sodium aluminate solutions[J].Journal of Crystal Growth,2005(279):508-520
    [92]Damien R.Harris,Roland I.Keir,Clive A.Prestidge,et al.A dynamic light scattering investigation of nucleation and growth in supersaturated alkaline sodium aluminate solutions(synthetic Bayer liquors)[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,154(3):343-352.
    [93]Sawsan J.Freij,Gordon M.Parkinson.Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors.Hydrometallurgy,2005,78(3-4):246-255
    [94]Sawsan J.Freij,Gordon M.Parkinson,Manijeh M.Reyhani.Direct observation of the growth of gibbsite crystals by atomic force microscopy[J].Journal of Crystal Growth,2004,260(1-2):232-242
    [95]C. Sweegers, M. Plomp, H. C. de Coninck, et al. Surface topography of gibbsite crystals grown from aqueous sodium aluminate solutions[J].Applied Surface Science, 2002,187(3-4):218-234
    [96]D. A. Packter, H. Daill. The Crystallization of Aluminum Trihydroxide (Gibbsite) from Sodium Hydroxide Solution onto Fine Seeds: Physico-chemical Studies on the Internal Structure and Agglomeration of Different Crystal Fractions. Crystal Research and Technology, 2006,17(8): 931 - 937
    [971Tian S. Li, Iztok Livk, Dean Ilievski. Supersaturation and temperature dependency of gibbsite growth in laminar and turbulent flows[J].Jbournal of Crystal Growth, 2003,258(3-4): 409-419
    [98]D.Ilievski. Development and application of a constant supersaturation, semi-batch crystallizer for investigating gibbsite agglomeration [J]. Journal of Crystal Growth, 2001,233(4):846-862.
    [99] D. Ilievski, E.T.White. Agglomeration during precipitation: agglomeration mechanism identification for A1(OH)_3 crystals in stirred caustic aluminate solutions[J].Chemcal Engineering Science, 1994,49(19): 3227-3239
    [100]Clive A. Prestidge, Igor Ameto. Cation effects during aggregation and agglomeration of gibbsite particles under synthetic Bayer crystallisation conditions[J].Journal of Crystal Growth, 2000, 209(4):924-933.
    [101] James Counter, Andrea Gerson, John Ralston. Caustic aluminate liquors: preparation and characterisation using static light scattering and in situ X-ray diffraction [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997,126(2-3): 103-112.
    [102] J. Addai-Mensah. Surface and structural characteristics of gibbsite precipitated from pure, synthetic Bayer liquor [i].Minerals Engineering, 1997,10(1): 81-96.
    [103] J. Addai-Mensah, C. A. Prestidge, J. Ralston. Interparticle forces, interfacial structure development and agglomeration of gibbsite particles in synthetic Bayer liquors[J].Minerals Engineering, 1999,12(6): 655-669
    [104] H. A. Van Straten, M. A. A. Schoonen, R. C. S. Verheul, et al. Precipitation from supersaturated aluminate solutions. IV. Influence of citrate ionsJournal of Colloid and Interface Science, 1985,106(1): 175-185.
    [105] Sean Fleming, Andrew Rohl, Meiyin Lee, et al. Atomistic modelling of gibbsite: surface structure and morphology [J].Journal of Crystal Growth, 2000, 209(1): 159-166.
    [106]李洁.过饱和铝酸钠溶液结构及分解机理的研究[D].长沙:中南大学,2002
    [107]陈启元,等.有色金属基础理论研究—新方法与新进展[M].北京:科学出版社,2005.
    [108]欧育湘,房晓敏.美国、西欧、日本阻燃剂市场的特点和发展动向[J].阻燃材料与技术,2007(1):1-5
    [109]李裕,刘有智,张艳辉.超细Al(OH)_3粉体防团聚的实验研究[J].华北工学院学报,2003,24(6):409-411.
    [110]刘立华.环保型无机阻燃剂的应用现状及发展前景[J].化工科技市场,2005(7):8-11.
    [111]郑水林,四季春,路迈西.无机复合阻燃填料的开发及阻燃机理研究[J].材料科学与工程学报,2005,23(1):60-62
    [112]桑俊利,赵洪,张键,等.氢氧化铝粉体表面化学改性的研究[J].无机盐工业,2005,37,(8):15-18
    [113]刘昊,才庆魁,张宁,等.超细粉体的表面改性研究进展[J].沈阳大学学报,2007,19(2):16-18
    [114]马淑花,郭备,陈建峰.氢氧化铝的化学改性研究[J].北京化工大学学报.2004,31(4):19-22
    [115]N.Brown,M.Aggleton.Nonhygroscopic thermally stable aluminum hydroxide [P].US6280839,2001.08.28
    [116]N.Brown,M.Aggleton.Thermally stable aluminum hydroxide[P].US 6514477:2003.02.04
    [117]周向阳,李昌林,霍登伟,等.磷酸改性处理后氢氧化铝的热稳定性[J].中国有色金属学报,2006,16(12):2115-21 18
    [118]ZHOU Xiangyang,LI Changlin,HUO Dengwei,et al.Thermal stability and oil absorption of aluminum hydroxide treated by dry modification with different modifiers.Transactions of Nonferrous Metals Society of China,2008,(4):908-912
    [119]K.Daimatsu,H.Sugimoto,Y.Kato,et al.Preparation and physical properties of flame retardant acrylic resin containing nano-sized aluminum hydroxide[J].Polymer Degradation and Stability,2007,92(8):1433-1438
    [120]高艳阳.碱式碳酸铝镁的制备[J].华北工学院学报,2001,22(1):54-56
    [121]远忠森,杨丽梅,刘水根.共沉淀法制备Sb_2O_3-Al(OH)_3复合阻燃剂[J].有色金属,1996,48(1):64-68
    [122]陈加娜,叶红齐,谢辉玲.超细粉体表面包覆技术综述[J].安徽化工,2006(2):12-16
    [123]陈启元,曾文明,张平民,等.几种铝化合物的热力学性质[J].金属学报,1996,32(1):6-14
    [124]尹强,杨毅,丁中建,等.超细复合粒子制备技术研究[J].中国粉体技术,2002,8(6):40-43.
    [125]付延明,李凤生.包覆式超细复合粒子的制备[J].火炸药学报,2002(1):33-35.
    [126]关毅,程琳俨,张金元.非均相沉淀法在无机包覆中的应用[J].材料导报,2006,20(7):88-71
    [127]宋彦梅,衣守志.氢氧化镁的生产及应用技术进展[J].海湖盐与化工.2006,35(2):15-18
    [128]刘立华,张建扬,张连瑞,等.氢氧化镁阻燃剂的应用现状及前景展望[J].化工科技市场,2006,29(3):29-31
    [129]庞卫锋,陆强,汪瑾,等.超细氢氧化镁的制备工艺与方法研究进展[J].化学世界,2005(6):376-378
    [130]张清辉,郑水林,张强,等.水镁石基复合阻燃剂制备工艺研究[J].塑料工业,2006,34(6):57-59
    [131]李少康.无机镁铝阻燃剂及其应用发展趋势浅析[J].无机盐工业.2003,35(3):11-14
    [132]卢寿慈.工业悬浮液—性能,调制及加工[M].北京:化学工业出版社,2003
    [133]沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1991.
    [134]H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯著.吴大诚,古大治译校.流变学导引[M].北京:中国石化出版社,1992
    [135]M.Plavsic,I.P.Lijakovic.Examination of rheological properties of fine particle dispersions as carriers for controlled drug release[J].Materials Science Forum,1998,(282):281-288
    [136]K.L.Konan,C.Peyratout,M.Cerbelaud,et al.Influence of two dispersants on the rheological behavior of kaolin and illite in concentrated calcium hydroxide dispersions[J].Applied Clay Science,2008,42(1-2):252-257.
    [137]C.Galassi,E.Roncari.Influence of magnesia addition on the rheological properties of mullite suspensions[J].Journal of the American Ceramic Society,1999,82(12):3453-3458.
    [138]N.Gungor,O.I.Ece.Effect of the adsorption of non-ionic polymer poly(vinyl)pyrolidone on the rheological properties of Na-activated bentonite[J].Materials Letters,1999,39(1):1-5
    [139]芦令超,申玉芳,常钧,等.氧化铝陶瓷料浆流变性的研究[J].硅酸盐通 报,2003(4):36-40
    [140]杨金龙,谢志鹏,汤强,等.α-Al_2O_3悬浮体的流变性及凝胶注模成型工艺的研究[J].硅酸盐学报,1998,26(1):41-43
    [141]韦园红,王相田,刘洪来,等.超细γ-Al_2O_3悬浮液的流变性研究[J].华东理工大学学报,1999,25(5):518-520
    [142]仝建峰,陈大明.中性水基氧化铝陶瓷料浆的流变学研究[J].航空材料学报,2002,22(1):54-56
    [143]张战营,孙承绪,古宏晨.添加剂对氧化铝微粉——水浓悬浮液流变行为的影响[J].华东理工大学学报,1999,25(1):63-66
    [144]周丽敏,郭露村.分散剂对超细α-Al_2O_3浆料流变性的影响[J].硅酸盐学报,2003,31(11):1075-1079
    [145]任俊,卢寿慈.在水介质分散剂对微细颗粒分散作用的影响[J].北京科技大学学报,1998,20(1):7-10
    [146]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003.10
    [147]仝建峰,陈大明.影响氧化铝水基料浆流变学特性的关键因素[J].硅酸盐学报,2007,35(10):1323-1326
    [148]Paul J.Bruinsma,Yong Wang,X.Shari Li,et al.Rheological and solid-liquid separation properties of bimodal suspensions of colloidal gibbsite and boehmite[J].Journal of colloid and interface science,1997,192(1),16-25.
    [149]Clive A.Prestidge,Igor Ametov,Jonas Addai-Mensah.Rheological investigation of gibbsite particles in synthetic Bayer liquors[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,157(1-3):137-145.
    [150]梁磊,郭奋.碳分纳米氢氧化铝悬浮液的流变行为与纳米粒子团聚[J].北京化工大学学报(自然科学版).2006,33(2):17-22
    [151]梁磊,郭奋,曹亚鹏.纳米氢氧化铝的分散与水悬浮液流变研究[J].北京化工大学学报(自然科学版),2006,33(5):1-5
    [152]曹亚鹏,郭奋,梁磊,等.高浓度水热法制备改性纳米氢氧化铝及流变性能[J].化工进展,2007,26(5):674-678.
    [153]李峙,王树伦,张清辉,等.塑料用无机阻燃剂及其处理技术研究现状[J].工程塑料应用,2008,36(9):78-81
    [154]王锡臣,李帅,张直.无机阻燃剂在塑料中的应用现状[J].无机盐工业,2008,40(4):1-4
    [155]崔隽,姜洪雷,吴明艳,等.阻燃剂的现状与发展趋势[J].山东轻工业学院学 报,2003,17(1):14-17
    [156]Douglas A.Barlow,James K.Baird,Chinghua Su.Theory of the von Weimarn rules governing the average size of crystals precipitated from a supersaturated solution[J].Journal of Crystal Growth,2004,264(3):417-423
    [157]Sugimoto T.Preparation of mono-dispersed colloidal particles[J].J.Colloid Interface Sci.,1987(2):25
    [158]张昭,彭少方,刘栋昌.无机精细化工工艺学[M].北京:化学工业出版社,2002.6(第一版)
    [159]天津大学物理化学教研室编.物理化学[M](下册).北京:高等教育出版社,1990(第二版)
    [160]刘彩玫,王建立.铝酸钠溶液中Nc、Ns对晶种分解的影响[J].轻金属,2000,(7):22-24.
    [161]王熙慧,于海燕,卢东,等.硫酸钠对铝酸钠溶液种分过程的影响[J].材料与冶金学报,2007,6(3):184-187
    [162]陈巧英,午新威,李教.拜耳法铝酸钠溶液中有机物的来源及危害[J].有色金属分析通讯.2003(2):12-15
    [163]陆厚根.粉体技术导论[M].上海:同济大学出版社,1998,3第二版.
    [164]Mandelbrot B B.Fractal:form,chance and dimension[M].New York:Freeman,1977.
    [165]王东生,曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995
    [166]韩敏芳,杨翠柏.纳米粉体粒度特性表征方法讨论[J].中国非金属矿工业导刊,2003,(4):30-40.
    [167]蒋建忠.颗粒群粒度分布宽度表示方法的研究[J].过虑与分离,2006,16(1):21-23.
    [168]胡小芳,林丽莹,吴成.水泥颗粒群粒度分布宽度的表征及其应用研究[J].硅酸盐通报,2007,16(5):998-1002
    [169]Tyler SW,Wheatcraft SW.Fractal scaling of soil particle-size distributions:analysis and limitations[J].Soil Sci.Sco.Am J.,1992(56):326-369.
    [170]郁可,郑中山.粉体粒度分布的分形特征[J].材料研究学报,1995,18(3):539-542.
    [171]胡小芳,胡大为,吴成宝.多孔介质颗粒群的粒径分布分形维研究——土壤中粘土颗粒群粒径分布分形维的数字显微分析[J].华南理工大学学报(自然科学版),2006,34(5):99-102.
    [172]谢世鹢,佟立彬.硫酸钠对铝酸钠溶液分解过程影响的研究[J].沈阳化工学院 学报,2003,17(1):29-32.
    [173]王凤春,朱兴松,张显友.制备条件对Al(OH)_3超细粒子尺寸及分布的影响[J].哈尔滨理工大学学报,2003,8(1):79-83
    [174]王玉.超细氢氧化铝生产方法[J].轻金属,2008(7):17-19
    [175]李太昌.超细氢氧化铝晶种制备研究[J].轻金属,2003(6):9-12
    [176]上官正.高活性氢氧化铝晶种的制备[J].轻金属,1995,8:12-15
    [177]W.C.Sleppy,Pearson,A.,Misra C.,et al.Nonmetallurgical use of alumina and bauxite[J].Light Metals,1991:117
    [178]S.P.Rosenberg,S.J.Healy.A thermodynamic model for gibbsite solubility in Bayer liquor[A].Proceedings of the Fourth Alumina Quality Workshop,Darwin,Australia,1996:301-310
    [179]C.Misra.Solubility of aluminum trihydroxide(hydrargilite)in sodium hydroxide solution[J].Chem.Eng.1970(20):619-628.
    [180]C.Skoufadis,D.Panias,I.Paspaliaris.Kinetics of boehmite precipitation from supersaturated sodium aluminate solutions[J].Hydrometallurgy,2003(68):57-68
    [181]F.Farhadi,M B Babaheidary.Mechanism and estimation of Al(OH)_3 crystal growth[J]Journal of Crystal Growth,2002,234(4):721-730
    [182]Low G.Agglomeration effects in aluminum trihydroxide precipitation[D].Queensland:University of Queenland,1975
    [183]Overbey T L,Scott C E.Characterization of Bayer plant liquors and seeds-Utilizing a mathematical model for precipitation[J].Light Metals,1978:163-168
    [184]谢雁丽,吕子剑,毕诗文,等.铝酸钠溶液晶种分解[M].北京:冶金工业出版社,2003:138-139.
    [185]CHEN Jinqing,ZHANG Pingmin,GAN Guoyao,et al.Kinetics of crystal growth on seeded precipitation of sodium aluminate solutions with new device[J].Trans.Nonferrous Met.Soc.China.2004,14(4):824-828
    [186]江体乾.工业流变学[M].北京:化学工业出版社,1995.
    [187]J.Gustafsson,E.Nordenswan,J.B.Rosenholm.Effect of pH on the sedimentation,z-potential,and theology of anatase suspensions[J].Colloids and Surfaces A:Physicochemical.Eng.Aspects,2003(212):235-247
    [188]姚超,高国生,林西平,等.氢氧化铝对纳米TiO_2的表面包覆[J].应用化学,2005,22(7):759-762
    [189]秦麟卿,吴伯麟,孙振亚,等.α-Al_2O_3颗粒形貌及其陶瓷显微结构的分析[J].电子显微学报,2000(4):481-482
    [190]天津大学化工原理教研室编.化工原理[M](上册).天津:天津科学技术出版社,1983
    [191]Gebhard Schramm.李晓辉译.实用流变测量学[M].北京:石油工业出版社.1998
    [192]Fann Instrument Company.Model 286 Pheometer Instruction Manual.Houston,USA,1995
    [193]张颖,侯文生,魏丽乔,等.纳米SiO_2氢氧化铝/十二烷基苯磺酸钠的表面包覆改性[J].材料导报,2006,160(F05):175-177
    [194]郑忠.胶体科学导论[M].北京:高等教育出版社.1989.
    [195]H.Herschel,R.Buckley.Proc.Am.Soc.Test Mater[J].1926,26(2):621-623
    [196]王步国,施尔畏,仲维卓,等.晶体的习性机制与实际形态控制[J].人工晶体学报,1997,26(3):198
    [197]Tadao Sugimoto,Hiroyuki Itoh,Takeaki Mochida.Shape control of mono-disperse hematite particles by organic additives in the gel-sol system[J].Journal of Colloid and Interface Science,1998,205(1):42-52.
    [198]常玉芬,沈国良,宁桂玲,等.异丙醇体系中多形态氧化铝纳米粒子的制备研究[J].材料科学与工程学报,2004(22),2:172-175
    [199]陈磊,陈建敏,周惠娣.微乳化技术在无机纳米材料制备中的应用及发展[J].材料科学与工程学报,2004,1(22):138-141
    [200]易求实.反向沉淀法制备纳米Mg(OH)_2阻燃剂的研究[J].化学试剂,2001,23(4):197-199
    [201]Lamer V K,Dinegar R T.Theory production and mechanism of formation of monodispersed hydrosols[J].J.Am.Chem.Soc.,1950,72(11):4847
    [202]丁绪淮,谈道.工业结晶[M].北京:化学工业出版社,1998.
    [203]陈浩,旷成秀,胡光耀.化学共沉淀法制备氢氧化铝镁溶胶的研究[J].江西化工,2006(2):15-18
    [204]谢凤宽,陈晓磊,庄书娟.液相沉积法表面包覆改性纳米陶瓷微粒及机理研究进展[J].材料导报,2006(20专辑):153-155
    [205]张巨先,侯耀永.非均匀成核法涂覆改性纳米SiC粉体表面研究[J].硅酸盐学报,1998,26(6):762
    [206]Zhang Rui,Gao Lian,Guo Jingkun.Temperature-sensitivity of coating copper on sub-micron silicon carbide particles by electroless deposition in a rotation flask[J].Surf.Coat Techn.,2003(166):67
    [207]Zhang Juxian,Gao Longqiao.Nanocomposite powders from coating with heterogeneous nucleation processing[J].Ceram.Int.,2001,27:143
    [208]魏明坤,肖辉,刘利.Al_2O_3包覆石墨颗粒的制备及表征[J].硅酸盐学报,2004,32(8):916-919
    [209]郑敏珠,卢晗锋,刘华彦,等.表面活性剂水热改性氢氧化镁表面性质[J].无机盐工业,2008,40(7):16-18
    [210]刘立华,宋云华,陈建铭,等.硬脂酸钠改性纳米氢氧化镁效果研究[J].北京化工大学学报,2004,31(3):31-33
    [211]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700