用户名: 密码: 验证码:
黄钾铁矾生物合成的影响因素及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸性矿山废水(Acid Mine Drainage, AMD)由于极端酸性和富含有毒有害元素对生态环境造成的巨大影响使其成为环境科学中研究的热点。目前,AMD的治理主要采用中和法、人工湿地法和微生物法等。其中,微生物法处理酸性矿山废水因具有成本低、适用性强、无二次污染等特点而引起了学术界的广泛重视。研究发现,在富含Fe和SO42-的AMD环境下,通过微生物或非生物的作用可形成铁的硫酸盐矿物进而除去其中的有毒有害元素。其中,黄钾铁矾作为AMD中最普遍、也是最为稳定的次生铁矿物形态,因具有较强的吸附和类质同象替换能力而成为一种倍受关注的新型环境矿物材料。本文围绕AMD的治理和次生矿物的形成,在实验室中模拟与AMD类似的酸性硫酸盐环境,通过改变嗜酸性氧化亚铁硫杆菌的反应条件、化学与生物成矿的对比、控制Fe2+氧化速率和外源添加糖类物质模拟细菌胞外多聚物(EPS)的方法,探讨了促进次生矿物形成的途径及其影响机制。
     1、为了研究不同环境和条件对细菌活性和次生矿物形成的影响,本文考察了细菌接种量、休止细胞保存时间、反应起始pH值,添加(NH4)2SO4、NH4HCO3和KHCO3对矿物生成量、亚铁氧化率和总铁沉淀率等的影响,并借助X射线衍射(XRD)等方法对产物进行了分析与鉴定。结果表明:(1)细菌接种量大于75%时,铁沉淀率和矿物生成量已趋于稳定;(2) A.ferrooxidans LX5休止细胞在放置超过7d以后,其氧化Fe2+的能力会有一定程度的减弱,但对后续产物的生成量没有太大影响;(3)反应溶液的起始pH在3.0-2.25范围内对矿物生成基本没什么影响,当溶液的起始pH值降至2.0后,矿物的生成量有显著降低的趋势;(4)适当低浓度的添加NH4+可以为细菌的生长提供营养物质并促进矿物的生成,但提高NH4=浓度反而对矿物的合成有抑制的趋势;(5)向反应体系中添加NH4HCO3,在NH4+和HC03的共同作用下,可以通过调控溶液的pH值和为细菌生长提供氮源和C02的途径促进矿物产量。因此,适当提高细菌接种量、调整溶液pH值和添加NH4+HCO3有利于促进矿物的形成。
     2、次生矿物的形成主要通过生物合成和化学合成两种方法,为了比较这两种方法对次生矿物形成的影响,本文通过A.ferrooxidans生物氧化和H202化学氧化FeSO4的方法合成次生矿物。结果表明:(1)采用生物方法合成的矿物结晶度较好,是纯净的不含其它杂质的黄钾铁矾;而化学方法合成的矿物结晶度较差,为黄钾铁矾和施氏矿物的混合物;(2)化学法氧化Fe2+迅速,可在10min内快速大量的合成矿物;生物法对Fe2+的氧化则相对缓慢的多,需几小时后才开始有矿物生成;(3)化学法合成矿物在反应72h时总铁沉淀率为26.46%,矿物颗粒多为轮廓圆滑的球形,尺寸在2μm左右;生物法合成矿物在反应72h时总铁沉淀率为71.58%,矿物颗粒多为棱角分明的长条形,尺寸在1.5-2μm左右,团聚现象十分明显。
     3、尽管前面的研究表明不同Fe2+氧化方法能够显著影响矿物的形成,但是H202氧化速率过快,容易形成大量的杂质。本文将进一步通过缓慢添加H202的方法,研究H202快速氧化、慢速氧化和生物氧化途径对次生矿物的影响。结果表明:(1)A.ferrooxidans氧化和滴加H202缓慢氧化合成的矿物均为黄钾铁矾,而在反应开始后的一段时间内快速氧化合成的矿物与施氏矿物类似,随着反应时间的延长,H202快速氧化合成的矿物发生了由施氏矿物向黄钾铁矾的相转变。可见,在反应初期,Fe2+的氧化速率越慢越容易形成晶型的黄钾铁矾;而Fe2+的氧化速率过快则容易形成施氏矿物等结晶度较差的矿物,但随着反应时间的延长,会逐渐转变为黄钾铁矾;(2)H202慢速氧化体系中Fe2+的氧化速率和矿物形成量均显著高于生物氧化,在反应结束时,H202慢速氧化形成的矿物较生物氧化体系高约30%;(3)与H202氧化相比,生物氧化体系中含有大量的EPS,这可能是造成生物氧化体系矿物合成量较低的原因。本文采用高速离心剥离EPS的方法,分析了剥离EPS的A.ferrooxidans对Fe2+氧化和矿物生成量的影响。结果发现,剥离前和剥离后的A.ferrooxidans对Fe2+的氧化能力几乎没有差异,但是剥离后的A.ferrooxidans合成的矿物量却高于剥离EPS前的A.ferrooxidans.因此,生物氧化和H202氧化方式能够显著影响次生矿物的形成,并且嗜酸性氧化亚铁硫杆菌分泌的EPS对矿物的形成具有一定的抑制作用,使得矿物生成量和铁的去除率均低于缓慢氧化的反应体系。
     4、为了进一步验证EPS对矿物形成的影响,本文还采用葡聚糖模拟EPS的方法,研究在H202氧化Fe2+体系中不同浓度葡聚糖对次生铁矿物形成的影响。结果表明:(1)葡聚糖抑制了次生矿物的合成;(2)随着葡聚糖浓度的提高,次生矿物内的Fe含量降低,而S含量没有显著变化,且所有处理的K含量均较低;(3)没有葡聚糖处理的次生矿物的XRD特征峰与黄钾铁矾吻合,而添加葡聚糖后形成的次生矿物的特征峰与施氏矿物吻合,但是所有处理的次生矿物的结晶度都不高;(4)随着葡聚糖浓度的提高,次生矿物的颗粒尺寸降低,比表面积增加;(5)葡聚糖作为大分子有机物,所带的负电荷可以结合Fe3+形成配合物,使得参与生成矿物沉淀的Fe3+减少。因此,葡聚糖可以通过结合Fe3+与之形成配合物来抑制次生矿物的合成,并且阻止次生矿物由施氏矿物向黄钾铁矾的转变。
     5、在EPS中除了含有大量的葡聚糖外,还含有一定量的葡萄糖。本文进一步通过采用葡萄糖模拟EPS的方法,研究在H202氧化Fe2+体系中不同浓度葡萄糖对次生铁矿物形成的影响。结果表明:(1)将Fe2(SO4)3溶解后,采用一定浓度的KOH溶液代替K2SO4,调高反应溶液的pH,同时为成矾提供一价阳离子,可在一定程度上推动由Fe3+在常温常压下合成黄钾铁矾的速率;(2)葡萄糖对H202氧化Fe2+成矿和起始供应Fe3+成矿均表现出一定的抑制作用。其中,葡萄糖对起始供应Fe3+成矿的抑制主要表现在培养初期(前72h内);而对H202氧化Fe2+成矿的抑制更主要表现在培养后期(72-168h)。因此,葡萄糖也能在一定程度上抑制Fe2+的氧化和次生矿物的形成。
     全文研究表明,在Fe2+氧化速率较快时,施氏矿物等结晶度较差的矿物是黄钾铁矾的前驱产物。A. ferrooxidans分泌的EPS对矿物的形成具有一定的抑制作用,其中的糖类组分可通过结合Fe3+、隔离分散结晶核、阻碍矿相转变等方式影响矿物的最终产量。由于生物法合成矿物受微生物条件的影响和制约,通过滴加双氧水缓慢氧化Fe2+是一种更为快速有效的沉矾除铁方法。
Acid mine drainage (AMD) is a hot research topic in environmental science area because of its extremely low pH and relatively high contents of heavy metals and metalloid. These characteristics of AMD can have a negative effect on the ecological environment. At present, the treatment of AMD is mainly focused on neutralization method, artificial wet land method, microbe method and so on. Microbe method has attracted much academic attention because of its low cost, high applicability and non-secondary pollution. Previous studies showed that iron sulfate minerals can precipitate in the AMD environment through the microbial or abiotic activity. Jarosite is the most common and stable secondary iron mineral in the AMD environment. As a new environment mineral material, jarosite has drawn special attention because of its strong adsorption and isomorphism replacement capacity.to heavy metals or metalloid.In this study, experiments were conducted in laboratory to study how to efficiently precipitate secondary minerals and its influence mechanism.
     1. In order to study effects of different growth environment and conditions on A.ferrooxidans LX5activity and secondary minerals formation, the effects of inoculating amount, the storage time of resting cells, initial pH of solution,(NH4)2SO4, NH4HCO3and KHCO3on precipitates, Fe2+oxidation rate and soluble Fe removal efficiency were investigated. The results showed that:(1) when inoculating quantity was more than75%, the precipitate weight and soluble Fe removal efficiency had remained stable;(2) although the oxidability of A.ferrooxidans had weakened after conservation in4℃for7d, there was no significant difference in precipitate weight between A.ferrooxidans cells before and after condervation;(3) similar precipitate weight was observed when solution initial pH value varied between2.25to3.0, but it would be significantly decreased when initial pH value was below2.0;(4) addition of appropriate low concentration NH4+could facilitate the formation of secondary mineral for providing nitrogen resources, but high concentration of NH4+would contrarily restrain the formation of secondary mineral;(5) because of their capacity in providing N and CO2resources and adjusting solution pH value, addition of NH4HCO3could facilitate the formation of secondary mineral.
     2. Secondary minerals were mainly formed through chemical and biological methods, in order to study the effects of the two methods on secondary mineral formation, Fe2+was oxidated through both biological methods and addition of H2O2. The results showed that:(1) the precipitate synthesized by bacterial method was pure jarosite and has a high crystallinity, while the precipitates synthesized by chemical method were mixture of jarosite and schwertmannite;(2) the Fe2+oxidation rate in chemosynthesis system was much faster than that in biosynthesis system;(3) in the biosynthesis system, the soluble Fe removal efficiency was about71.58%at72h, while in the chemosynthesis system, it was only26.46%. The mineral particles formed in chemosynthesis system displayed an appearance of small spheroids with a diameter of2μm, while the mineral particles formed in biosynthesis system were angular with a diameter of1.5-2μm. Otherwise, the precipitate formed in biosynthesis system indicates an obvious tendency for its particles to agglomerate.
     3. Although secondary minerals can be formed through chemical methods, there are plenty of impurities in minerals for quick oxidation rate. In this part, H2O2was added slowly to investigate the effects of H2O2oxidation rate on Fe2+oxidation rate and precipitate weight. The results showed that:(1) The XRD patterns and element composition of precipitates synthesized through the biooxidation and the slow oxidation treatments were well coincide with that of potassium jarosite, while precipitates at the initial stage of incubation in the rapid oxidation treatment showed a similar XRD patterns to schwertmannite. With the ongoing incubation, XRD patterns and element composition of the rapid oxidation treatment were transformed to that in the biooxidation and the slow oxidation treatments;(2) the precipitate weight was30%higher in H2O2slow oxidation treatment than in biological treatment;(3) in contrast with chemical oxidation treatment, there was plenty of EPS in biological treatment. That might be the reason for the decreased precipitate formation. In order to analysis the effects of EPS on Fe2+oxidation rate and precipitate weight, A. ferrooxidans was centrifuged to peel off EPS. The results showed that, there was no significant difference in Fe2+oxidation rate between A. ferrooxidans with and without EPS, but the precipitate weight formed by A. ferrooxidans without EPS was higher than formed by that with EPS. Therefore, with the inhibition of A. ferrooxidans and their EPS, the amount of precipitates and soluble Fe removal efficiency were lower in the biooxidation treatment than in the slow oxidation treatment.
     4. In order to reconfirm our hypothesis that EPS can inhibit precipitate formation, different concentrations of dextran were supply and Fe2+oxidation rate and precipitate weight were investigated. The results showed that:(1) dextran restrained the formation of secondary minerals;(2) with increasing dextran concentrations, The content of Fe in secondary minerals was decreased, while the content of S did not vary significantly. The content of K in all treatments was extremely low;(3) XRD pattern of secondary minerals formed without dextran were well coincide with that of jarosite, while those formed with dextran were coincide with that of schwertmannite. But the crystallization of secondary minerals in all treatments was not very good;(4) with increasing dextran concentrations, the particle sizes of secondary minerals were decreased, while specific surface area was increased.(5) as a macromolecular organic substance, dextran can form complex with Fe3+which lead to the decrease of Fe3+participated in the formation of secondary minerals. Therefore, dextran depressed the formation of secondary minerals by forming complex with Fe3+, and restrained the transformation of schwertmannite to jarosite.
     5. Except for dextran, there is also plenty of glucose in EPS. In this part, the effects of different glucose concentrations on the formation of secondary iron minerals were also investigated. The results showed that:(1) addition of KOH instead of K2SO4could not only provide monovalent cations, but also increased pH value of Fe2(SO4)3solution, which would hence facilitate the transformation of Fe3+to jarosite;(2) glucose restrained the formation of precipitate from both Fe2+oxidation system and Fe3+system. The inhibitory effect was observed in the first72h in Fe3+system, while it was observed between72and168h in Fe2+oxidation system. Therefore, glucose can efficiently inhibit secondary minerals formation.
     It was concluded that Fe2+oxidation rate can efficiently affect the mineral phase of precipitates. When Fe2+oxidation rate is relatively high, amorphous minerals such as schwertmannite were the precursor of jarosite. The carbohydrates in the EPS can inhibit the precipitate weight through forming complex with Fe3+, separating crystal nucleus and preventing the transformation of mineral phase. By contrast, slow oxidation treatment is an effective method in jarosite formation with less environmental restriction.
引文
[1]Acero P, Ayora C, Torrento C, Nieto J M. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta,2006,70:4130-4139.
    [2]Ahonen L, Tuovinen O H. Microbial oxidation of ferrous iron at low temperatures. Applied and Environmental Microbiology,1989,55:312-316.
    [3]Akcil A, Koldas S. Acid Mine Drainage (AMD):causes, treatment and case studies. Journal of Cleaner Production,2006,14:1139-1145.
    [4]Baas Becking L G M, Parks G S. Energy relations in the metabolism of autotrophic bacteria. Physiological, Review,1927,7:85-106.
    [5]Baron D, Palmer C D. Stability relations of jarosite and natrojarosite at 150-250℃. Geochimica et Cosmochimica Acta,1993,57:2417-2429.
    [6]Baron D, Palmer C D. Solubility of jarosite at 4-35℃. Geochimica et Cosmochimica Acta,1996, 60:185-195.
    [7]Baron D, Palmer C D. Solid-solution aqueous-solution reactions between jarosite (KFe3(SO4)2(OH)6) and its chromate analog. Geochimica et Cosmochimica Acta,2002,66: 2841-2853.
    [8]Barron J L, Luecking D R. Growth and maintenance of Thiobacillus ferrooxidans cells, Applied and Environmental Microbiology,1990,56:2801-2806.
    [9]Bigham J M, Carlson L, Murad E. Schwertmannite, a new iron oxyhydroxysulfate from pyhasalmi, Finland,and other localities. Mineralogical Magazine,1994,54:2743-2758.
    [10]Bigham J M, Schwertmann U, Carlson L, Murad E. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 1990,54:2743-2758.
    [11]Bigham J M, Schwertmann U, Pfab G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry,1996,11:845-849.
    [12]Buchanan R E, Gibbons N E (Eds.). Bergey's manual of determinative bacteriology,8th edn., Williams & Wilkins, Baltimore,1974.
    [13]Christophe D, Baron D, Navrotsky A. On the thermochemistry of the solid solution between jarosite and its chromate analog. American Mineralogist,2003,88:1949-1954.
    [14]Collins B S, Sharitz R R, Coughlin D P. Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Bioresource Technology,2005,96:937-948.
    [15]Colmer A R, Hinkle E. The role of Microorganisms in Acid Mine Drainage:A Preliminary Report. Science,1947,106:253-256.
    [16]Courtin-Nomade A, Bril H, Neel C, Lenain J F. Arsenic in iron cements developed within tailings of a former metalliferous mine--Enguiales, Aveyron, France. Applied Geochemistry,2003,18: 395-408.
    [17]Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering,2006,19:960-967.
    [18]Davidson L E, Shaw S, Benning L G, The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. American Mineralogist,2008,93: 1326-1337.
    [19]Dempsey B A, Roscoe H C, Ames R, Hedin R, Jeon B H. Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry:Exploration, Environment, Analysis,2001,1:81-88.
    [20]DiSpirito A A, Tuovinen O H. Kinetics of uranous ion and ferrous iron oxidation by Thiobacillusferrooxidans. Archives of Microbiology,1982,133:33-37.
    [21]Drobner E, Huber H, Stetter K O. Thiobacillus ferrooxidans, a facultative hydrogen oxidizer. Applied and Environmental Microbiology,1990,56:2922-2923.
    [22]Drouet C, Navrotsky A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochimica et Cosmochimica Acta,2003,67:2063-2076.
    [23]Dutrizac J E. Factors Affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and Meterials Transactions B,2008,39:771-783.
    [24]Gehrke T, Telegdi J, Thierry D, Sand W. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Applied and Environmental Microbiology,1998,64: 2743-2747.
    [25]Greenway M. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Science and Technology,1997,35:135-142.
    [26]Harrison Jr A P. Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans and genomic comparison with T. thiooxidans. Archives of Microbiology,1982,131:68-76.
    [27]Holuigue L, Herrera L, Philips O M, Young M, Allende J E. CO2 fixation by mineral-leaching bacteria:characteristics of the ribulose biphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans, Biotechnology and Applied Biochemistry,1987,9:497-505.
    [28]Hustwit C C, Ackman T E, Erickson P E. The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environment Research,1992,64:817-823.
    [29]Ingledew W J, Houston A. The organization of the respiratory chain of Thiobacillus ferrooxidans. Biotechnology and Applied Biochemistry,1986,8:242-248.
    [30]Johnson D B. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air and Soil Pollution:Focus,2003,3:47-66.
    [31]Johnson D B, Hallberg K B. The microbiology of acidic mine waters. Research in Microbiology, 2003,154:466-473.
    [32]Johnson D B, Hallberg K B. Acid mine drainage remediation options:a review. Science of the Total Environment,2005,338:3-14.
    [33]Jonsson J, Jonsson J, Lovgren L. Precipitation of secondary Fe(Ⅲ) minerals from acid mine drainage. Applied Geochemistry,2006,21:437-445.
    [34]Jonsson J, Persson P, Sjoberg S, Lovgren L. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry,2005,20: 179-191.
    [35]Kaneco S, Rahman M A, Suzuki T, Katsumata H, Ohta K. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A:Chemistry,2004,163:419-424.
    [36]Kanki T, Hamasaki S, Sano N, Toyoda A, Hirano K. Water purification in a fluidized bed photocatalytic reactor using TiO2-coated ceramic particles. Chemical Engineering Journal,2005, 108:155-160.
    [37]Karamanev D G, Nikolov L N. Influence of some physicochemical parameters on bacterial activity of biofilm:ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnology and Bioengineering, 1988,31:295-299.
    [38]Kawano M, Tomita K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist,2001,86: 1156-1165.
    [39]Kelly D P, Jones C A. Factors affecting metabolism and ferrous iron oxidation in suspensions and batch culture of Thiobacillus ferrooxidans:relevance to ferric iron leach solution regeneration, in: L.E. Murr, A.E. Torma, J.A. Brierly (Eds.), Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, Academic press, New York,1978,19-43.
    [40]Kinzler K, Gehrke T, Telegdi J, Sang W. Bioleaching—a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy,2003,71:83-88.
    [41]Kirby C S, Elder J A, Brady E. Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor. Applied Geochemistry,1998,13:509-520.
    [42]Konhauser K O. Diversity of bacterial iron mineralization. Earth-Science Reviews,1998,43: 91-121.
    [43]Lancy E D, Tuovinen O H. Ferrous ion oxidation by Thiobacillus ferrooxidans immobilised in calcium alginate. Applied and Microbiology Biotechnology,1984,20:94-99.
    [44]Leduc L G, Trevors J T, Ferroni G D. Thermal characterization of different isolates of Thiobucillus ferrooxidans. FEMS Microbiology Letters,1993,108:189-194.
    [45]Lees H, Kwok S C, Suzuki I. The thermodynamics of iron oxidation by the Ferrobacilli, Canadian Journal of Microbiology,1969,15:43-46.
    [46]Lee J E, Kim Y. A quantitative estimation of the factors affecting pH changes using simple geochemical data from acid mine drainage. Environmental Geology,2008,55:65-75.
    [47]Liao Y.H., Liang J.R., Zhou L.X. Adsorptive removal of As(Ⅲ) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere,2011,83:295-301
    [48]Liao Y H, Zhou L X, Liang J R, Xiong H X. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition. Materials Science and Engineering C, 2009,29:211-215.
    [49]Liu M S, Branion R M R, Duncan D W. The effects of ferrous iron, dissolved oxygen, and inert solids concentrations on the growth of Thiobaciltus ferrooxidans. Canadian Journal of Chemical Engineering,1988,66:445-451.
    [50]Lyalikova N N. A study of chemosynthesis in Thiobacillus ferrooxidans. Microbiologiya,1958,27: 556-559.
    [51]MacDonald D G, Clark R H. The oxidation of aqueous ferrous sulphate by Thiobacillus ferrooxiduns. Canadian Journal of Chemical Engineering,1970,48:669-676.
    [52]Manios T, Stentiford EI, Millner P. Removal of heavy metals from a metaliferous water solution by Typha latifolia plants and sewage sludge compost. Chemosphere,2003,53:487-494.
    [53]Michel F M, Ehm L, Antao S M, Lee P L,Chupas P J, Liu G, Strongin D R, Schoonen M A A, Phillips B L, Parise J B. The Structure of Ferrihydrite, a Nanocrystalline Material. Science,2007, 316:1726-1729.
    [54]Nemati M. An evaluation of ferrous sulphate oxidation, using immobilised Thiobacillus ferrooxidans, PhD Thesis, University of Manchester Institute of Science and Technology, UMIST, UK,1996.
    [55]Nemati M, Harrison S T L, Hansford G S, Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects. Biochemical Engineering Journal,1998, 1:171-190.
    [56]Okereke A, Stevens Jr S E. Kinetics of ferrous iron oxidation by Thiobacillus ferrooxidans, Applied and Environmental Microbiology,1991,57:1052-1056.
    [57]Paris F, Balaguer P, Terouanne B, Serbant N, Lacoste C, Cravedi J P, Nicolas J C, Sultan C. Phenylphenols, biphenols, bisphenol-A and 4-tert-octylphenol exhibit α and β estrogen activities and antiandrogen activity in reporter cell lines. Molecular and Cellular Endocrinology,2002,193: 43-49.
    [58]Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control. Minerals Engineering,2000,13:563-574.
    [59]Pesic B, Oliver D J, Wichlacz P. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnology Bioengineering,1989,33:428-439.
    [60]Pronk J T, Bruyn J C, Bos P, Kuenen J G. Anaerobic Growth of Thiobacillus ferrooxidans. Applied and Environmental Microbiology,1992,58:2227-2230.
    [61]Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta,2004,68:1185-1197.
    [62]Roback S S, Richardson J W. The effects of acid mine drainage on aquatic insects. Proceedings of the Academy of Natural Sciences of Philadelphia,1969,121:81-107.
    [63]Espana J S, Pamo E L, Santofimia E, Aduvire O, Reyes J, Barettino D. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain):Geochemistry, mineralogy and environmental implications. Applied Geochemistry,2005,20:1320-1356.
    [64]Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist,2000,38:45-56.
    [65]Sarmiento A M, Oli s M, Nieto J M, Cdovas C R, Delgado J. Natural attenuation processes in two water reservoirs receiving acid mine drainage. Science of the Total Environment,2009,407: 2051-2062.
    [66]Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review. Minerals Engineering,2006,19:105-116.
    [67]Shrihari R K, Gandhi K S. Modelling of Fe2+ oxidation by Thiobacillus ferrooxiduns. Applied Microbiology and Biotechnology,1990,33:524-528.
    [68]Silverman M P, Lundgren D G Studies on the chemoautotrophic iron bacterium Ferroobacillus ferrooxidans:Ⅱ. Manometric studies. Journal of Bacterial,1959,78:326-331.
    [69]Singer P C, Stumm W. Acid mine drainage:the rate determining step. Science,1970,167: 1121-1123.
    [70]Smith J R, Luthy G R, Middleton A C. Microbial ferrous iron oxidation in acidic solution. Journal of Water Pollution Control Federation,1988,60:518-530.
    [71]Temple K L, Colmer A R. The autotrophic oxidation of iron by a new bacterium:Thiobacillus ferrooxidans. Journal of Bacterial,1951,62:605-611.
    [72]Torma A E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering,1977,6:1-37.
    [73]Walker D J, Hurl S. The reduction of heavy metals in a storm water wetland. Ecological Engineering,2002,18:407-414.
    [74]Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Materials Science and Engineering C,2006,26:588-592.
    [75]Wang S M, Zheng G Y, Zhou L X. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Research,2010,44:5423-5431.
    [76]Williams J B. Phytoremediation in wetland ecosystems:progress, problems, and potential. Critical Reviews in Plant Sciences,2002,21:607-635.
    [77]Yu J Y, Heo B, Choi I K, Cho J P, Chang H W. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica et Cosmochimica Acta, 1999,63,3407-3416.
    [78]Yu J Y, Park M, Kim J. Solubilities of synthetic schwertmannite and ferrihydrite. Geochemical Journal,2002,36:119-132.
    [79]车遥,孙振亚,陈敬中,现代沉积环境中铁的微生物矿化作用.高校地质学报,2000,6:278-281.
    [80]陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(Ⅵ)的吸附.中国环境科学,2006,26(1):11-15.
    [81]郝春博,张洪勋,白志辉,张保国,张徐祥.酸性矿山废水区域沉积物中嗜酸菌多样性研究.环境科学,2006,27:2255-2271.
    [82]廖岳华,周立祥.极端酸性环境下形成的施威特曼石(schwertmannite)及其环境学意义.岩石矿物学杂志,2007,26:177-183.
    [83]林亲铁,廖柏寒,杨仁斌.废弃矿山土地、水体综合治理研究进展.环境污染治理技术与设备, 2000,1:7-10.
    [84]刘志勇,陈建中,康海笑,周明罗.酸性矿山废水的处理研究.四川环境,2004,23:50-54.
    [85]罗凯,张建国.矿山酸性废水治理现状研究.资源环境与工程,2005,19:45-49.
    [86]马尧,胡宝群,孙占学.矿山酸性废水治理的研究综述.矿业工程,2006,4:55-57.
    [87]潘科,李正山.矿山酸性废水治理技术及其发展趋势.四川环境,2007,26:83-87.
    [88]饶俊,张锦瑞,徐晖.酸性矿山废水处理技术及其发展前景.矿业工程,2005,3:47-49.
    [89]王长秋,马生凤,鲁安怀,周建工.黄钾铁矾的形成条件研究及其环境意义.岩石矿物学杂志,2005,24:607-611.
    [90]王磊,李泽琴,姜磊.酸性矿山废水的危害与防治对策研究.环境科学与管理,2009,34:82-84.
    [91]王世梅,耐酸性酵母菌加速污泥生物沥浸进程机理研究.博士论文,2007,58-60.
    [92]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报,2005,25(10):1418-1420
    [93]王雅琴,张翠茹,赵素合,吕杰,姜广明,霍瑞明.氧化亚铁硫杆菌的筛选、生长特性及其橡胶再生研究.环境工程学报,2010,4:683-688.
    [94]韦冠俊.矿山环境工程.冶金工业出版社,2001,9:116-117.
    [95]魏榕,黄健.酸性矿山废水的污染与处理研究.能源与环境,2006,2:31-33.
    [96]吴建波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向.中国给水排水,2001,17:24-26.
    [97]杨根祥,沙日娜,乌云高娃.酸性矿山废水的污染与治理技术研究.西部探矿工程,2000.6:51-52.
    [98]余健,邹宗柏,李俊,蔡建安.矿山酸性废水的综合治理及资源利用.污染防治技术,1993,6:30-35.
    [99]张晋京,王帅,窦森,谢忠雷.pH对溶液中Cu2+微观结构及Cu2+吸附对针铁矿微观结构的影响.农业环境科学学报,2007,26:277-281.
    [100]张园,黄万抚.处理矿山酸性废水方法分析.冶金丛刊,2006,166:46-47.
    [101]邹知华.加强矿山环境保护促进矿山持续发展.中国矿业,1994,2:9-13.
    [102]周立祥.酸性矿山废水中生物成因次生铁矿物的形成及环境工程意义.地学前缘,2008,15(6):74-82.
    [1]Banfield J E, Zhang H. Nanoparticles in the environment. Reviews in Mineralogy and Geochemistry,2001,44:1-58.
    [2]Barron J L, Lueking D R. Growth and maintenance of Thiobacillus ferrooxidans Cells. Applied and Environmental Microbiology,1990,56:2801-2806.
    [31 Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta,1996,60:2111-2121.
    [4]Chan C S, Stasio G D, Melch S A, Girasole M, Frazer B H, Nesterova M V, Fakra S, Banfield J F. Microbial Polysaccharides Template Assembly of Nanocrystal Fibers. Science,2004,303: 1656-1658.
    [5]Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering,2006,19:960-967.
    [6]Das A, Mishra A K, Roy P. Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiology Letters,1992,97:167-172.
    [7]Dempsey B A, Roscoe H C, Ames R, Hedin R, Jeon B H. Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry:Exploration, Environment, Analysis,2001,1:81-88.
    [8]DiSpirito A A, Tuovinen O H. Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans. Archives of Microbiology,1982,133:33-37.
    [9]Dutrizac J E. Factors Affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and Meterials Transactions B,2008,39:771-783.
    [10]Eccleston M, Kelly D P. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. Journal of Bacteriology,1978,134:718-727.
    [11]Ford R G, Bertsch P M, Farley K J. Changes in transition and heavy metal partitioning duing hydrous iron oxide aging. Environmental Science and Technology,1997,31:2028-2033.
    [12]Grishin S I, Bigham J M, Tuovinen O H. Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Applied and Environmental Microbiology, 1988,54:3101-3106.
    [13]Hazeu W, Bijleveld W, Grotenhuis J T C, Kakes E, Kuenen J G Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie van Leeuwenhoek, 1986,52:507-518.
    [14]Hustwit C C, Ackman T E, Erickson P E. The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Envrionment Research,1992,64:817-823.
    [15]Kawano M, Tomita K. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. American Mineralogist,2001,86: 1156-1165.
    [16]Kirby C S, Elder J A, Brady E. Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor. Applied Geochemistry,1998,13:509-520.
    [17]Kumar S R, Gandhi K S. Modelling of Fe2+ oxidation by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology,1990,33:524-528.
    [18]Labrenz M, Gilbert B, Welch S A, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science,2000,290:1744-1747.
    [19]Lazaroff N, Sigal W, Wasserman A. Iron oxidation and precipitation of ferric hydroxysulfates by resting Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology,1982,43: 924-938.
    [20]Lin Z X, Herbert Jr R B. Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden. Environmental Geology,1997,33:1-12.
    [21]Mackintosh M E. Nitrogen fixation by Thiobacillus ferrooxidans. Journal of General Microbiology, 1977,105:215-218.
    [22]Nemati M, Harrison S T L, Hansford G S, Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects. Biochemical Engineering Journal,1998, 1:171-190.
    [23]Peppas A, Komnitsas K, Halikia I. Use of organic covers for acid mine drainage control. Minerals Engineering,2000,13:563-574.
    [24]Pronk J T, Bruyn J C, Bos P, Kuenen J G. Anaerobic growth of Thiobacillus ferrooxidans. Applied and Environmental Microbiology,1992,58:2227-2230.
    [25]Rodionov D A, Dubchak I L, Arkin A P, Alm E J, Gelfand M S. Dissimilatory metabolism of nitrogen oxides in bacteria:Comparative reconstruction of transcriptional networks. Plos, Computational Biology,2005,1:415-431.
    [26]Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist,2000,38:45-56.
    [27]Sheoran A S, Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review. Minerals Engineering,2006,19:105-116.
    [28]Torma A E, Walden C C, Duncan D W, Branion R M R. The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate. Biotechology and Bioengineering,1972,14:777-786.
    [29]Wang H, Bigham J M, Jones F S, Tuoyinen O H. Synthesis and properties of ammoniojarosite prepared with iron-oxidizing acidophilic microorganism at 22-65℃. Geochimica et Cosmochimica Acta,2007,71:155-164.
    [30]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报,2005,25:1418-1420.
    [31]廖岳华.施氏矿物的生物合成及去除水中砷的效果与机理研究.南京农业大学:博士学位论文.2008.
    [1]Asta M P, Cama J, Martinez M, Gimenez J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials,2009,171:965-972.
    [2]Bigham J M, Schwertmann U, Pfab G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry,1996a,11:845-849.
    [3]Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta,1996b,60:2111-2121.
    [4]Burdman S, Jurkevitch E, SoriaDiaz M E, Serrano A M, Okon Y. Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiology Letters,2000,189:259-264.
    [5]Burton E D, Bush R T, Sullivan L A, Mitchell D R G. Schwertmannite transformation to goethite via the Fe(II) pathway:Reaction rates and implications for iron-sulfide formation. Geochim Cosmochim Acta,2008,72:4551-4564.
    [6]Dutrizac J E. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and Materials Transactions B,2008,39:771-783.
    [7]Dutrizac J E. Factors affecting alkali jarosite precipitation. Metallurgical and Materials Transactions B,1983,14:531-539.
    [8]Dutrizac J E. The behaviour of the rare earths during the precipitation of sodium, potassium and lead jarosites. Hydrometallurgy,2004,73:11-30.
    [9]Dutrizac J E, Jambor J L. Jarosites and their application in Hydrometallurgy. Reviews in Mineralogy and Geochemistry,2000,40:405-452.
    [10]Dutrizac J E, Kaiman S. Synthesis and properties of jarosite-type compounds. Canadian Mineralogist,1976,14:151-158.
    [11]Eneroth E, Koch C B. Fe-hydroxysulphates from bacterial Fe2+ oxidation. Physics and Astronomy, 2003,156:423-429.
    [12]Inami T, Nishiyama M, Maegawa S, Oka Y. Magnetic structure of the kagome lattice antiferromagnet potassium jarosite KFe3(OH)6(SO4)2。 Physical Review B,2000,61:12181-12186.
    [13]Jensen A B, Webb C. Ferrous sulphate oxidation using thiobacillus ferrooxidans:a review. Process Biochemistry,1995,30:225-236.
    [14]Karamanov A, Pelino M. Evaluation of the degree of crystallisation in glass-ceramics by density measurements. Journal of European Ceramic Society,1999,19:649-654.
    [15]Labrenz M, Gilbert B, Welch S A, et al. For mation of sphalerite (ZnS) deposits in natural biofilms of sulfate reducing bacteria. Applied and Environmental Microbiology,2000,290:1744-1747.
    [16]Liu Y, Herbert H, Fang P. Influences of extracellular polymeric Ssubstances (EPS) on flocculation, settling, and dewatering of activated sludge. Critical Reviews in Environmental Science and Technology,2003,33:237-273.
    [17]Murad E, Rojik P. Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite:the legacy of coal and sulfide ore mining. SuperSoil,2004,2004:3rd Australian New Zealand Soils Conference.
    [18]Norlund K L I, Baron C, Warren L A. Jarosite formation by an AMD sulphide-oxidizing environmental enrichment:Implications for biomarkers on Mars. Chemical Geology,2010,275: 235-242.
    [19]Parktunc D, Dutrizac J E. Characterization of arsenate-for-sulfate substitution in synthetic jarosite using X-ray diffraction and X-ray absorption spectroscopy. The Canadian Mineralogist,2003,41: 905-919.
    [20]Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acid mining lakes. Geochim Cosmochim Acta,2004,68:1185-1197.
    [21]Rose R K, Dibdin G H, Shellis R P. A quantitative study of calcium binding and aggregation in selected oral bacteria. Journal of Dental Research,1993,72:78-84.
    [22]Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist,2000,38:45-56.
    [23]鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000,225-227.
    [24]柏双友,梁剑茹,周立祥FeSO4-K2SO4-H2O体系中Fe/K摩尔比对生物成因羟基硫酸铁矿物质量的影响及环境意义.环境科学学报,2010,30:1601-1607.
    [25]柏双友,周立祥.微生物接种密度和矿物收集时间对生物沥浸中次生铁矿物形成的影响.微生物学通报,2011,38:487-492.
    [26]苏贵珍,陆建军,陆现彩,李娟,屠博文.施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验研究.岩石矿物学杂志,2009,28:575-580.
    [27]王长秋,马生凤,黄钾铁矾的形成条件研究及其环境意义.岩石矿物学杂志,2005,24:607-611.
    [28]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报,2005,25:1418-1420.
    [29]熊慧欣,梁剑茹,徐轶群,周立祥.不同因素影响下Fe(Ⅲ)水解中和法制备FeOOH矿相的光谱分析.光谱学与光谱分析,2009,29:2005-2009.
    [30]周立祥.酸性矿山废水中生物成因次生铁矿物的形成及环境工程意义.地学前缘,2008,15(6):74-82.
    [31]周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定.光谱学与光谱分析,2004,24:1140-1143.邹学功.黄钾铁矾除铁理论分析.冶金丛刊,1998,6:18-20.
    [1]Acero P, Ayora C, Terrento C, Nieto JM. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochimica et Cosmochimica Acta,2006,70:4130-4139.
    [2]Akcil A. Koldas S. Acid mine drainage (AMD):causes, treatment and case studies. Journal of Cleaner Production,2006,14:1139-1145.
    [3]Bigham JM, Carlson L, Murad E. Schwertmannite, a new iron oxyhydroxy-sulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine,1994,58:641-648.
    [4]Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta,1996,60:2111-2121.
    [5]Bigham JM, Schwertmann U, Carlson L, Murad E. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 1990,54:2743-2758.
    [6]Bisson W, Wills AS. Intermediate phase in the oxidative hydrothermal synthesis of potassium jarosite, a model kagome antiferromagnet. Zeitschrift fur Kristallographie Supplements,2007,26: 511-516.
    [7]Boon M, Ras C, Heijnen J J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Applied Microbiology and Biotechnology,1999,51:813-819.
    [8]Brock TD, Gustafson J. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Applied and Environmental Microbiology,1976,32:567-571.
    [9]Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering,2006,19:960-967.
    [10]Dempsey B A, Roscoe H C, Ames R, Hedin R, Jeon B H. Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry:Exploration, Environment, Analysis,2001,1:81-88.
    [11]Dutrizac J E, Kaiman S. Synthesis and properties of jarosite-type compounds. Canadian Mineralogist,1976,14:151-158.
    [12]Dutrizac J E. The behaviour of the rare earths during the precipitation of sodium, potassium and lead jarosites. Hydrometallurgy,2004,73:11-30.
    [13]Gehrke T, Telegdi J, Thierry D, Sand W. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Applied and Environmental Microbiology,1998,64: 2743-2747.
    [14]Hustwit C C, Ackman T E, Erickson P E. The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Envrionment Research,1992,64:817-823.
    [15]Jonsson J, Persson P, Sjoberg S, Lovgren L. Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Applied Geochemistry,2005,20: 179-191.
    [16]Jonsson, J., Jonsson, J., Lovgren, L. Precipitation of Fe(Ⅲ) minerals from acid mine drainage. Applied Geochemistry,2006,21,437-445.
    [17]Kinzler K, Gehrke T, Telegdi J, Sand W. Bioleaching—a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy,2003,71:83-88.
    [18]Kirby, C.S., Thomas, H.M., Southam, G., Donald, R. Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry,1999,14,511-530.
    [19]Kirby C S, Brady J A E. Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor. Applied Geochemistry,1998,13:509-520.
    [20]Knorr K H, Blodau C. Controls on schwertmannite transformation rates and products. Applied Geochemistry,2007,22:2006-2015.
    [21]Liao Y H, Zhou L X, Liang J R, Xiong H X. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition. Materials Science & Engineering C, 2009,29:211-215.
    [22]Liu J Y, Tao X X, Cai P. Study of formation of jarosite mediated by Thiobacillus ferrooxidans in 9K medium. Procedia Earth and Planetary Science,2009,1:706-712.
    [23]Mahiroglu A, Tarlan-Yel E, Sevimli M F. Treatment of combined acid mine drainage (AMD)-Flotation circuit effluents from copper mine via Fenton's process. Journal of Hazardous Materials,2009,166:782-787.
    [24]Nemati M, Webb C. Effect of ferrous iron concentration on the catalytic activity of immobilized cells of Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology,1996,46:250-255.
    [25]Nemati M, Webb C. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnol Bioeng,1997,53:478-486.
    [26]Nemati M, Harrison S T L, Hansford G S, Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:A review on the kinetic aspects. Biochemical Engineering Journal,1998, 1:171-190.
    [27]Nengovhela N R, Strydom C A, Maree J P, Greben H A. Chemical and biological oxidation of iron in acid mine water. Mine Water and the Environment,2004,23:76-80.
    [28]Okereke A, Stevens S E J. Kinetics of Iron Oxidation by Thiobacillus ferrooxidans. Applied and Environmental Microbiology,1991,57:1052-1056.
    [29]Pronk J T, Bruyn J C, Bos P, Kuenen J G. Anaerobic Growth of Thiobacillus ferrooxidans. Applied and Environmental Microbiology,1992,58:2227-2230.
    [30]Regenspurg S. Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta,2004,68:1185-1197.
    [31]Rao S R, Finch J A, Kuyucak N. Ferrous-ferric oxidation in acidic mineral process effluents: comparison of methods. Minerals Engineering,1995,8:905-911.
    [32]Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist,2000,38:45-56.
    [33]Sasaki K, Tsunekawa M, Konno H. Characterization of argentojarosite formed from biologically oxidized Fe3+ ions. The Canadian Mineralogist,1995,33:1311-1319.
    [34]Schrenk M O, Edwards K J, Goodman R M, Hamers R J, Banfield J F. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans:Implications for generation of acid mine drainage. Science,1998,279:1519-1522.
    [35]Silverman M P, Lundgren D G. Studies on the chemoautotrophic iron bacterium Fenobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yield. Journal of Bacteriology,1959,77:642-647.
    [36]Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Materials Science and Engineering C,2006,26:588-592.
    [37]Wang S M, Zheng G Y, Zhou LX. Heterotrophic microorganism Rhodotorula mucilaginosa R30 improves tannery sludge bioleaching through elevating dissolved CO2 and extracellular polymeric substances levels in bioleach solution as well as scavenging toxic DOM to Acidithiobacillus species. Water Research,2010,44:5423-5431.
    [38]Xiong H X, Liao Y H, Zhou L X. Influence of chloride and sulfate on formation of akaganeite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells. Environmental Science & Technology,2008,42:8681-8686.
    [39]方亮,张丽丽,蔡伟民.活性污泥胞外多聚物提取方法的比较.环境科学与技术,2006,29:46-47.
    [40]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报,2005,25:1418-1420.
    [1]Barron J L, Lueking D R. Growth and maintenance of Thiobacillus ferrooxidans cells. Applied and Environmental Microbiology,1990,56:2801-2806.
    [2]Bigham J M, Carlson L, Murad E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical Magazine,1994,58:641-648.
    [3]Bigham J M, Schwertmann U, Pfab G Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Applied Geochemistry,1996a,11:845-849.
    [4]Bigham J M, Schwertmann U, Traina S J, Winland R L, Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta,1996b,60:2111-2121.
    [5]Boon M, Ras C, Heijnen J J. The ferrous iron oxidation kinetics of Thiobacillus ferrooxidans in batch cultures. Applied Microbiology and Biotechnology,1999,51:813-819.
    [6]Daoud J, Karamanev D. Formation of jarosite during Fe2+ oxidation by Acidithiobacillus ferrooxidans. Minerals Engineering,2006,19:960-967.
    [7]Dutrizac J E. Factors affecting the precipitation of potassium jarosite in sulfate and chloride media. Metallurgical and materials transactions B,2008,39:771-783.
    [8]Gehrke T, Telegdi J, Thierry D, Sand W. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Applied and Environmental Microbiology,1998,64: 2743-2747.
    [9]Nemati M, Harrison S T L, Hansford G S, Webb C. Biological oxidation of ferrous sulphate by Thiobacillus ferrooxidans:a review on the kinetic aspects. Biochemical Engineering Journal,1998, 1:171-190.
    [10]Nemati M, Webb C. A kinetic model for biological oxidation of ferrous iron by Thiobacillus ferrooxidans. Biotechnology and Bioengineering,1997,53:478-486.
    [11]Pronk J T, Bruyn J C, Bos P, Kuenen J G. Anaerobic growth of Thiobacillus ferrooxidans. Applied and Environmental Microbiology,1992,58:2227-2230.
    [12]Ramirez P, Guiliani N, Valenzuela L, Beard S, Jerez C A. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Applied and Environmental Microbiology,2004,70:4491-4498.
    [13]Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes. Geochimica et Cosmochimica Acta,2004,68:1185-1197.
    [14]Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist,2000,38:45-56.
    [15]Sasaki K, Tsunekawa M, Konno H. Characterization of argentojarosite formed from biologically oxidized Fe3+ ions. The Canadian Mineralogist,1995,33:1311-1319.
    [16]Wang H M, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Materials Science and Engineering C,2006,26:588-592.
    [17]方胜强,孙振亚,黄江波.葡聚糖及明胶对氢氧化铁凝胶矿化作用研究.云南师范大学学报,2008,28:57-62.
    [18]李宴等.普通化学.重庆大学出版社,1990,62-63.
    [19]倪丙杰,徐得潜,刘绍根.污泥性质的重要影响物质—胞外聚合物EPS)[J].环境科学与技术,2006,29:108-110.
    [20]蒲晓芬,胡涛,周学东.生物膜胞外聚合物的研究[J].国外医学口腔医学分册,2005,32:339-341.
    [21]王长秋,马生凤,鲁安怀,周建工.黄钾铁矾的形成条件研究及其环境意义.岩石矿物学杂志,2005,24:607-611.
    [22]王世梅.耐酸性酵母菌R30加速污泥生物沥浸进程机理研究.南京农业大学:博十学位论文.2007.
    [23]沈敏,吕欢欢,瞿阳,薛爱芳,李胜清,陈浩.交联羧甲基魔芋葡甘聚糖对Fe(Ⅲ)和Cr(Ⅲ)的吸附行为研究[J].离子交换与吸附,2010,26:193-201.
    [1]Baron D, Palmer C D. Solubility of jarosite at 4-35℃. Geochimica et Cosmochimica Acta,1996, 60:185-195.
    [2]Christensen B E, Characklis W G. Physical and chemical properties in biofilms. Characklis W G and Marshall KC. Biofilms. New York:John Wiley & Sons,1990,93-130.
    [3]Gehrke T, Hallmann R, Kinzler K, Sand W. The EPS of Acidithiobacillus ferrooxidans-a model for structure2function relationships of attached bacteria and their physiology. Water Science and Technology,2001,43:159-167.
    [4]Gehrke T, Telegdi J, Thierry D, Sand W. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching. Applied and Environmental Microbiology,1998,64: 2743-2747.
    [5]Harneit K, Goksel A, Kock D, Klock J H, Gehrke T, Sand W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy,2006,83:245-254.
    [6]Hou Q F, Lu X C, Liu X D, Hu B X, Yuan J, Shen J. Variation in the surface energy heterogeneity of graphite due to the adsorption of polyoxyethylene sorbitan monooleate. Journal of Colloid and Interface Sciences,2005,280:98-101.
    [7]Kinzler K, Gehrkea T, Telegdib J, Sand W. Bioleaching—a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy,2003,71:83-88.
    [8]Majzlan J, Navrotsky A, Schwertmann U. Thermodynamics of iron oxides:Part Ⅲ. Enthalpies of formation and stability of ferrihydrite (-Fe(OH)3), schwertmannite (-FeO(OH)3/4(SO4)1/8), and e-Fe2O3. Geochimica et cosmochimica acta,2004,68:1049-1059.
    [9]Nagaoka T, Ohmura N, Saiki H. A novel mineral flotation process using Thiobacillus ferrooxidans. American Society for Microbiology,1999,65:3588-3593.
    [10]Ohmura N, Kitamura K, Saiki H. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite. American Society for Microbiology,1993,59:4044-4050.
    [11]Ullman W J and Welch S A.2002. Organic ligands and feldspar dissolution. Hellmann R and Wood S A. Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry:A Tribute to DavidA. Crerar[C]. St. Louis:The Geochemical Society,3-34.
    [12]Ve B, Chen M, Crawford R J, Ivanova E P. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules,2009,14:2535-2554.
    [13]Welch S A, Barker W W and Banfield J F. Microbial extracellular polysaccharides and plagioclase dissolution. Geochimica et Cosmochimica Acta,1999,63:1405-1419.
    [14]柳建设,闫颖,王铧泰,王秀美.氧化亚铁硫杆菌胞外多聚物的研究进展.金属矿山,2007,12,14-16.
    [15]方胜强,孙振亚,黄江波.葡聚糖及明胶对氢氧化铁凝胶矿化作用研究.云南师范大学学报,2008,28:57-62.
    [16]王长秋,马生凤,鲁安怀,周建工.黄钾铁矾的形成条件研究及其环境意义.岩石矿物学杂志,2005,24:607-611.
    [17]王朝华,陆建军,陆现彩,李娟.微生物胞外聚台物特征组分影响黄铁矿分解作用的实验研究.岩石矿物学杂志,2009,28:553-557.
    [18]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法.环境科学学报,2005,25:1418-1420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700