用户名: 密码: 验证码:
产品功能性包装的低碳概念设计关键技术与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国内包装工业总产值已近万亿,跃升至国民经济42个主要行业中的第14位,中国正努力由包装大国向包装强国过渡,与此同时,包装工业碳排放总量占全国总排放量的2.74%,已超过同期包装工业总产值占全国GDP的比重(2.43%),过度及不合理包装产生的环境和经济问题日益严峻,并成为阻碍包装工业可持续发展的顽症。为了在产品功能性包装的生命周期前端综合考虑其包装的低碳和成本问题,在包装方案具体实施之前得到可修整并优化的多种选择,本文围绕包装、低碳、成本以及概念设计等关键词主要开展了以下工作:
     1通过对国内外碳问题、包装行业的现状及存在问题的调研确定了低碳包装的内涵以及实施的必要性,从包装需建立在“被包装物”的基础上这一区别于一般产品的主要特征入手,分析了概念设计在产品功能性低碳包装中的重要地位和可行性以及包装、低碳和概念设计三者的结合思路。
     2分析了一般产品与产品包装之间存在的差异性,在此基础上给出了低碳包装概念设计的一般流程、步骤以及在低碳包装概念设计中需要注意的关键技术,如边界确定、碳足迹计算模型和评价机制等,并将模块化和QFD技术加以变换形成的性能模块化和FsD模型用于低碳包装的概念设计之中。
     3建立了包装概念设计的主成分分析模型,用集成和继承原有信息变量的方法得出少量主成分,并以主成分为设计原则实现概念设计对包装物性需求和客户需求的映射、设计元素的筛选以及设计维度的降低,从一定程度上降低了概念设计的难度。
     4给出了包装碳足迹计算的边界和准则,详细讨论了功能性包装低碳边界内的参数和相关注意事项,在此基础上给出了概念设计阶段考虑包装全生命周期范围的碳足迹计算模型。并对碳足迹计算的不确定性进行了详细的讨论,建立了节点的低碳敏感性分析方法。
     5在统一的边界和准则范围内,同样讨论了该范围内的成本计算问题,并将碳足迹和成本的综合指标-碳效益作为产品功能性低碳包装概念设计方案的评价标准,同时还给出了节点碳流、成本流以及碳效益流模式以此方便查证包装各生命周期节点产生的碳或成本的高低问题,快速查找高碳效益节点以改变方案映射得出最优结果。并通过节点优化的正负关系以及优化分类分级来实现低碳和成本的冲突消解。
     6以机电类产品一小型汽油机为实例,通过对汽油机包装的需求分析和基于主成分方法的概念设计方案映射,对产生的木材、瓦楞纸板和胶合板三种不同方案进行了碳足迹、成本和碳效益的计算,最终双层UV型瓦楞纸板包装以167.17的综合分值成为最优方案,符合目前高强度瓦楞纸板代木包装在机电产品包装中的应用趋势。同时对遴选出的瓦楞纸板方案的碳足迹数据进行了不确定性分析,确定了充填、装箱和装卸搬运环节作为整个汽油机包装生命周期的数据改进关键节点。
     7总结全文并提出论文未来的研究方向。
Gross domestic packaging industry has reached almost one trillion and jumped to the14th among the42major national industries. China is making efforts to achieve transition from a major packaging country into a power packaging country. At the same time, carbon emission of packaging industry has accounted for2.74%of the total emission and exceeded the proportion of output value in GDP (2.43%) over the same period. Excessive and unreasonable packaging has generated serious environmental and economic problems, which has hindered sustainable development of packaging industry. In order to consider low-carbon and cost issues of packaging in the initial part of the product life cycle of packaging functionality, and obtain a variety of choices in implementing specific packaging program, this paper deals with the following issues by focusing on packaging, low-carbon, cost and conceptual design:
     1Through investigating domestic and international carbon issues and analyzing the present status and problems of packaging industry, the paper points out the necessity of implementing a low-carbon packaging. Due to the fact that packaging is based on the product, which distinguishes packing from general products, the study analyses the importance and feasibility of conceptual design in the product packaging functionality and aims at combining packaging, low-carbon and conceptual design.
     2By analyzing the differences between general product and product packaging, the paper suggests the conceptual design processes, procedures and key technologies in low-carbon packaging, such as boundary determination, calculation model of carbon footprint and evaluation mechanisms. The performance modular and FSD model which are respectively transformed from the modular and QFD are applied to the conceptual design of low-carbon packaging.
     3The principal component analysis (PCA) model of packaging conceptual design is established. Through integrating and inheriting original information, a small number of principal components are obtained, which are used as design principles to meet the basic needs packaging and of the customers by filtering and reducing the dimension of the design, and to some extent reduces the difficulty of conceptual design.
     4The carbon footprint calculation boundary and guideline of packaging are provided, the parameters of low-carbon boundary in functional packaging and related considerations are discussed in details. By considering packaging life cycle in the conceptual design stage, the carbon footprint calculation model is given. The uncertainties of carbon footprint calculation are discussed in details and the sensitivity analysis method of node carbon footprint is established.
     5The cost issue of packaging is also discussed within the unified boundary and guideline. Carbon benefit integrating carbon footprint and cost is treated as the comprehensive indicator and used to evaluate the criteria of low-carbon conceptual design of functional packaging. The nodes flow of carbon footprint, cost and carbon benefit are also given in order to verify carbon and cost issue of packaging life cycle conveniently. Finding the high carbon benefit nodes quickly could contribute to obtaining optimal results. By optimizing positive and negative relationship between the nodes and by classifying and grading them, the conflicts between low-carbon and cost are resolved.
     6The case study results of machinery and electronic product-gasoline packaging show the method is effective through three scenarios including wood, corrugated cardboard and plywood in the low-carbon packaging concept design guidance, and the corrugated cardboard is determined to be the best solution because of its comprehensive performance indicators:161.17. The result consistent with packaging trend of mechanical and electrical product which uses high-strength corrugated cardboard instead of wood. The uncertainty analysis of carbon footprint of corrugated board which is selected form three scenarios are analyzed. And the sectors of filling, packing and handing are the key nodes of the entire life-cycle of gasoline which could be improved.
     7The conclusion is drawn and the future research direction is pointed out.
引文
[1]. PUGH S. "Conceptual Design", Total Design:Integrated Methods for Successful Product Engineering[M]. Addison-Wesley,1991.
    [2].丁铎尔气候变化研究中心.全球碳计划年度报告[DB/OL].2012. http://finance.longhoo.net/2012-12/04/content_10284389.htm.
    [3]. SOLOMON S, QIN D, MANNING M, et al. Climate Change 2007:The Physical Science Basis, Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York:Cambridge University Press,2007.
    [4].郭杰.中国碳减排政策分析与评估方法及应用研究[D].中国科学技术大学.2011.
    [5].方精云等.全球变暖、碳排放及不确定性[J].中国科学:地球科学.2011,41(10):1385-1395.
    [6]. ROGER P J, WIGLEY T, Green C. Dangerous assumptions[J]. Nature,2008, 452:531-532.
    [7]. SOLOMON S, PLATTNER G K, KNUTTI R, et al. Irreversible climate change due to carbon dioxide emissions[J]. PNAS,2009,106(6):1704-1709.
    [8]. MALHI Y. The carbon balance of tropical, temperate and boreal forests[J]. Plant, Cell and Environment,1999,22:715-740.
    [9]. LIU Y C. Huge carbon sequestration potential in global forests[J]. Journal of Resources and Ecology,2012,3(3):193-201.
    [10]. GLEICK P H, SDAMS R M, AMASINO R M, et al. Climate change and the integrity of science[J]. Science,2010,328:689-690.
    [11]. HERTWICH E G, PETERS G P. Carbon footprint of nations:A global trade-linked analysis[J]. Environmental Science and Technology,2009,43(16): 6414-6420.
    [12]. CHIU M C, ALSAFFAR A J, OKUDAN G E etc. Reducing Supply Chain Costs and Carbon Footprint during Product Design[J]. Proc. IEEE Int. Symp. Sustainable Syst. Technol., ISSST,2010.
    [13]. GERLACH T M. Etna's greenhouse pump[J]. Nature.1991,315:352-353.
    [14]. 崔大鹏.国际气候合作的政治经济学分析[M].北京:商务印书馆,2003.
    [15]. 刘卫东.我国低碳经济发展框架与科学基础—实现2020年单位GDP碳排放降低40%-45%的路径研究[M].北京:商务印书馆,2010.
    [16]. 万宇艳.我国工业结构低碳化初探[D].华中科技大学.2011.
    [17]. CHRISTOPHER L, WEBER H S. Quantifying the global and distributional aspects of American household carbon footprint[J]. Ecological Economics,2008. 66:379-391.
    [18]. HERMANN I T, HAUSCHILD M Z. Effects of globalization on carbon footprints of products[J]. CIRP Annals Manufacturing Technology,2009, 58(1):13-16.
    [19]. 王薇,林剑艺,崔胜辉等.碳足迹分析方法研究综述[J].环境科学与技术,2010,33(7):71-78.
    [20]. GB/T4122.1-1996,包装术语基础[S].北京:中国标准出版社,1996.
    [21]. 世界环境和发展委员会,我们共同的未来[R].1987
    [22]. 尹兴,孙诚.构建绿色物流体系下的绿色包装[J].包装工程,2006,27(4):104-111.
    [23]. 戴宏民.绿色包装的理论、标准及制造模式[J].中国机械工程,2002,13(23):2048-2052.
    [24]. 戴宏民,戴佩华.绿色包装的评价标准及环境标志[J].包装工程,2005,26(5):14-20.
    [25]. 李蓓蓓.绿色包装的评价手段-生命周期评价法[J].包装工程,2002,23(4): 150-152.
    [26]. 苏建宁,李鹤岐,李奋强.基于知识的绿色包装评价体系[J].包装工程,2003,24(1):44-46.
    [27]. 曾晓红,刘春辉,郝喜海.包装机械产品绿色设计评价体系及方法研究[J].包装工程,2007,28(4):71-73.
    [28]. 陈壁辉,吴旭英,周飞敏.产品包装绿色性评价方法的LCA剖析[J].包 装工程,2008,29(3):176-181.
    [29]. 王莉.再谈包装的环保设计[J].包装工程,2008,29(12):255-269.
    [30]. 王澜,杨梅.从3R原则分析绿色包装设计[J].包装工程,2008,29(2):162-165.
    [31]. 王亚娜,罗亚明,王征宇.包装企业构建绿色管理模式的研究[J].包装工程,2008,29(6):200-202.
    [32]. 罗亚明,谷青.包装企业绿色竞争力评价指标体系研究[J].包装工程,2008,29(12):233-244.
    [33]. 刘小静,江建国,王云景等.基于包装废弃物调查的绿色包装建议[J].包装工程,2007,28(10):145-148.
    [34]. 王东.试析低碳经济时代出版物包装的低碳设计[J].科技与出版,2011,8:56-59.
    [35]. 安美清,向万里.低碳包装发展模式及生命周期分析[J].生态经济,2012,5:174-176.
    [36]. 刘亦文,胡宗义.我国低碳包装发展机制与体系研究,包装工程[J].2012,33(7):140-145.
    [37]. 胡宗义,刘亦文,戴钰.低碳包装产业碳排放统计的必要性及对策探讨[J].包装工程,2012,33(17):136-140.
    [38]. 王伟伟,杨福馨,胡安华.包装产业的低碳技术研究与应用,包装学报[J].2010,2(4):42-45.
    [39]. JORGELINA P, MONTSE M, FRANCESC C. The carbon footprint and energy consumption of beverage packaging selection and disposal[J]. Journal of Food Engineering,2011,13:357-365.
    [40]. SOTIRIOS B, DIMITRIOS G. A Probabilistic Framework for the Evaluation of Products'Environmental Performance Using Life Cycle Approach and Principal Component Analysis[J]. Journal of Cleaner Production,2012,doi:10.1016/j.jcelpro.2012.10.038.
    [41]. JIN L, AI H, LEON M G, et al. An economic and environmental framework for analyzing globally sourced auto parts packaging system [J]. Journal of Cleaner Production,2008,16:1632-1646.
    [42]. DAVIS G, SONG J H. Biodegradable packaging based on raw materials from crops and their impact on waste management[J]. Industrial Crops and Products, 2006,13:147-161.
    [43]. LENNART Y. L. Materials selection and design for development of sustainable products[J]. Materials & Design,2007,28:466-479.
    [44]. ZHOU C C, YIN G F, HU X B. Multi-objective optimization of material selection for sustainable products:Artificial neural networks and genetic algorithm approach[J]. Materials and Design,2009,30:1209-1215.
    [45]. CRISTINA A, CLAUDIA D G, BEATRICE L, et al. From ecodesign products guidelines to materials guidelines for a sustainable product. Qualitative and quantitative multicriteria environmental profile of a material[J]. Energy, 2012,39:90-99.
    [46]. SUSAN C, KUMAR V. The energy and carbon intensity of wine distribution: A study of logistical options for delivering wine to consumers[J]. Journal ofCleaner Production,2009,17:1401-1413.
    [47]. ROMMERT D, JACQUELINE B, IOANNIS M, Operations Research for green logistics-An overview of aspects, issues, contributions and challenges[J]. European Journal of Operational Research,2012,219:671-679.
    [48]. SHEN L X, LAYA O, KANNAN G, et al. A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences[J]. Resources, Conservation and Recycling,2012:1-10.
    [49]. MICHELE G, STEFANO C, MARIO G, et al. Material and energy recovery in integrated waste management systems. An evaluation based on life cycle assessment[J]. Waste Management,2011,31:2092-2101.
    [50]. 韩晓健,邓家提.基于网络协同的产品概念设计系统研究[J].制造业自动化,2003,25(11):5-7.
    [51]. 张利,张建军,任启乐等.基于BOM的产品概念设计方案求解技术[J].农业机械学报,2007,38(11):97-102.
    [52]. 马翠霞.支持概念设计的手势描述和草图设计系统的研究[D].北京:中 国科学院软件研究所,2003.
    [53]. 冯桂焕,孙正兴,谢强等.基于手绘草图的方案设计CAD系统[J].计算机辅助设计与图形学学报,2007,19(6):736-741.
    [54]. 韩丽,唐棣.手绘输入的三维建模和编辑技术[J].计算机辅助设计与图形学学报,2008,20(7):946-951.
    [55]. 袁浩,卢章平,唐磊.支持产品概念设计的草图技术[J].农业机械学报,2009,40(12):217-222.
    [56]. 何川,张鹏,陈利琼.TRIZ在概念设计中的应用[J].四川大学学报(工程科学版),2003,35(5):19-23.
    [57]. WANG C, LIN P, Chang T. Green Quality Function Development and Modular Design Structure Matrix in Product Development[J]. Proceedings of the 2010 14th International Conference on Computer Supported Cooperative Work in Design,2010:94-99.
    [58]. TOMOHIKO S. A QFD-centred Design Methodology for Environmentally Conscious Product Design [J]. International Journal of Production Research, 2007,45(18-19):4143-4162.
    [59]. 刘晓敏,檀润华,姚立纲.产品创新概念设计集成过程模型应用研究[J].机械工程学报,2008,44(9):154-162.
    [60]. 陈旭玲,楼佩煌,唐敦兵等.概念设计中功能驱动的消化吸收再创新研究[J].计算机集成制造,2009,15(10):1873-1879.
    [61]. 龚京忠,李国喜,邱静.基于功能一行为一结构的产品概念模块设计研究[J].计算机集成制造,2006,12(12):1921-1927.
    [62]. 邹光明.机械产品概念设计建模及求解策略的研究[D].武汉,华中科技大学,2005.
    [63]. 宋慧军,林志航,罗时飞.机械产品概念设计中的知识表示[J].计算机辅助设计与图形学学报,2003,15(4):438-443.
    [64]. 蔡波,陆继翔,陆长德等.产品概念设计重用研究[J].机械科学与技术,2002,21(4):669-674.
    [65]. 杨波,孙红卫,黄克正.支持并行工程的概念设计系统的开发与研究[J]. 济南大学学报(自然科学版),2002,16(3):244-246.
    [66].陈泳.基于仿生学的产品概念设计方法学探索[D].杭州:浙江大学,2004.
    [67].何斌,冯培恩,潘双夏.基于产品生态学的概念设计研究[J].计算机集成制造系统,2007,13(7):1249-1254.
    [68]. 刘全良,戎瑞亚,王石刚.基于web的智能概念设计求解平台设计[J].机械设计与制造工程,2001,30(5):52-54.
    [69]. 孟飚,郭志平,朱煜.基于WEB的概念设计环境研究[J].机械设计与制造,2002,(6):35-36.
    [70]. 杨茂发,景旭文,周宏根.基于web数据挖掘技术的机械产品概念设计研究[J].华东船舶工业学院学报(自然科学版),2004,18(1):72-75.
    [71]. 大卫.M.安德森.21世纪企业竞争前沿:大规模定制模式下的敏捷产品开发[M].北京:机械工业出版社,2000
    [72]. 苏建宁,李鹤岐,李奋强,基于知识的绿色包装评价体系[J].包装工程,2003,24(1):44-46.
    [73]. 张元标.绿色包装设计的多层次灰色综合评价模型[J].包装工程,2006,27(1):123-125.
    [74]. JORGENSEN P T, SONG M S. Entropy encoding, Hilbert space, and Karhunen-Loeve transforms[J]. Journal of Mathematical Physics,2007,48: 103503.
    [75]. 范雪莉,冯海泓,原猛.基于互信息的主成分分析特征选择算法[J].控制与决策,2013,28(6):915-920.
    [76]. 席剑辉,韩敏.主成分分析与神经网络的结合在多变量序列预测中的应用[J].控制理论与应用,2007,24(5):719-725.
    [77]. 梁胜杰,张志华,崔立林等.基于主成分分析与核独立成分分析的降维方法[J].系统工程与电子技术,2011,33(9):2144-2149.
    [78]. 李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-135.
    [79]. 王晓鹏,曾永年等.基于改进主成分分析方法的复杂环境系统质量评价模 型[J],系统工程理论与实践,2005,11:112-119.
    [80]. 邵珠艳,岳丽.线性代数[M].北京大学出版社,2013.
    [81]. 李靖华,郭耀煌.主成分分析用于多指标评价的方法研究-主成分评价[J].管理工程学报,2002,16(1):39-45.
    [82]. LAURENT A, OLSEN S I, HAUSCHILD M Z. Limitations of Carbon Footprint as Indicator of Environmental Sustainability[J]. Environmental Science & Technology.2012,46:4100-4108.
    [83]. LAURENT A, OLSEN S I, HAUSCHILD M Z. Carbon footprint as environmental performance indicator for the manufacturing industry[J]. CIRP Annals-Manufacturing Technology,2010,59:37-40.
    [84]. GLEN P P. Carbon footprints and embodied carbon at multiple scales[J]. Current Opinion in Environmental Sustainability,2010,2:245-250.
    [85]. RAHMAN F, O'BRIEN C, AHAMED S I, etc. Design and implementation of an open framework for ubiquitous carbon footprint calculator applications[J]. Sustainable Computing:Informatics and Systems,2011,1:257-274.
    [86]. JOYCE T, OKRASINSKI, T A, SCHCAEFFER W. Estimating the Carbon Footprint of Telecommunications Products:A Heuristic Approach[J]. Journal of Mechanical Design,2010,132:1-4.
    [87]. VINODH S. Environmental conscious product design using CAD and CAE[J]. Clean Technology Environ Policy,2011,13:359-367.
    [88]. TINGLEY D D, DAVISON B. Developing an LCA methodology to account for the environmental benefits of design for deconstruction[J]. Building and Environment,2012,57:387-395.
    [89]. UMEDA Y, TAKATA S, KIMURA F, etc. Toward integrated product and process life cycle planning-An environmental perspective[J]. CIRP Annals-Manufacturing Technology,2012,61:681-702.
    [90]. 曹华军,李洪丞,宋胜利等.基于生命周期评价的机床生命周期碳排放评估方法及应用[J].计算机集成制造系统,2011,17(11):2432-2437.
    [91]. 李先广,李聪波,刘飞等。基于Petri网的机床制造过程碳排放建模与量 化方法[J].计算机集成制造系统.2012,18(12):2723-2735.
    [92]. 罗春燕,文桂江.基于生命周期法的企业碳足迹计量与核算[J].财会研究,2011,13:29-30.
    [93]. SCIPIONI A, MANZARDO A, MAZZI, A, etc. Monitoring the carbon footprint of products:a methodological proposal[J]. Journal of Cleaner Production,2012,36:94-101.
    [94]. MATTHEWS H S, HENDRICKSON C T, WEBER C L. The Importance of Carbon Footprint Estimation Boundaries[J]. Environmental Science & Technology,2008,42:5839-5842.
    [95]. LEE K H, CHEONG I M. Measuring a carbon footprint and environmental practice:the case of Hyundai Motors Co. (HMC)[J]. Industrial Management & Data Systems.2011,111(6):961-978.
    [96]. KRIKKE H. Impact of closed-loop network configurations on carbon footprints:A case study in copiers[J]. Resources, Conservation and Recycling, 2011,55:1196-1205.
    [97]. ELHEDHLI S, MERRICK R. Green supply chain network design to reduce carbon emissions [J]. Transportation Research Part D,2012,17:370-379.
    [98]. GILJUM S, BURGER E, HINTERBERGER F, etc. A comprehensive set of resource use indicators from the micro to the macro level[J]. Resources, Conservation and Recycling,2011,55:300-308.
    [99]. 孙良峰,裘乐淼,张树有等.面向低碳化设计的复杂装备碳排放分层递阶模型[J].计算机集成制造系统.2012,18(11):2381-2390.
    [100]. 鲍宏,刘光复,王吉凯.采用碳足迹分析的产品低碳优化设计[J].计算机辅助设计与图形学学报.2013,25(2):264-272.
    [101]. 鲍宏,刘光复,王吉凯.面向低碳设计的产品多层次碳足迹分析方法[J].计算机集成制造系统.2013,19(1):21-28.
    [102]. ZHANG T F, ZHANG S Y, HU Z Y, etc. Identification of connection units with high GHG emissions for low-carbon product structure design[J]. Journal of Cleaner Production,2012,27:118-125.
    [103].刘献礼,陈涛.机械制造中的低碳制造理论与技术[J].哈尔滨理工大学学报,2011,16(1):1-8.
    [104]. SONG J S, LEE K M. Development of a low-carbon product design system based on embedded GHG emissions[J]. Resources, Conservation and Recycling, 2010,54:547-556.
    [105]. CUCEK L, KLEMES J J, KRAVANJA Z. A Review of Footprint analysis tools for monitoring impacts on sustainability[J]. Journal of Cleaner Production, 2012,34:9-20.
    [106]. RAHMAN F, O'BRIEN C, AHAMED S I, etc. Design and implementation of an open framework for ubiquitous carbon footprint calculator applications[J]. Sustainable Computing:Informatics and Systems,2011,1:257-274.
    [107]. GAUSSIN M, HU G, ABOLGHASEM S, etc. Assessing the environmental footprint of manufactured products:A survey of current literature[J]. Int. J. Production Economics,2012:1-9.
    [108]. CUCEK L, KLEMES J J, KRAVANJA Z. A Review of Footprint analysis tools for monitoring impacts on sustainability[J]. Journal of Cleaner Production, 2012,34:9-20
    [109].刑可霞,郭怀成.环境模型不确定性分析方法综述[J].环境科学与技术,2006,29(5):112-116.
    [110].王纲胜,夏军,陈军锋.模型多参数灵敏度与不确定性分析[J].地理研究,2010,29(2):263-270.
    [111].郭健彬,曾声奎,陈云霞等.考虑不确定性的多学科设计优化分解方法[J].计算机集成制造系统,2009,15(1):6-12
    [112]. ANNA E B. Survey of approaches to improve reliability in LCA[J]. LCA Methodology,2012,7(2):64-72.
    [113]. TAN R R. Using fuzzy numbers to propagate uncertainty in matrix-based LCI[J]. Life Cycle Assess,2008,13:585-592.
    [114]. MAY J R, BRENNAN D J. Application of data quality assessment methods to an LCA of electricity generation[J]. Life Cycle Assess,2003,8(4):215-225.
    [115].向东等,产品生命周期分析中的数据处理方法[J].计算机集成制造系统,2002,8(2):150-154.
    [116].陈晓川.并行工程中面向成本的设计的理论与方法研究[D].大连理工大学.2000.
    [117]. 于江,王征,张景霞.面向成本的产品包装设计[J].包装工程,2002,23(5):145-146.
    [118].巩桂芬,兰明,殷科.包装总成本综合评价AHP模型[J].包装工程,2013,34(2):100-104.
    [119]. 宫运启.基于实例推理的产品包装成本估算研究[J].包装工程,2012,33(15):64-68.
    [120]. 钱黎明,王雪晖,金智敏等.包装材料选择及成本效益分析[J].中华医院感染学杂志,2011,21(23):5008-5010.
    [121]. 郭彦峰,王宏涛,付云岗.缓冲包装件整体性能与成本评价系统的研究[J].包装工程,2007,28(11):78-80.
    [122]. 邹鑫嫔,李东升,张新昌.基于成本作业法的回收包装系统的研究及应用[J].包装工程,2008,29(1):108-111.
    [123].罗如学,物流包装成本核算方法介绍[J].财会月刊,2011,2:52-53.
    [124]. 孟秀丽,易红,倪中华等.基于多目标决策的协同设计冲突消解方法研究[J].计算机集成制造系统,2005,11(5):625-629.
    [125]. 胡斌,胡如夫.产品协同设计的冲突消解方法研究[J].机床与液压,2003,3:194-196.
    [126]. 苏世伟,陈安,杨红强.机电产品包装低碳化设计与应用技术[J].包装世界,2012(5):22-23.
    [127]. 刘维成,陈希荣.低碳低温瓦楞生产线及其产业化[J].中国包装工业,2012(7):11-14.
    [128]. 任清杰.生命周期评价在整体包装解决方案中的应用[J].塑料包装,2011,21(6):43-46.
    [129]. 马占山.大型机电产品出口包装设计[J].中国包装,2010,30(6):51-54.
    [130].GB/T13384-2008,机电产品包装通用技术条件[s].北京:中国标准出 版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700