用户名: 密码: 验证码:
多层介质膜脉宽压缩光栅的清洗及阈值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CPA(Chirped Pulse Amplification)技术促进了高能激光器快速发展,多层介质膜脉宽压缩光栅(PCG)是CPA系统核心元件,PCG抗激光损伤能力是决定整个强激光系统能否持续稳定运行的关键。PCG在加工、制作工艺过程中会引入许多污染物质,其中包含光刻胶有机物、碳氟化合物沉积物、金属沉积物、颗粒等污染物,这些残留污染物对激光具有相当大的吸收系数,很容易形成吸热中心,进而导致PCG表面的损伤,通过选择恰当有效的清洗工艺去除PCG表面残留污染物是提高其抗激光损伤阈值的一种理想方法。
     本论文紧紧围绕高性能高功率激光实验装置中一类关键的衍射光学元件—多层介质膜脉宽压缩光栅(PCG),研究PCG制作工艺过程中光栅表面引入非金属或者金属污染物这一突出问题,以扫描电镜显微镜和X射线光电子能谱为主要分析手段,定性和定量的判断PCG表面的污染物残留状态。为去除光栅表面污染物,系统开展PCG清洗研究,包括湿法清洗、干法清洗、超声辅助等。利用中国工程物理研究院八所的阈值测试平台和中科院上海光机所的阈值测试装置,进行了PCG的皮秒阂值状态确认,得到了优化的PCG清洗工艺,元件达到工程指标要求并成功应用于激光装置。在PCG清洗方面取得如下一系列重要成果。
     1.对PCG湿法清洗和清洗安全进行研究。系统研究了SPM(浓硫酸和双氧水混合液)的清洗温度、组成成份、清洗时间、清洗遍数等主要参数,得到优化的SPM清洗方案;研究了不同浓度的DHF(稀释氢氟酸)对二氧化铪和二氧化硅的腐蚀特性,得到去除现行工艺PCG表面二氧化铪薄层的有效方法;研究了洗铬液对PCG顶层铬掩模去除特性,解决了洗铬液残留的铈二次污染问题,得到了理想的去除铬掩模工艺方案;研究了PCG湿法清洗安全问题,综合分析PCG湿法清洗损伤原因,发现多层膜表面节瘤是导致含双氧水清洗液清洗损伤的直接原因,并对多层膜节瘤缺陷的控制提出更高的要求;系统研究了不同频率的超声辅助清洗,得到超声辅助的有效性及不同频率下对PCG的清洗安全性,提出了兆赫兹超声辅助湿法清洗PCG的需求。
     2.研究了各种气体等离子体干法清洗、相关真空设备的污染情况及干湿法结合清洗。研究了氧气、氢气和四氟化碳气体等离子体对PCG的表面干法清洗,发现氧等离子体和氢等离子体能有效的去除碳氟化合物,且前者能快速去除刻蚀残留光刻胶,尤其是利用四氟化碳等离子体剥离PCG表面材料去除其上污染物的研究,实验显示这种方法可以有效去除嵌入表层的污染物和氧等离子体难于去除的污染物;研究了PCG制作工艺相关的真空设备污染情况,光栅制作工艺中的离子束刻蚀过程存在铁等元素的污染,等离子体清洗去除光刻胶过程存在铝和铜元素污染,分析其来源,引出干法清洗之后加入一步湿法清洗的必要性,并为后续真空设备设计提出改进意见;研究HPM(盐酸、双氧水和去离子水)清洗去除金属元素污染物,并结合氧等离子体清洗,发展了一种新的干湿法结合清洗PCG方案。
     3.使用10ps脉宽、1053nm波长皮秒激光对不同清洗工艺下PCG的阈值进行状态确认,在优化的SPM基础上定型了PCG清洗工艺Ⅰ,在结合氧等离子体和HPM清洗基础上定型了PCG清洗工艺Ⅱ;皮秒阂值结果显示清洗工艺Ⅱ优于清洗工艺Ⅰ,在氧等离子体处理的基础上,HPM可以在更低温度更短时间内取得与传统SPM相当甚至更好的清洗效果,能显著提升脉宽压缩光栅表面抗皮秒损伤阈值至1.6J/cm2(光栅面),通量阈值为3.4J/cm2。
     4.对常见材料构成的容器进行光栅保存实验。发现PP塑料暴露空气中受湿度和光照影响会发生老化现象,有可能污染PCG表面,所以对于塑料密封容器需要避光、避氧、干燥环境下保存样品。对于受塑料老化污染的样品,在使用之前需要做进一步清洗。
Rapid development of ultra-high power laser device is attributable to the chirped pulse amplification (CPA) technology, and the induced laser damage of multilayer dielectric film gratings (PCG) wich are core components in CPA system is key factor influence on the operation of high power laser systen stable and sustainable. A wide variety of PCG surface contaminants, such as organic photoresist, fluoro-hydrocarbon deposits, metals deposits, airborne organic, and particulate contamination and so on, are introduced during the process of manufacturing gratings. These residual contaminants which have great absorption coefficient from incidencing laser pulses can easily form heat-absorbing centers and further lead to physics damage to the PCG. Therefore, selection of appropriate and effective cleaning method process to remove the surface contaminants is an ideal way to improve the laser induced damage threshold of PCG.
     The cleaning of surface contaminants that impact on the laser damage threshold of PCG is studied systematically in this paper. Complete physical and chemical surface analysis techniques of USTC (University of Science and Technology of China) can be carried out to qualitatively and quantitatively evaluate the cleanliness of PCG. The laser facility for laser damage test with picosecond pulses which has been built by CAEP (China Academy of Engineering Physics) and a similar test device which has been setting up by SIOM (Shanghai Institute of Optics and Fine Mechanics) both can be employed to evaluate the laser damage threshold. And a series significant achievements of PCG cleaning have been obtained.
     (1) The system research of wet cleaning with different solutions has been made. The optimization of cleaning by SPM solution has been got in the experiment. The diluted hydrofluoric acid to remove the thin hafnium oxide film which exist the top layer of PCG has been explored. The ideal process which solves the problem of secondary contaminante from chromium-etching solution used to remove chromium mask of PCG has been obtained. The reason which lead to cleaning-damage by wet cleaning has been comprehensively analysised, and new demands relating to the pre-process of PCG manufacturing have been put forward. Safety and efficiency of different frequency of ultrasonic-assisted cleaning have been explored, and the suitable type of ultrasound for PCG cleaning has been gained.
     (2) The dry cleaning of various gas-plasma has been researched. The high effectiveness of removing photoresist, fluorocarbon, and some particular contaminants has been gained by using corresponding gas-plasma cleaning. The source of metal contaminants from ion beam machine and photoresist-stripping device is analysised to direct improvements of the vacuum equipment design in future. The ability of HPM solution to remove metal contaminants of PCG surface has been explored, and a new cleaning method based on the HPM solution combined with oxygen plasma for PCG has been developed.
     (3) Basing on evaluation of picosecond-laser threshold of different cleaning methods, cleaning process Ⅰ and Ⅱ of PCG have been confirmed. HPM solution of cleaning process Ⅱ, combined oxygen plasma cleaning, is operated at lower temperature and shorter time than the SPM solution of cleaning process I, and the damage threshold of cleaning process Ⅱ is equate to (or even better) cleaning process I.
     (4) Storage condition of PCG of the laboratory of different functional areals of humidity, temperature and other environmental paramters has been studied. It found that PP plastic may contaminate the PCG surface when it is degraded by the humity and sun in the air. Therefore, PCG should be stored in sealing-container of glass materials. The samples polluted with the degradation of PP plastic should be further cleaning before use.
引文
[1]张家泰,激光等离子体相互作用物理,中国工程物理研究院北京研究生部,1995.
    [2]H.F.巴索夫,华欣生泽,稠密等离子体诊断学,中国工程物理研究院,1992.
    [3]G. C. Wang, Suggestion of neutron geneartion with powerful of lasers, Chinese of Lasesr, 14(11):641,1987.
    [4]J. Nuckolls, L. Wood, A. Thiessen, G. Zimmerman, Laser Compression of Matter to Super-High Densities:Thermonuclear (CTR) Applications, Nature,239(5368):139,1972.
    [5]M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, R. J. Mason, Ignition and high gain with ultrapowerful lasers, Phys.Plasmas,1(5):1626,1994.
    [6]R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Miyakoshi, N. Miyanaga, T. Norimatsu, S. J. Rose, T. Shozaki, K. Shigemori, A. Sunahara, M. Tampo, K. A. Tanaka, Y. Toyama, T. Yamanaka and M. Zepf, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature,412: 798,2001.
    [7]R. Kodama, H. Shiraga, K. Shigemori, Y. Toyama, S. Fujioka, H. Azechi, H. Fujita, H. Habara, T. Hall, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. M. Krushelnick, K. L. Lancaster, K. Mima, K. Nagai, M. Nakai, H. Nishimura, T. Norimatsu, P. A. Norreys, S. Sakabe, K. A. Tanaka, A. Youssef, M. Zepf, T. Yamanaka, Nuclear fusion:Fast heating scalable to laser fusion ignition, Nature,418:933,2002.
    [8]D. Stlickland, G. Mourou, Compression ofainplitied chirped optical pulses, Opt. Cominun., 56:219,1985.
    [9]P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse ampligfication, IEEE J. Quantum Electron,24:398,1988.
    [10]汗剑鹏,宽光谱介质膜光栅设计及其性能研究(博士论文),中科院上海光学精密机械研究所,2011.
    [11]B. Ashe, K. L. Marshall, C. Giacofei, A. L. Rigatti, T. J. Kessler, A. W. Schmid, J. B. Oliver, J. Keck, A. Kozlov, Evaluation of cleaning methods for multilayer diffraction gratings, Laser-Induced Damage in Optical Materials,6043:O4030,2006.
    [12]B. Ashe, C. Giacofei, G. Myhre, A. W. Schmid, Optimizing a cleaning process for multilayer-dielectric-(MLD) diffraction grating, Laser-Induced Damage in Optical Materials, 6720:N7200,2007.
    [13]J. A. Britten, H. T. Nguyen, Method for cleaning diffraction gratings. US Patent: US2008047584,2008.
    [14]D. O. Feder, D. E. Koontz, Detection, removal and control of oganic contaminants in the production of electron devices, Symposium on Cleaning of Electronic Device Components and Materials, ASTM STP,246:40,1959.
    [15]S. P. Wolsky, P. M. Rodriquez, W. Waring, Adsoption of sodium ions by germanium surfaces, J. Electrochem. Soc.,103:606,1956.
    [16]G. B. Larrabee, The Contamination of Semiconductor Surfaces:I. Metal Ions from Acid Solution on the Inter-metallics, GaAs and InSb, J. Electrochem Soc.,108:1130,1961.
    [17]W.Kern, Use of Radioisotopes in the Semiconductor Field at RCA, RCA Engineer,9(1):62, 1963.
    [18]W.Kern, Radiochemical study of semiconductor surface contamination.1. Adsorption of reagent components, RCA Review,31(2):207,1970.
    [19]W.Kern, Radiochemical study of semiconductor surface contamination.2. Deposition of trace impurities on silicon and silica, RCA Review,31(2):234,1970.
    [20]W.Kern, Radiochemical study of semiconductor surface contamination.3. Deposition of trace impurities on germanium and gallium arsenide, RCA Review,32(1):64,1971.
    [21]W.Kern, Neutron-activation study of gallium arsenide contamination by quartz, J. Electrochem. Soc.,109(8):700,1962.
    [22]W. Kern, D. A. Puotinen, Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Review,31(2):187,1970.
    [23]R. C. Henderson, Silicon cleaning with hydrogen peroxide solutions-high enegry electron diffraction and auger electron spectroscopy study, J. Electrochem. Soc.,119(6):772,1972.
    [24]J. A. Amick, Cleanliness and cleaning of silicon wafers, Solid State Technology,19(11):47, 1976.
    [25]D. Burkman, Optimizing the cleaning procedure for silicon wafers prior to high temperature operations, Semiconductor International,4(7):103,1981.
    [26]B. F. Philips, D. C. Burkman, W. R. Schmidt, C. A. Peterson, The impact of surface analysis technology on the development of semiconductor wafer cleaning processes, J. Vac. Sci. Technol.A,1(2):646,1983.
    [27]A. M. Goodman, L. A. Goodman, H. F. Gossenberger, Silicon-wafer process evalution using minority-carrier diffusion-length measurement by the SPV method, RCA Review,44(2):326, 1983.
    [28]Kern, W., Hydrogen peroxide solutions for silicon wafer cleaning, RCA Engineer,28(4):99, 1983.
    [29]W.Kern, Purifying Si and SiO2 surfaces with hydrogen peroxide, Semiconductor International,7(4):94,1984.
    [30]S. Shwartzman, A. Mayer, W. Kern, Megasonic particle removal from solid-state wafers, RCA Review,46(1):81,1985.
    [31]I. K. Bansal, Autodoping and particulate contaminations during pre-diffusion chemical cleaning of silicon-wafers, Solid State Technology,29(7):75,1986.
    [32]A. Ishizaka, Y. Shiraki, Low-temperature surface cleaning of silicon and its application to silicon MBE, J. Electrochem. Soc.,133(4):666,1986.
    [33]C. Y. Wong, S. P. Klepner, X-ray photoelectron-spectroscopy on surface oxidation of silicon by some cleaning procedures, Appl. Phys. Lett.,48(18):1229,1986.
    [34]G. Gould, E. A. Irene, An insitu ellipsometric study of aqueous NH4OH treatment of silicon, J. Electrochem. Soc.,136(4):1108,1989.
    [35]G. G. Fountain, S. V. Hattangandy, R. A. Rudder, J. B. Posthill, R. J. Markunas, MRS Symp. Proc,146:139,1989.
    [36]J. R. Vig, Treatise on Cleaning and Surface Technology, Plenum Press, New York,1987.
    [37]T. Kaneko, M. Suemitsu, N. Miyamoto, Low-temperature silicon surface cleaning by HF etching ultraviolet ozone cleaning (HF/UVOC) method.2.-Insitu UVOC, Jpn. J. of Appl. Phys.,28(12):2425,1989.
    [38]S. Verhaverbeke, J. Alay, P. Mertens, M. Meuris, M. Heyns, W. Vandervorst, M. Murrell, C. Sofield, Proc. on Chemical Surface Preparation, Passivation, and Cleaning, Growth and Processing, Symp. B, Spring Mtg. of the MRS, San Francisco,1992.
    [39]M. Grundner, D. Graf, P. O. Hahn, A. Schnegg, Wet chemical treatments of Si surfaces-chemical-composition and mophology, Solid State Technology,34(2):69,1991.
    [40]R. R. Matthews, Proc. of the Semiconductor Pure Water and Chemicals Conf, p.3, Santa Clara, CA, Balazs Analytical Laboratory, Sunnyvale,1992.
    [41]B. E. Deal, M. McNeilly, D. B. Kao, J. M. deLarios, Vapor-phase wafer cleaning-processing for the 1990s, Solid State Technology,33(7):73,1990.
    [42]R. Isoff, Wafer cleaning:can dry systems compete?, Semicond. International,14(12):50 (1991).
    [43]M. Wong, M. M. Moslehi, D. W. Reed, Characterization of wafer cleaning and oxide etching using vapor-phase hydrogen-fluoride, J. Electrochem. Soc.,138(6):1799,1991.
    [44]G. L. Nobinger, D. J. Moskowitz, W. C. Krusell, Vapor-phase-etching technology:exploring surface sensitivities and uniform oxide etching, Microcontamination,10(4):21,1992.
    [45]B. E. Deal, C. R. Helms, Proc. on Chemical Surface Preparation, Passivation, and Cleaning, Growth and Processing, Symp. B, Paper 6.2, Spring Mtg. of MRS, San Francisco,1992.
    [46]A. Tasch, S. Banerjee, T. Hsu, R. Qian, D. Kinosky, J. Irby, A. Mahajan, S. Thomas, Proc. on Chemical Surface Preparation, Passivation, and Cleaning, Growth, and Processing, Symp. B, Paper 1.4, Spring Mtg. of MRS, San Francisco,1992.
    [47]S. V. Hattangandy, R. A. Rudder, M. J. Mantini, G. G. Fountain, J. B. Posthill, R. J. Markunas, MRS Symp. Proc.,165:221,1990.
    [48]W. T. McDermott, R. C. Ockovic, J. J. Wu, R. J. Miller, Removing submicron surface particles using a cryogenic argon-aerosol technique, Microcontamination,9(10):33,1991.
    [49]E. Bok, D. Kelch, K. S. Schumacher, Supercritical fluids for single wafer cleaning, Solid State Technology,35(6):117,1992.
    [50]W. Kern, C. A. Deckert, Thin Film Processes, Academic Press, New York,1978.
    [51]W. Kern, G. L. Schnable, The Chemistry of the Semiconductor Industry, Chapman and Hall, New York,1987.
    [52]P. Walker, W. H. Tarn, CRC Handbook of Etchants for Metals and Metallic Compounds, CRC Press, Inc., Boca, Raton,1990.
    [53]D. J. Monk, D. S. Soane, R. T. Howe, Determination of the etching kinetics for the hydrofluoric-acid silicon dioxide system, J Electrochem. Soc.,140(8):2339,1993.
    [54]S. Verhaverbeke, C. Teerlinck, C. Vinckier, G. Stevens, R. Caturyvels, M. M. Heyns, The etching mechanisms of SiO2 in hydrofluoric-acid, J. Electrochem. Soc.,141(10):2852, 1994.
    [55]A. Somashekhar, S. OBrien, Etching SiO2 films in aqueous 0.49% HF, J. Electrochem. Soc., 143(9):2885,1996.
    [56]S. Verhaverbeke, R. Messoussi, H. Morinaga, T. Ohmi, Recent Advances in Wet Processing Technology and Science, Ultra Clean Semicond. Processing Technology., Mat. Res. Soc. Symp. Proc.,386:3,1995.
    [57]J. S. Judge, Study of dissolution of SiO2 in acidic fluoride solutions, J. Electrochem. Soc., 118(11):1772,1971.
    [58]M. Knotter, N. Stewart, I. Sharp, D. Scranton, Performing selective etch of Si3N4 and SiO2 using a single-wafer wet-etch technology, MICRO,23(1):47,2005.
    [59]P. Van Zant, Ammonium persulfate as a stripping and cleaning oxidant, Semiconductor International,7(4):109,1984.
    [60]J. Davidson, J. Hoffman, First Internatl. Symp. On Ultra Large Scale Integration Science and Technology, (Broydo, S., and Osburn, C. M., eds.),87-11:798, The Electrochemical Society, Pennington, NJ,1987.
    [61]http://www.ece.umd.edu/class/enee697.S99/projects/esokolov/
    [62]W. Kern, Purifying Si and SiO2 surfaces with hydrogen peroxide, Semiconductor International,7(4):94,1984.
    [63]W. Kern, The evolution of silicon-wafer cleaning technology, J. Electrochem. Soc.,137(6): 1887,1990.
    [64]C. F. McConnell, Examining the effects of wafer surface chemistry on particle removal using direct-displacement isopropyl alcohol drying, Microcontamination,9 (2):35,1991.
    [65]O. J. Anttila, M. V. Tilli, Metal contamination removal on silicon-wafers using dilute acidic solutions, J. Electrochem. Soc.,139(6):1751,1992.
    [66]C. Werkhoven, E. Granneman, M. Hendriks, R. de Blank, S. Verhaverbeke, P. Mertens, M. Meuris, W. Vandervorst, M. Heijns, A. Philipossian, Wet and dry HF-last cleaning process for high-integrity gate oxides, Proceedings of IEEE International Electron Devices Meeting, San Francisco, CA, USA,1992.
    [67]M. Meuris, V S. erhaverbeke, P.W. Mertens, M.M. Heyns, L. Hellemans, Y. Bruynseraede, A. Philipossian, The relationship of the silicon surface roughness and gate oxide integrity in NH4OH/H2O2 mixtures, Japanese Journal of Applied Physics, Part 2-Letters,31(11 A): L1514,1992.
    [68]O. J. Anttila, M. V. Tilli, M. Schaekers, C. L. Claeys, Effect of chemicals on metal contamination on silicon-wafers, J. Electrochem. Soc.,139(4):1180,1992.
    [69]E. D. Olson, C. A. Reaux, W. C. Ma, J. W. Butterbaugh, Alternatives to standard wet cleans, Semiconductor International,23(9):70,2000.
    [70]T. Ohmi, M. Isagawa, M. Kogure, T. Imaoka, Native oxide-growth and organic impurity removal on Si surface with ozone-injected ultrapure wafer, J. Electrochem. Soc.,140(3): 804,1993.
    [71]S. L. Nelson, L. E. Carter, A process using ozonated water solutions to remove photoresist after metallization, Solid State Phenomena,65-66:287,1999.
    [72]F. De Smedt, C. Vinckier, I. Cornelissen, S. De Gent, M. Heyns, A detailed study on the growth of thin oxide layers on silicon using ozonated solutions, J. Electrochem. Soc., 147(3):1124,2000.
    [73]T. Ohmi, Total room temperature wet cleaning for Si substrate surface, J. Electrochem. Soc., 143 (9):2957,1996.
    [74]M. Meuris, P. W. Mertins, A. Opdebeeck, H. F. Schmidt, M. Depas, G. Vereecke, M. M. Heyns, A. Philipossian, The IMEC clean-a new concept for particle and metal removal on Si surfaces, Solid State Technology,38(7):109,1995.
    [75]F. Tardif, T. Lardin, P. Boelen, R. Novak, I. Kashkoush, Proc.3rd International Symposium on Ultraclean Processing of Silicon Surfaces (UCPSS), Belgium,1996.
    [76]T. Osaka, A. Okamoto, H. Kuniyasu, T. Hattori, Contamination removal by single-wafer spin cleaning with repetitive use of ozonized water and dilute HF, J. Electrochem. Soc., 145(9):3278,1998.
    [77]T. Hattori, Implementing a single-wafer cleaning technology suitable for minifab operations, MICRO,21(1):49,2003.
    [78]H. Park, D. Ko, P. Apte, C. R. Helms, K. C. Saraswat, In situ removal of native oxides from silicon surfaces using anhydrous hydrogen fluoride gas, Electrochemical and Solid State Letters,1(2):77,1998.
    [79]M. Wong, M. M. Moslehi, R. A. Bowling, Wafer temperature-dependence of the vapor-phase HF oxide etch, Journal of the electrochemical society,140(1):205,1993.
    [80]M. Wong, D. K. Y. Liu, M. M. Moslehi, D. W. Reed, Preoxidation treatment using HC1/HF vapor, IEEE Electron Device Letters,12(8):425,1991.
    [81]Y. Saito, Y. Nakazawa, X-ray photoelectron study on the adsorption of anhydrous hydrogen fluoride onto silicon native oxide, Japanese Journal of Applied Physics part 2-Letters, 36(11 A):L1466,1997.
    [82]C. R. Helms, B. E. DEAL, Mechanisms of the HF/H2O vapor-phase etching of SiO2, Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films,10(4):806,1992.
    [83]D. W. Lee, H. Y. Jung, M. S. Kim, J. S. Lee, Y. K. Choi, O. Han, Effect of UV/03 treatment on mask surface to reducing sulfuric residue ions, Proceedings of the SPIE,5567:521,2004.
    [84]M. A. Lester, Post-metal-etch cleaning analyzed, Semiconductor International,22(14):50, 1999.
    [85]M. A. George, D. W. Hess, S. E. Beck, K. Young, D. A. Bohling, G. Voloshin, A. P. Lane, Reaction of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (H+hfac) with iron and iron oxide thin films, J. Electrochem. Soc.,143(10):3257 (1996).
    [86]S. E. Beck, E. A. Robertson, M. A. George, D. A. Bohling, D. A. Moniot, J. L. Waskiewicz, K. M. Young, A vapor phase clean to remove sodium using 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, Electrochemical and Solid-State Letters,1(5):235, 1998.
    [87]P.Singer, Plasma ashing moves into the mainstream, Semiconductor International,19(8):83, 1996.
    [88]R. E. Walkup, K. L. Saenger, G. S. Selwyn, Studies of atomic oxygen in O2+ CF4 RF discharges by 2-photon lasr-induced fluorescence and optical-emission spectroscopy, J. Chem. Phys.,84(5):2668,1986.
    [89]S. Fujimura, M. T. Suzuki, K. Shinagawa, M. Nakamura, Sodium contamination free ashing process using O2+H2O plasma downstream, J. Vac. Sci.Technol. B,12(4):2409,1994.
    [90]K. Hirose, H. Shimada, S. Shimomura, M. Onodera, T. Ohmi, Ion-implanted photoresist and damage-free stripping, J. Electrochem. Soc.,141(1):192,1994.
    [91]S. Panda, R. Ranade, G. S. Mathad, Etching high aspect ratio silicon trenches, J. Electrochem. Soc.,150(10):G612,2003.
    [92]C.-C. Cheng, J. Oncay, A downstream plasma process for post etch residue cleaning, Semiconductor International,18(7):185,1995.
    [93]H. Li, M. Baklanov, W. Boullart, T. Conard, B. Brijs, K. Maex, L. Froyen, Analyses of post metal etch cleaning in downstream H2O-based plasma followed by a wet chemistry, J. Electrochem. Soc.,146(10):3843,1999.
    [94]N. Narayanswami, A theoretical analysis of wafer cleaning using a cryogenic aerosol, J. Electrochem. Soc.,146(2):767,1999.
    [95]J. J. Wu, D. Syverson, T. Wagener, J. Weygand, Wafer cleaning with cryogenic argon aerosols, Semiconductor International,19(9):113,1996.
    [96]J. W. Butterbaugh, S. Loper, G. Thomes, D. Sheu, Enhancing yield through argon/nitrogen cryokinetic aerosol cleaning after via processing, MICRO,17(6):33,1999.
    [97]J. W. Butterbaugh, Using a cryogenic aerosol process to clean copper, low-k materials without damage, MICRO,20(2):23,2002.
    [98]R. Sherman, P. Admas, Carbon Dioxide Snow Cleaning-The Next Generation of Clean, Precision Cleaning,290,1996.
    [99]C. M. Cline, Emerging Technology:Emerging Markets, Precision Cleaning 4(10):11,1996.
    [100]D. Jackson, B. Carver, Today's forecast:it looks like snow, Precision Cleaning,8:16,1999.
    [101]C. Case, J. McClain, Developing supercritical carbon doxide processing in microelectronics applications J., MICRO,22(1):33,2004.
    [102]B.Moslehi, Examining the future of wafer cleaning-New applications demand novel solutions, MICRO,22(4):66,2004.
    [103]杨维才,张广丰,汪小琳,罗文华,唐洪全,卢勇杰,超临界二氧化碳清洗铀样品技术研究,核化学与放射化学,26(1):29,2006.
    [104]S. J. Hale, Supercritical Fluids Carbon Dioxide Cleaning of Plutoniumparts: LA-UR-93-3103, USA:Los Alamos Nationnal Laboratory,1993.
    [105]G. M. Taylor, Supercritical-Fluids Carbon Dioxide (SCCO2) Cleaning of Nuclear Weapon Components:LA-UR-97-4420, USA:Los Alamos Nationnal Laboratory,1997.
    [106]Moshe, Gitteman. Quantitative Theory of Solubility in Supercritical Fluids, J Chem Phys, 78(5):648,1983.
    [107]朱自强,超临界流体技术,化学工业出版社(北京),2001.
    [108]李志义 刘学武 张晓冬 夏远景 胡大鹏,超临界流体在微电子器件流体中的应用,洗净技术,2(5):5,2004.
    [109]K. Jackson, J. L. Fulton, Supercritical fluid cleaning:fundamentals, technology and applications, Noyes Publications, Westwood, NJ,1998.
    [110]251 L. B. Rothman, R. J. Robey, M. K. Ali, D. J. Mount, Supercritical fluid process for semiconductor device fabrication, Advanced Semiconductor Manufacturing 2002 IEEE/SEMI Conference and Workshop,2002.
    [111]J. B. Rubin, L. B. Davenhall, C. M. V. Taylor, T. Pierce, K.Tiefert, Carbon dioxide-based supercritical fluids as IC manufacturing solvents, Electronics and Environment,1999. Processing of the 1999 IEEE International Symposium,1999.
    [112]J. B. Rubin, L. B. Davenhall, J. Barton, C. M. V. Taylor, K. Tiefert, A comparison of chilled IC water/ozone and CO2-base supercritical fluids as replacements for photoresist-stripping solvent, IEEE/CPMT Int. Electron Manuf. Technol. Symp.23rd, Institute of Electrical and Electronics Engineers,1998.
    [113]J. J. Lander, Auger Peaks in the Energy Spectra of Secondary Electrons from Various Materials, Phys. Rev.,91(6):1382,1953.
    [114]L. A. Harris, Analysis of Materials by Electron-Excited Auger Electrons, J. Appl. Phys., 39(3):1419,1968.
    [115]L. A. Harris, Some Observations of Surface Segregation by Auger Electron Emission, J. Appl. Phys.,39(3):1428,1968.
    [116]J. H. Sanders, Investigation of Grain Boundary Chemistry in Al-Li 2195 Welds using Auger Electron Spectroscopy, Thin Solid Films,277(1-2):121,1996.
    [117]R. Steinhardt, E. Serfass, X-Ray Photoelectron Spectrometer for Chemical Analysis, Anal. Chem.23(11):1585,1951.
    [118]C. Nordling, E. Sokolowski, K. Siegbahn, Precision Method for Obtaining Absolute Values of Atomic Binding Energies, Phys. Rev.,105(5):1676,1957.
    [119]E. Sokolowski, C. Nordling, K. Siegbahn, Chemical Shift Effect in Inner Electronic Levels of Cu Due to Oxidation, Phys. Rev.,110(3):776,1958.
    [120]刘世宏、王当憨、潘承璜,X射线光电子能谱分析,科学出版社(北京),1988.
    [121]A. Benninghoven, Analysis of Submonolayers on Silver by Negative Secondary Ion Emission, Phys. Status Solidi,34(2):K169,1969.
    [122]R. G. Wilson, F. A. Stevie, C. W. Magee, Secondary Ion Mass Spectrometry:A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, John Wiley, New York,1989.
    [123]R. F. Goff, D. P. Smith, Surface Composition Analysis by Binary Scattering of Noble Gas Ions, J. Vac. Sci. Technol.,7(1):72,1970.
    [124]D. O. Boerma, Surface Physics with Low-Energy Ion Scattering, Nucl. Instrum. Mtd. Phys. Res. B,183(1-2):73,2001.
    [125]Evans Analytical Group Website-www.eaglabs.com
    [126]www.ukesca.org/tech/list/html.
    [127]Charles Evans Associates Website-www.cea.com
    [128]R.D. Cormia, Problem-Solving Surface Analysis Techniques, Surface Sciences Laboratories, Mountain View, CA:Advanced Materials & Processes,1992.
    [129]K. K. Shih, T. C. Chieu, D. B. Dove, Hafnium dioxide etch-stop layer for phase-shifting masks, J. Vac. Sci. Technol. B,11(6):2130,1993.
    [130]J. A. Britten, H. T. Nguyen, S. F. Falabella, B. W. Shore, M. D. Perry, D. H. Raguin, Etch-stop characteristics of Sc2O3 and HfO2 films for multilayer dielectric grating applications, J. Vac. Sci. Technol. A,14(5):2973,1996.
    [131]R. Ramos, G. Cunge, B. Pelissier, O. Joubert, Cleaning aluminum fluoride coatings from plasma reactor walls in SiCl4/Cl2 plasmas, Plasma Sources Science and Technology,16:711, 2007.
    [132]K. A. Reinhardt, W. Kern, Handbook of silicon wafer cleaning technology (Second Edition), New York:William Andrew Inc,2008.
    [133]H. H. Park, K. H. Kwon, J. L. Lee, K. S. Suh, O. J. Kwon, K. I. Cho, S. C. Park, Characterization and removal of silicon surface residue resulting from CHF3/C2F6 reactive ion etching, J. Appl. Phys.,76(8):4596,1994.
    [134]K. Christenson, B. Schwab, T. J. Wagener, B. Rosengren, D. J. Riley, J. Barnett, Selective Wet Etching of High-k Gate Dielectrics, Solid State Phenomena,92:129,2003.
    [135]K. Christenson, Selective Wet Etching of High-k material, FSI International, Chaska, minnesota.
    [136]V. Lowalekar, S. Raghavan, Etching of zirconium oxide, hafnium oxide, and hafnium silicates in dilute hydrofluoric acid solutions, J. Mater. Res.,19(4):1149,2004.
    [137]K. R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing-Part Ⅱ, Journal of Microelectromechanical Systems,12(6):761,2003.
    [138]P. R. Veera Dandu, B. C. Peethala, and S. V. Babu, Role of Different Additives on Silicon Dioxide Film Removal Rate during Chemical Mechanical Polishing Using Ceria-Based Dispersions, Journal of The Electrochemical Society,157 (9):H869,2010.
    [139]单永光,刘晓凤,贺洪波,范正修,光学薄膜中节瘤缺陷研究进展,强激光与粒子束,23(6):1421,2011.
    [140]梁治齐,实用清洗技术手册,化学工业出版社(北京),2005.
    [141]W. Kim, T.-H. Kim, J. Choi, H.-Y. Kim, Mechanism of particle removal by megasonic waves, Applied Physics Letters,94:081908,2009.
    [142]http://www.eefocus.com/book/08-09/415511050949.html
    [143]崔铮,微纳米加工技术及其应用(第2版),高等教育出版社(北京),2009.
    [144]M.A.力伯曼,A.J.里登伯格著,蒲以康等泽, 科学出版社(北京),2007.
    [145]A. Ermolieff, A. Amouroux, S. Marthon, J. F. Faviet, L. Peccoud, XPS studies of contamination of reactor and silicon surfaces caused by reactive ion etching, Semicond. Sci. Technol.,6:290,1991.
    [146]洪义麟,刘良保,周小为,徐向东,付绍军,用于大尺寸衍射光栅的光刻胶残余物的清洗系统,真空科学与技术学报,45(3):25,2008.
    [147]J. Becker, A. Bernhardt, ISO11254, an international standard for the determination of the laser induced damage threshold, in Laser-Induced Damage in Optical Materials, Proc. SPIE, 2114:703,1993.
    [148]R. M. Wood, Laser-Induced Damage of Optical Materials, Institute of Physics Publishing Ltd, London,2003.
    [149]孙承伟,激光幅照效应,国防工业出版社(北京),2002.
    [150]W.克希耐尔著,孙文等译,固体激光工程,科学出版社(北京),2002
    [151]朱耀南,光学薄膜激光损伤阂值测试方法的介绍和讨论,激光技术,30(5):532,2006.
    [152]张问辉,高功率激光诱导光学元件损伤场效应及阈值测试研究(硕士论文),四川大学,2005.
    [153]Jian-da Shao, Ya-ping Dai, Qiao Xu, Progress on the optical materials and components for the high power laser system in China, Proc. of SPIE,8206:820605,2012.
    [154]W. Kern, The Evolution of Silicon Wafer Cleaning Technology, J. Electrochem. Soc.,137(6): 1887,1990.
    [155]W. Kern, Handbook of Semiconductor Wafer Cleaning Technology:Science, Technology, and Applications, Noyes Publications, New Jersey,1993.
    [156]A. Ravve著,张超灿,陈艳军,刘长生等译,高分子化学原理(原著第二版),化学工业出版社(北京),2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700