用户名: 密码: 验证码:
钾与尿素和有机肥配施对菜园土壤环境质量及蔬菜品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,农业生产上大量施用化肥而忽视有机肥投入的现象非常普遍,这不仅降低了肥料的利用率和施用效益,加剧土壤养分失衡,在保护地栽培条件下易造成严重的盐害,而且污染地下水,降低蔬菜品质,影响蔬菜的可持续生产和生态环境安全。尽管施肥措施对菜园土壤环境质量和蔬菜品质的影响已有许多的研究报道,但以往的大部分报道都偏重于单一肥料对蔬菜品质和土壤生态环境的影响,而对于不同肥料配施尤其有机肥和化肥配施方面的研究相对较少。因此,弄清有机肥和化学肥料配合施用对土壤中氮的转化、积累和迁移以及对蔬菜品质的影响,对于提高菜园土壤生态安全和蔬菜品质是十分重要的。因此,本文拟采用菠菜和苋菜为材料,通过室内培养试验、土培试验和土柱淋洗试验等,研究钾与不同氮源(尿素和有机肥)配施对菠菜品质及菜园土壤环境质量的影响,从而为保护蔬菜产地的生态环境和生产优质安全的蔬菜提供科学依据。主要结果如下:
     1.室内培养试验结果表明,尿素与双氰胺配施延缓硝化作用的进行,有效地降低土壤中NO_3~-—N的积累和维持较高的土壤NH_4~+—N含量,而尿素配施有机物料对土壤NO_3~-—N和NH_4~+—N含量的影响与单施尿素处理间没有显著差异。土壤铵态氮含量随施钾量的增加而增加,而硝态氮含量则呈下降趋势。土壤速效钾和缓效钾含量随着供钾水平的提高而显著增加,并且配施有机肥时土壤速效钾和缓效钾含量也有所提高。钾对土壤脲酶和转化酶活性没有明显的影响,但是配施有机物料处理的脲酶和转化酶活性显著高于单施尿素或尿素配施DCD。不同氮源供应条件下,土壤的pH值在培养的前7d没有显著差异,但在培养后期土壤pH值大小顺序为:尿素+DCD>尿素+鸭粪≈尿素+猪粪>尿素,钾肥施用量增加,土壤pH值也有所上升。在培养初期,有机肥与尿素配施土壤电导率值略高于单施尿素,但在培养7d后,单施尿素处理的EC显著高于其它处理。
     2.土柱淋洗试验结果表明,淋洗液中硝态氮的浓度在前35d内随着淋洗次数的增加而提高,在35d以后则逐渐下降,淋洗液中铵态氮的浓度则随着淋洗次数的增加而下降。尿素配施有机物料或DCD能够降低硝态氮、铵态氮和无机氮的总淋失量及淋洗液的EC值,提高了淋洗结束后土壤铵态氮和硝态氮含量及淋洗液pH值。供钾也可明显降低硝态氮和无机氮的总淋失量,并且提高了淋洗结束后土壤铵态氮和硝态氮含量及淋洗液的pH值及EC值。本试验结果表明尿素与有机肥或DCD配施能够减轻土壤养分的淋失和对地下水污染的风险。
     3 土培试验结果表明,供钾降低了土壤中硝态氮含量,而对铵态含量没有明显的影响。尿素与双氰胺配施延缓了硝化作用的进行,能有效地降低土壤中NO_3~-—N的积累和维持较高的土壤NH_4~+—N含量,而尿素配施有机物料对土壤NO_3~-—N和NH_4~+—N含量的影响与单施尿素处理间
    
    没有显著差异·添加有机物料处理的土壤脉酶和转化酶活性、土壤速效钾和缓效钾含量以及土壤
    pH值显著高于单施尿素处理,但却降低了土壤电导率.土壤速效钾、缓效钾含量及土壤电导率和
    pH值随着施钾水平的提高而增加,但钾对土壤脉酶和转化酶活性没有明显的影响.钾与不同氮肥
    种类配施对菠菜生长的效果因培养时间而异,在追肥初期尿素和有机肥配施处理的菠菜生物星显
    著高于单施尿素处理,但随着追肥时间的延长,各处理的生物旦差异变小.在同一氮肥种类供应
    条件下,菠菜单株鲜重随施钾量的提高而显著增加。尿素和有机物料或双佩胺配施处理可以明显
    降低菠菜体内的硝酸盐和亚硝盐含量,能够在一定程度上提高维生素C和粗蛋白含星及硝酸还原
    醉活性.菠菜体内维生素C和粗蛋白含最及硝酸还原酶活性随着钾肥用最的提高而增加,植株体
    内的硝酸盐和亚硝盐含量则随钾供应水平的提高而降低.本试验结果表明,合理施用钾肥、尿素
    与有机物料或双橄胺配施能够显著改善土壤环境质量和蔬菜品质.
     4.土培试验结果表明,尿素与双佩胺配施能够有效地降低第2季疏菜收获时土壤中硝态氮含
    从和保持较高的饺态氮含最,而尿素配施有机物料处理对第2季蔬菜收获时土壤N场一N和NH’+
    一N含最的影响与单施尿素没有显著差异.供钾提高了土壤中钱态氮含嫩而降低了土壤硝态氮含
    量。添加有机物料处理在第2季蔬菜收获时土壤中速效钾和缓效钾含量高于单施尿素和尿素配施
    双佩胺处理,供钾则显著地增加了土壤中速效钾和缓效钾含星。在不同氮源的处理在第2季蔬菜
    收获时土壤中的EC值人小顺序为:尿素>尿素+鸭粪>尿素+猪粪>尿素+Dco,pH值的变化趋势
    则相反.供钾处理也提高了土壤的电导率和pH值.施用钾肥、尿素与有机物料或OCD配施能够
    提高第2季作物芜菜体内硝酸还原酶活性,降低了硝酸盐和亚硝盐的含量,并且增加觅菜的生物
    量、可溶性糖(D CD除外)、维生素C和粗蛋白含最.以上结果表明,施用有机肥不仅能提高当
    季疏菜品质和土壤环境质量而且能够提高第2季疏菜品质和土壤环境质星。
In the past few years, the role of organic fertilizer in agronomic practices has long been replaced by chemical fertilizer. It has also brought about some unfavourable results. Besides the impairment of soil environmental and vegetable quality in protected field, this practice also caused a decline in soil productivity through excessive soil erosion, nutrient runoff, imbalanced nutrient, and deteriorated soil chemical properties. Much work has been done and a wide range of techniques have been developed and put into practice to improve soil environmental and vegetable quality, especially the effect of application single fertilizer in vegetable field. However, little information is available on the effects of combined application of potassium with urea and organic manure on soil environmental and vegetable quality. It is very important to understand the combined application of potassium with urea and organic manure management on nitrogen transformation and accumulation, and improve vegetable and environmental quality. Therefore, the objective of this study is to gain some information, by using incubation experiment, pot experiment and soil column leaching experiment, on soil environmental and vegetable quality in spinach and Amaranthus hypochondriacus as affected by combined application of types of nitrogen fertilizers under different K supply levels. The results are summarized as follows:
    1. The results from the soil incubation experiment showed that lower NO3--N content and higher NH4+-N content in soil was observed in the treatment of combined application urea with DCD, but addition organic manure to urea did not show notable effect on NO3-N and NH4+-N content in soil. The contents of available and slowly available potassium in vegetable soil significantly increased with the higher of potassium, and application organic manure combined with urea higher than that of single urea treatment. The soil urease and invertase activity was significantly higher in combined application of organic manure with urea than that of single urea or urea with DCD treatments, but insignificant difference was found among different potassium levels. The treatment did not have notable effect on pH within earlier seven days of incubation period, but pH of the vegetable soil in later incubation stage varied: U+DCD >U+DM U+PM>U, and pH of the soil was enhanced by the increase of potassium application. The soil electrical conductivity was higher in organic manure with urea than that of single urea within seven days, but higher soil electrical conductivity was observed in single urea treatment in later stage.
    
    
    
    2. In soil column leaching experiment, the NO3- concentration of leachate increased with the increase of leaching times within earlier thirty-five days, and decreased with the increase leaching times after thirty-five days, but the NH4+ concentration of leachate decreased with the increase of leaching times. Combined application of urea with organic manure or DCD distinctly decreased total amount of NO3-N, NH4+-N and inorganic nitrogen leached, and electrical conductivity of leachate, while enhanced NO3-N and NH4+-N contents, and pH of leachate in vegetable soil after leaching. Potassium supply not only increased pH, EC of leachate, and NO3-N and NH4+-N accumulation in soil after leaching, but also decreased the total amount of NO3-N and inorganic nitrogen leached. It is evident that combined application of urea with organic manure or DCD could effectively decrease nutrient leaching and the risk of nitrate pollution to underground water.
    3. It was found in the pot experiment that NO3-N content in soil was gradually decreased with the increase of potassium concentration, but NH/-N content was not obviously affected. Combined application of urea with DCD reduced NO3-N content in soil and maintained higher content of NH4+-N due to the inhibition of nitrification by DCD, but addition of organic manure did not have notable effect on NO3-N and NH4+-N content in vegetable soil in comparison with the treatment of urea. Urea combined with org
引文
1.边秀举,巨晓棠,张福锁,等.尿素与有机物料在土壤中的分解转化特征研究[J].河北农业大学学到报,2000,23(2):29~32.
    2.陈防,鲁剑巍.万运帆,等.长期施钾对作物增产及土壤钾素含量及形态的影响[J].土壤学报,2000.37(2):233~241.
    3.陈谈飞,童有为.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159~162.
    4.陈振德.不同收获时期对蔬菜硝酸盐含量的影响[J].中国蔬菜,1989,(3):8~10.
    5.陈子明,袁锋明,姚造华,等.氮肥施用对土体中氮素移动及其对环境质量和产量的影响[A].北京:中国农业科技出版社,1996,3:1~3.
    6.程艳丽,邹德乙,王春枝,等.棕壤肥料长期定位试验中有机肥的厉效研究[J].辽宁农业科学,2001(3):26~27.
    7.党廷辉,张麦,等.有机肥对黑垆土养分含量,形态及转化影响的定位研究[J].干早地区农业研究,1999,17(4):1~4.
    8.张乃明,张守萍,等.太原市蔬菜硝酸盐污染状况及其影响因素[J].农业环境保护,1998(3),126~128.
    9.樊军,郝明德,党廷辉.早地长期定位施肥对土壤剖面硝态氮分布与累积的影响[J].土壤与环境,2000,9(1):23~26.
    10.方兆登,徐富安,张益农,等.有机物料对高产稻区土壤肥力影响的研究[J].科技通报,1992,8(5):309~312.
    11.傅柳松,刘超.钼和双氰胺降低蔬菜硝酸盐积累的效应研究[J].环境污染与防治,1994,16(3):4~6.
    12.高祖明,张耀栋,张道勇,等.氮磷钾对叶菜硝酸盐积累和硝酸盐还原酶、过氧化物酶活性的影响[J].园艺学报,1989,16(4):293~298.
    13.古伯贤.赵哲权,王泽文.等.有机物料对盐化潮土土壤有机质品质和产量影响的研究[J].土壤通报,1992,23(1):28~30.
    14.何才富,孙锡发,丘古彬.酸性紫色土长期定位施钾效应及对土壤肥力的影响[J].西南农业大学学报,1996,9(4):46~51.
    15.何衾机,孟赐福.植物营养原理[C].上海科学技术出版社,1987.
    16.和文祥,来航线.培肥对土壤酶活性影响的研究[J].浙江大学学报:农业与生命科学版,2001,27(3):265~268.
    17.胡勤海.傅柳松.双氰胺对蔬菜硝酸盐积累抑制作用的研究[J].环境污染与防治,1991,13(1):6~8.
    
    
    18.黄强,殷志刚,田长彦.等.施有机肥条件下的土壤溶液盐分变化动态[J].干旱区研究,2001,18(1):53~56.
    19.蒋卫杰,刘伟,余宏军,等.充分利用有机肥料提高蔬菜产量利品质[J].作物杂志,2001(5):23~25.
    20.蒋卫杰.氮钾互作对蔬菜生长发育的影响[J].中国蔬菜,1992,9(2):46~50.
    21.金平.有机无机营养对大豆品质的影响[J].黑龙江农业科学,1997,(2):4~7.
    22.李光锐.郭毓德,陈培森.尿素在石灰性土壤中的移动、分解和转化的初步探讨[J].中国农业科学,1985,(1):73~76.
    23.李国学.施用污泥堆肥对土壤和青菜重金属积累特性的影响[J].中国农业大学报,1998,3(1):113~118.
    24.李会合,王正银,李宝珍,张浩.不同有机肥料对基质培叶菜的营养效应研究[J].西南农业大学学报.2003,(1):66~69.
    25.李家康.陈培森,沈贵琴,等.几种蔬菜的养分需求与钾素增产效果[J].土壤肥料,1997,(3):3~6.
    26.李明霞.保护地土壤营养障碍与治理途径[J].蔬菜,1999,(10):4~5.
    27.李仁发,潘晓萍等.施用有机肥对降低蔬菜硝酸盐残留的影响[J].福建农业科技,1999,(6):14~15.
    28.李世清,李生秀.有机物枓和氮肥相互作用对土壤中微生物态氮的影响[J].微生物学通报,2000,21(1):136~142.
    29.李文庆.大棚土壤硝酸盐状况研究[J].土壤学报.2002,39(2):283~287.
    30.李先珍,王耀林,张志斌,等.保护地蔬菜大棚土壤盐离子积累状况研究报[J].中国蔬菜,1993,11(4):15~17.
    31.李延轩.张锡洲,等.保护土壤次生盐渍化的研究进展[J].西南农业学报,2001,(14):103~107。
    32.李玉影,刘双全.长期施钾对草甸土钾素动态变化及产量的影响[J].黑龙江农业科学,2002,(1):26~27.
    33.李玉影.连续施钾对黑土钾素动态变化的影响[J].土壤肥料,2002,(3):32~37.
    34.刘更另.金维续.中国有机肥料[C].北京:农业出版社,1991,157~194.
    35.刘康.氯化铵硝化抑制效应的初步研究[J].土壤肥料,1990(1):21~23.
    36.刘水菊,夏江.不同NPK配比对大白菜产量及硝酸盐累积的影响[J].土壤肥料,1999(4):26~29.
    37.吕殿青,同延安,孙本华.氮肥施用对环境污染影响的研究[J].植物营养与肥料学报.1998,4(1);8~15.
    
    
    38.罗国良.闻大中.沈甚敏.北方稻田生态系统养分渗漏规律研究[J].中国农业科学,2000,33(2):68~74.
    39.马成泽.有机质含量对土壤几项物理性质的影响[J].土壤通报,1994,25(2):65~67.
    40.马记良.控制蔬菜硝酸盐污染[J].北京农业,1998,(2):28~29.
    41.马茂桐.新垦红壤早地上钾肥与氮肥不同配比对芝麻和油菜产量的影响[J].土壤,1997,29(2):84~87.
    42.马友华,李道林,等.黄红壤上烟草对钾的反应及种烟后土壤钾的变化[J].热带亚热带土壤科学,1996,5(3):180~182.
    43.马志勤,张先婉.有机物料对紫色土土壤酶活性的影响[J].土壤通报,1992,23(1):25~27.
    44.倪吾钟,章永松,林咸水.不同钾肥对几种主要蔬菜作物产量和品质的影响[J].浙江农业大学学报.1997,9(3):143~148.
    45.倪治华,马国瑞.有机无机生物活性肥料对蔬菜作物生长及土壤生物活性的影响[J].土壤通报,2002,33(3):212~215.
    46.秦巧燕,曲东等.我国设施农业发展现状及施肥特点[J].湖北农学院报.2002,22(4):373~376.
    47.邱考煊,任祖淦,王坤泉,等.蔬菜硝酸盐累积及其防治的探讨[J].福建农业科技,1998,6:69~71.
    48.任祖淦,邱孝煊.施用化学氮肥对蔬菜硝酸盐的累积及其治理研究[J].土壤通报,1999,30(6):265~267.
    49.申秀英.蔬菜硝酸盐累积机制及影响因素[J].农业环境与发展,1998,15(3)4~6.
    50.沈明珠,翟宝杰.蔬菜硝酸盐积累的研究,Ⅰ不同蔬菜硝酸盐、亚硝酸盐含量评价[J].园艺学报,1982,9(4):41~48.
    51.沈中泉,郭云桃,哀家富,等.有机肥在提高农作物产品品质中的作用[J].湖北农业科学,1989,(5):17~20.
    52.苏德纯.北京郊区蔬菜保护地土壤磷空间及形态分布特征[J].中国蔬菜,1999(4):7~11.
    53.孙波,赵其国.张桃林.土壤质量评价的生物学指标[J].土壤.1997,29(5):225~234.
    54.孙红梅,李天来等.不同氮水平下钾营养对大棚番茄产量及品质的影响[J].沈阳农业大学学报,2000,31(1):68~73.
    55.孙羲.植物营养原理[C].中国农业山版社,1992,32~33.
    56.王朝辉,宗志强.等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J].环境科学,2002,23(3):79~83.
    57.王家玉,王省佳,陈义,等.稻田土境中N的渗漏损失研究[J].应用生态学报,1995,6:62~66.
    
    
    58.王敬国,曹一平.土壤氮素转化的环境和生态效应[J].北京农业大学学报,1995,21(1):99~103.
    59.王利群,王文兵,吴守一.蔬菜硝酸盐含量与硝酸还原酶活性的研究[J].食品科学.2003,24(12):37~40.
    60.王秀君,罗盛国.尿素肥效的影响因素及其施肥技术[J].土壤学进展,1995,(1):21~26.
    61.王英.不同状态有机物料对土壤腐残质及作物产量的影响[J].土壤通报,2002.33(2):156~157.
    62.王兆荣,王宏燕,种传立,等.有机物料的腐解及土壤有机质的调控[J].东北农学院学报,1991,22(4):307~313.
    63.王正银.张浩,李宝珍.不同有机肥料对基质培叶菜的营养效应研究[J].西南农业大学学报,2003,25(1):66~69.
    64.吴多三.无公害蔬菜与施肥技术[J].北京农业科学,1998,16(1):16~18.
    65.吴龙华,张素君.有机物料对黄河三角洲滨海盐土根际效应的影响Ⅰ.养分和酶生物学效应[J].应用生态学报,1995,6(2):160~165.
    66.吴义鸿.增加有机肥投入的意义和途径[J].安徽农业,1996,(3):3~3.
    67.肖厚军,阎献芳,彭刚.贵阳市蔬菜硝酸盐含量状况与氮磷钾养分的关系[J].农业环境保护,2001,(6):449-451.
    68.邢廷铣.畜牧业生产对生态环境的污染及其防治[J].云南环境科学,2001,20(1):39~43.
    69.徐长兴,郭熙盛,张琳,等.氮钾配比对苞菜产量及品质的影响[J].安徽农学通报,1999,5(3):34~35.
    70.徐福利,梁银丽,张成娥,杜社妮,陈志杰.施肥对日光温室土壤硝酸盐分布特征的影响[J].西北植物学报.2003,23(10):1762~1767.
    71.许皡.杜孟庸,周健学.等.有机物料对土壤酶活性影响的关连度分析[J].土壤通报,1994,25(2):62~64.
    72.许前欣,孟兆芳,于彩虹.蔬菜体内硝酸盐污染的施肥技术研究[J].农业环境保护,2000,20:109~112.
    73.许前欣,赵振达,等.钾肥对蔬菜产量品质效应的研究[J].土壤肥料,1999,2:23~25.
    74.闫秋良,刘福柱.通过营养调控缓解畜禽生产对环境的污染[J].家畜生态,2002,23(3):68~70.
    75.杨暹,关佩聪,陈日远.氮钾营养对青花菜生长、花球产量与光合生理的影响[J].园艺学报,1994,21(2):175~179.
    76.杨丽娟,须晖,邱忠样,刘水青.莱田土壤酶活性与黄瓜产量的关系[J].植物营养与肥料学报,2000,6(1):113~116.
    
    
    77.杨少海,徐配智,刘国坚.降低蔬菜硝酸盐含量的农业措施[J].土壤与环境,1999,8(3):95~237.
    78.姚胜蕊,束怀瑞.有机物料对苹果根据营养元素动态及土壤酶活性的影响[J].土壤学报,1999,36(3):428~432.
    79.姚源喜,杨文祥,等.长期施用有机肥对提高土壤钾素肥力的作用[J].北京:中国农业科技出版社,1995,360~364.
    80.尹道明,周梅芳,胡静炎,等.合理施用有机肥对芦笋优质高产的效果[J].土壤通报,1990,21(3):128~130.
    81.袁锋明,陈子明,姚造华,等.北京地区潮土表层中NO_3~--N的转化积累及其淋洗损失[J].土壤学报,1995,32(4):388~399.
    82.袁玲,杨邦俊,郑兰君,刘学成.长期施肥对土壤酶活性和氮、磷养分影响[J].植物营养与肥料学报,1997,4(3):300~306.
    83.袁新民,同延安,扬学云,等.有机肥对土壤NO_3~--N累积的影响[J].土壤与环境,2000,9(3):197~200.
    84.曾广骥,金平,于凤之,等.有机肥提高作物产品品质作用初探[J].黑龙江农业科学,1990,(2):10~15.
    85.张春兰,高祖明,张耀栋等.氮素形态和NO_3~--N与NN_4~+-N配比对菠菜生长和品质的影响[J].南京农业大学学报,1990,13(3):70~74.
    86.张春兰,葛祖慈,牛建春.有机物料对减轻蔬菜保护地土壤障碍因子的作用[J].中国农学通报,1996,12(4):49~50.
    87.张春兰,张耀东,朱建春,等.施用稻草对防治保护地土壤盐渍化的作用[J].土壤肥料,1994,26(3):146~148.
    88.张春兰.朱建春,王开金,等.干鸡粪对减轻保护地蔬菜生理障碍的作用[J].江苏农业科学,1995,(6):39~42.
    89.张恩平,李华,等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响[J].黑龙江农业科学,2001,(2):5~8.
    90.张民,马丽.我国菜园土壤的资源特点与持续利用[J].山东农业大学学报:自然科学版.1999,30(4):317~322.
    91.张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80~87.
    92.张亚丽,沈其荣.猪粪和稻草对铬污染黄泥土生物活性的影响[J].植物营养与肥料学报,2002,8(4):488~492.
    93.张英鹏,林咸水,章永松,等.杭州市郊菜园土壤的养分状况及其障碍因子研究[J].浙江大学学报:农业与生命科学版.2003,29(3):244~250.
    
    
    94.张自立.兰金,张文才.土壤有效钾与钾肥施用量关系的研究[J].安微农业科学,2000,28(5):640~641,664.
    95.章永松,林咸永.有机肥(物)对土壤中磷的活化作用及机理研究[J].植物营养与肥料学报,1998,4(2):145~150.
    96.赵佰仁.施肥对土壤肥力及作物产量的影响[J].黑龙江农业科学,1999,(2):11~13.
    97.赵京音.姚政,蒋小华,等.利用农业有机废弃物提高化学氮肥利用率的研究:Ⅰ.有机物料对尿素N在土壤中转化的影响[J].上海农业学报,1998,14(2):67~72.
    98.赵静,白清云.钼对降低蔬菜硝酸盐积累的效应研究[J].农业环境保护,2001,(4):238~239.
    99.赵小英,刘明月,肖杰,宋勇.氮钾对蕹菜硝酸盐积累和硝酸还原酶活性的影响[J].湖南农业大学学报,2003,29(3):239~242.
    100.郑相穆,谷丽萍,周沅宝,等.钼对降低普通白菜叶片硝态氮的作用[J].植物生理学通迅,1995,(2):95~96.
    101.周晓芬,张彦才,等.河北省主要农业土壤有机肥料对土壤钾素的贡献[J].河北农业科学,1997,(2):21~24.
    102.周晓芬,张彦才,李巧云.不同供钾源及其用量对钾素营养的影响[J].土壤通报,2001,32(1):32~34.
    103.周晓芬,张彦才,李巧云.有机肥对土壤钾素供应能力及其特点研究[J].中国农业生态学报,2003,11(2):61~63.
    104.朱林,张春兰,沈其荣.施用稻草等有机物料对黄瓜连作土壤pH、EC值和微生物的影响[J].安徽农业大学学报.2001,28(4):350~353.
    105.朱红霞.姚贤良.有机物料对水稻土某些物理性质的影响[J].土壤,1996,28(1):38~41.
    106.朱林,彭宇,张春兰,等,几种有机物料对连作黄瓜生长的影响[J].安徽农业科学,2001,29(2):214~216.
    107.朱林,张春兰,沈其荣,等.施用稻草等有机物料对连作黄瓜根系活力、硝酸还原酶、ATP酶活力的影响[J].中国农学通报,2002,18(1):17~19.
    108. Amberger A. Research on dicyandiamide as a nitrification inhibitor and future outlook. Commu. Soil Sci. Plant Anal. 1989, 20(19&20): 1933~1955.
    109. Amr A, Hadidi N. Effect of cultivar and harvest date on nitrate and nitrite content of selected vegetables grown under field and greenhouse conditions in jordan[J]. Journal of food composition and analysis,2001,14::59~67.
    110. Aydin Gunes, Wietse N. K. Post et al Influence of partial replacement of nitrate by amino acid nitrogen or urea in the nutrient medium on nitrate accumulation in NFT grown winter lettuce. Journal of Plant Nutrition, 1994, 17(11): 1929~1938
    
    
    111. Barker A V, Bryson G M. Bioremediation of heavy metals and orgahic toxicants by tempesting[J]. The Scientific World Journal, 2002,(2):407~420.
    112. Bellaloui N. Pilbeam D. J. Effects of nitrate withdrawal and resupply on the assimilation of nitrate in leaves of tomato. Journal of Experimental Botany, 1991, 42(234): 81~88.
    113. Betgstrom D W, Monreal C M, Millette J A, et al. Spatial dependence of soil enzyme activities along a slope (J). Soil Science Society of America, 1998,62(5): 1302-1308.
    114. Bevaopua R f, Mellano V J. Cumulative effects of sludge compost on crop yields and soil properties[J]. Commun. Soil Sci. Plant Anal. 1994 (25): 395~406.
    115. Blevins D. G. Barnett N. M. Frost W. B. Role of potassium and malate in nitrate uptake and translocation by wheat seedlings. Plant Physiol, 1988,62:784~788
    116. Biom Zandstra M. Lampe J. E.M. The effects of chloride and sulfate salt on the nitrate content in lettuce plant. J. Plant Nutr. 1983,6:611~628.
    117. Breland T A, Hansen S. Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biology & Biochemistry, 1996(4):655~663.
    118. Bubnova. Features of the transport and accumulation of nitrogen and Potassium in vegetable Crops. Ⅰ. Effects of the conditions of mineral nutrition on the xylem transport of ions. Agrokhimiya,1995, (5): 13~22.
    119. Chang C, Entz T. Nitrate leaching losses under repeated cattle feedlot manure applications in southern Alberta [J]. Environ. Qual, 1996, 25(1): 145~153.
    120. Chery A P, Catherine N G, Robert J D, et al. Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database[J]. Agriculture Ecosystems and Environment,2001(83): 27~42.
    121. Crawford DM. Chalk PM. Sources of N uptake by wheat and N transformations in soil treated with a nitrification inhibitor (nitrapyrin). Plant Soil. 1993, 149: 59~72.
    122. Crawford DM. Chalk PM. Sources of N uptake by wheat and N transformations in soil treated with a nitrification inhibitor (nitrapyrin). Plant Soil. 1993, 149:59~72
    123. Doran J. Building soil quality In proceedings of the 1995 Consservation Workshop on Opportunities and Challenges in Sustainable Agriculture[J]. Development Branch, 1995,151~158.
    124. Drinkwater L E, Wagoner P, Sarrantonio M. Legumebased cropping systems have reduced carbon and nitrogen losses[J]. Nature 1998(396):262~265.
    125. Drinkwater LE, Letourneau D K, Workneh, F, et al. Fundamental differences between conventional and organic tomato agroecosystems in Califsorsmia[J]. Ecol.Appl. 1995,(5):1098~1112.
    126. Drlik. Nitrogen fertilization of some vegetable species in relation to yield, quality and environmental protection. Zahradnictvi, 1993, 20(1):31~42.
    127. Elia A. Santamaria Pet. Serio F. Nitrogen Nutrition, Yield and Quality of Spinach, J.Sci.Food Agric, 1998, 76, 341~346
    128. Eltun R. Comparisons of nitrogen leaching in ecological and conventional cropping systems [J]. Nitogen Leaching in Ecological Agriculture, 1995:103~114.
    
    
    129. Eppendorfer. Free and total amino acid composition of edible parts of beans, kale, spinach cauliflower and potatoes as influenced by N fertilization and phosphorus and potassium deficiency[J].. Journal of the Science of Food and Agriculture,1996, 71:4, 449~458.
    130. Fischer. The influence of different nitrogen and potassium on the chemical flavor composition of kohlrabi[J]. Sci Food and Agri, 1992, 60: 465~470.
    131. Goh K M. Vityakon P. Effect of fertilizers on vegetable production. 2-Effects of nitrogen fertilizers on nitrogen content and nitrate accumulation of spinach and beer root. NZJ Agric Res. 1986, 29:485~494.
    132. Goos R. J. Johnson B. E. Effect of ammonium thiosulfate and dicyandiamide on residual ammonium in fertilizer bands. Commun. Soil Sci. Plant Anal. 1992, 23:1105~1117
    133. Gray D, Mary K T, Julie E J. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities[J]. Soil Biology & Biochemistry, 2002(34): 1073~1082.
    134. Greenwood. D. J. Hunt. J. Effect of nitrogen fertilizer on the nitrate contents of field vegetables grown in Britain. J. Sci. Food Agric. 1986,37:373~383.
    135. Grylls J. P. Effect of nitrogen fertilizer type and nitrification inhibitor on the nitrate content of glasshouse lettuce. Acta. Hort., 1988, 222:189~191
    136. Gunapala N, Scowd K. Dynamics of soil microbial Biomass and activity in conventional and activity in conventional and organic farming systems[J]. Soil Biology & Biochemistry, 1998,(30):805~816.
    137. Gutezeit B. Fink M. Effect of cultivar and harvest date on nitrate content of carrot roots. Jourmal of Horticultural Science & Biotechnology, 1999, 74(3): 297~300.
    138. Hadas A, Kautsky L, et al Mineraliazation of composted manure and microbial dynamics in soil as affected by long-term nitrogen management. Boil Biohem, 1996,(28):733~738.
    139. Hageman R. H. Ammonium versus nitrate nutrition of higher plants. In: Hauck R D(ed). Nitrogen in crop production. Madison. Wisconsin. ASA-CSSA-SSSA, 1984, 67~85
    140. Hagin H. Olsen SR. Shaviv A. Review of interaction of ammonium-nitrate and potassium nutrition of crops. J. Plant Ntri. 1990, 13(10): 1211-1226.
    141. Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soil in New Zealand[J]. Soil Biology & Biochemistry, 2000,(32):211~219.
    142. Heuer B. Growth photosynthesis and protein content in cucumber plants as affected by supplied nitrogen from. Journal of plant Nutrition. 1991, 14(4):363~373.
    143. Hiroshi Hayami, Gregory R. Carmichael, Factors influencing the seasonal variation in particulate nitrate at CHEJU island South Korea. Atmospheric Environment, 1998, 32(8): 1427~1434
    144. Hisatlmi Harada, Yoshinori Yoshimura et al, Variations in nitrogen uptake and nitrate-nitrogen concentration among Sorghum groups. Plant Nutr. 2000, 46(1): 97~104.
    145. Isabel S. Vieira, Ernesto P. et al, Nitrate accumulation, yield and leaf quality of turnip greens in response to nitrogen fertilization. Nutrient Cycling in Agroecosystems, 1998, 51:249~258.
    
    
    146. Jansson s, et al. Preferential utilization of ammonium over nitrate by microorganisms in the decom, position of oat straw. Plant and soil, 1995,(4):382~390.
    147. Jarvan. Nitrate content in vegetables in relation to fertilizer application. Agraarteadus, 1995, 6(30):257~277.
    148. Lee H J, Titus J S. Relationship between nitrate reductase activity and level of soluble carbohydrates under prolonged darkness in MM 106 apple leaves. Journal of Horticultural Science, 1996,68(4):589~596.
    149. Limaux F, Recous S, et al. Relationship between rate of crop growth at date of fertilizer N application and fate of fertilizer N applied to winter wheat. Plant Soci, 1999,214:49~59
    150. Lyons D, Rayment G, et al. Nitrate and nitrite in fresh vegetable from queensland. J Sci Food Agric. 1994,64:279~281.
    151. Margaretha Blom-zandstra, Nitrate accumulation in vegetables and its relationship to quality. Association of Applied Biologists, 1989, 115:553~561
    152. Mary F, Fauci, Dick P R. oil micrbial dynamics: short and long-term effects of inorganic and organic nitrogen(J).Soil Sci Soc AM J, 1994,58:801~806.
    153. Mcall D. Willumsen J. Effects of nitrogen availability and supplementary light on the nitrate content of soil-grown lettuce. Journal of Horticultural Science & Biotechnology, 1999, 74(4): 458~463.
    154. McBride M B, Spiers G. Trace element content of selected fertilizers and dairy manures as determined by ICP-MS[J]. Commun. Soil Sci. Plant Anal, 2001: 32(1&2), 139~156.
    155. Mum K J, Evans J, Chalk P M, et al. Mineralization of soil and legume nitrogen in soils treated with metal-contanminated Sewage sludge[J]. Soil Biology & Biochemistry, 2000(32):2031~2043.
    156. Murage. Changes in leaf yield and nutritive quality of the black nightshade as influenced by nitrogen application Ecology of Food and Nutrition, 1996, 35:(2): 149~157.
    157. Nicholson F A, Chambers B J, Williams J R et al. Heavy metal contents of livestock feeds and animal manures in England and Wales [J]. Bioresource Technology 1999(70): 23~31.
    158. Omieljaniuk N, Borawsda M, et al. Nitrate and nitrite content of vegetables-and blend fresh vegetable juices[J]. Bromatologia, Chemia toksykologiczna. 1995,28; 113~115.
    159. Ponomarev P, kovalchuk M. Possibilities for decreasing nitrate contents in spinach and sorrel. Tovarovedenie, 1991,24:12~15.
    160. Prugar J. Agroecological factors in relationship to the accumulation of nitrate in vegetables and potatoes. Rostlinna Vyroba, 1992, 38(9-10): 875~882
    161. Rainer G J. Ergosterol and microbial biomass in the rhizosphere of grassland. Soil[J]. Biology & Biochemistry, 2000(32):647~652.
    162. Ramos C, Carbonell E. Nitrate leaching and soil moisture prediction with the LEACHM model.Fert Res,1991(27):171~180.
    
    
    163. Santamaria P, Elia A, Gonnella M. Changes in nitrate accumulation and growth of Endive plants during light period as affected by nitrogen level and form. [J] Plant Nutrition:1997, 20(10): 1255~1266.
    164. Santamaria P. Elia A. Parente A et al, Fertilization strategies for lowing nitrate content in leafy vegetable, Chicory and rocket salad cases. J.Plant Nutr, 1998, 21(9): 1791~1803
    165. Santamaria Pet. Elia Antonio et al, A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 1999, 79:1882~1888
    166. Sikora L J, Enkiri N K. Uptake of 15N fertilizer in compost-amended soils[J], plant and soil. 2001,235:65~73.
    167. Sorensen J N. Use of the N_(min) method for optimization of vegetable nitrogen nutrition. Acta Hort, 1993, 339:79~192
    168. Sorensen P. Short-term nitrogen transformation in soil amended with animal manure[J]. Soil biology&Biochemistry. 2001,33:1211~1216.
    169. Stolze M, Piorr A, Hating A, et al. Dabbert S. The enbironmental impact of organic farming in Europe[J]. Economics and Policy, 2000(6): 1437~1512.
    170. Tong yanan, Ove emteryd, Lu Dianqing. Effect of organic manure and chemical fertilizer on nitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile[J]. Nutrient cycling Agroecosystems. 1997,48:225~229.
    171. Vaast P. Effects of solution pH, temperature, nitrate/ammonium rations, and inhibitors on ammonium and nitrate uptake by Arabic coffee in shortterm solution culture. J. Plant. Nutr. Monticello, N. Y. Marecl Dekker Inc, 1998,21(7): 1551~1564
    172. Vanotti M B, Bundy L G. Frequency of nitrogen fertilizer carryover in the humid midwest [J]. Agron J,1994,86:881-886.
    173. Woo jungchoi, Seong-Ahijin, Sang molee, et al. Corn uptake and microbial immobilization of Nlabeled urea-N in soil as affected by composted pig manure[J], plant and soil, 2001,235:1~9.
    174. Workneh F V, Bruggen A H. Suppression of corky root of to tomatoes in soils from organic farms associated with soil microbial activity and nitrogen status of soil and tomato tissue[J]. Phytopathology.2002(84):688~694.
    175. Yadav S N. Formulation and estimation of nitrate-nitrogen leaching from corn cultivation [J]. Environ. 1997,26:808~814.
    176. You, M P, Sivasithamparam K Kurtboke, et al. Actinomycetes in organic mulch used in avocado plantaions and their ability to suppress Phytophthora cinnamomi. Biol[J]. Fertil. Soils 1996,22:237~242.
    177. You, M P, Sivasithamparam K. 1995. Changes in microbial populations of an avocado plantation mulch suppressive to phytophthora cinnamomi[J]. Appl.Soil Ecol, 1994(2):33~43.
    178. Younie D, Watson C A. Soil nitrate-N levels in organically and intensively managed grassland systems[J]. Aspeets Appl, 1992,30:235~238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700