用户名: 密码: 验证码:
大连枣疯病病原鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植原体是一类没有细胞壁、存在于植物韧皮部筛管细胞中的植物病原微生物。它可引起植物黄化、丛枝、花变叶、矮缩或花器退化等症状,导致粮食、果树、蔬菜、花卉等几百种植物致病。它所引起的病害已遍布世界各地,我国发生也很严重,其危害程度已上升为仅次于真菌、病毒病害的第三大类植物病害。
     本研究根据植原体病害的症状学特点,对我国部分省区果树植原体病害进行了病害调查并采样,以基于植原体,16S rRNA,基因设计的通用引物、运用巢式PCR,对其采集到的病样进行了分子生物学检测,以查明该类病害在果树上的发生现状。对采样中检测出来的大连市枣疯病植原体,进行了基因序列分析及计算机模拟的RFLP分析,填补了辽宁省大连地区枣疯病病原鉴定的空白。主要研究结果如下:
     1、以基于植原体,16S rRNA,基因设计的通用引物(R16mF2/R16mR1,及R16F2/R16R2)、运用直接及巢式,PCR,对从辽宁、河南、湖北等果树产区采集到的、100,多个疑似植原体病害的样本,进行了分子生物学检测,仅在辽宁省大连市的枣疯病样本中,出现了植原体特异的扩增条带。
     2、对大连市发病较严重的营城子区,进行了枣疯病发病率和病情指数的调查。该区枣疯病平均发病率为,22%、病情指数,8.67。电镜观察感病叶片的病组织超薄切片,在其韧皮部筛管细胞中发现了典型的植原体细胞。
     3、对大连枣疯株系(JWB-DL)的16S rDNA基因进行了序列测定,该序列(GenBank登录号为EF661582)为1851个核苷酸。将JWB-DL与NCBI中登录的序列进行Blast,序列比对,结果与属于16SrV,的榆树黄化植原体(GenBank登录号为AF189214)具有较高的同源性(98%),推断JWB-DL应属于同一个组即榆树黄化组(16SrV)。计算机模拟RFLP分析也表明它属于榆树黄化组(16SrV)。将JWB-DL与所属植原体组中的各亚组代表株系进行16S rDNA序列比对,通过构建的系统发育树的聚类分析,表明JWB-DL,与CLY,,植原体同属于16SrV-B亚组。JWB-DL与其它种JWB相比,部分rRNA操纵子序列有所不同,表明JWB-DL是一个独特种。JWB-DL核糖体蛋白基因rplV-rpsC基因的核酸序列与麻纤维丛枝植原体(GenBank号:EF029093)一致,而不同于其它JWB植原体,它代表了一种新的、截然不同的Candidatus Phytoplasma ziziphi植原体。
Phytoplasmas are phytopathogenic prokaryotes which lacking cell walls and inhibit phloem sieve elements in infected plants. Phytoplasma have been associated with diseases in several hundred plant species, and it may cause the plant exhibiting yellows, witches broom, phyllody and others symptoms. In recent years, this disease has the tendency of causing more loss.
     According to the symptoms of phytoplasmas, we investigated diseases of phytoplasma and collected samples around the country. Suspicious samples of phytoplasma were detected and identified by nested-PCR assay, in which the universal primers for 16S rRNA of phytoplasma were used. The jujube witches’broom phytoplasma after identified were analyzed by sequencing and computer-simulated RFLP. It is the first time to identify and classify phytoplasma of JWB in Dalian, Liaoning Province. Main results and conclusion of this research are as follows:
     1.Suspicious samples of phytoplasma being collected from Liaoning, Henan, Hubei and other provinces were detected and identified by nested-PCR method, in which universal primers(R16mF2/R16mR1and R16F2/R16R2) of phytoplasma were used to amplifying 16S rRNA gene. As a result, only in DNA samples from Dalian of Liaoning Province, specific bands were amplified by PCR method, and which was identified as jujube witches’-broom phytoplasma disease subsequently.
     2.The incidence and disease index of JWB in Yingchengzi district in Dalian were investigated. Ultra structure of young tissues affected by phytoplasma were observed using ultra-thin section of electronic microscopy technique, the typical phytoplasmas bodies were observed in the phloem of diseased plant of jujube witches’broom.
     3.The PCR-amplified DNA segment of JWB-DL was sequenced. Results show that, the length of JWB-DL is 1851bp, G+C% is 44%, GenBank Accession No. is EF661582. Homologic analysis of nucleotide is 98% between JWB-DL and elm yellows phytoplasma (GenBank Accession No.AF189214). Therefore, the jujube trees should be infected by a type of phytoplasma which is belonging to the elm yellows group (16SrV). Analyzing sequence variations of 16S rDNA among JWB-DL and other JWB strains, partial rRNA operon in JWB-DL was different from others, indicating that JWB-DL is a distinct strain. The nucleotide sequence of the JWB-DL phytoplasma rplV-rpsC (GenBank Accession No. EF661581) is more identical to that of hemp fiber witches’broom phytoplasma (GenBank Accession No.EF029093) than those in JWB phytoplasma strains described previously. To our knowledge, this is the first report of a JWB disease in northeastern China, and JWB-DL represents a new, distinct‘Candidatus Phytoplasma ziziphi’-related strain.
引文
[1] Ploaie, P.G. Mycoplasma-like organisms and plant diseases in Europe. In Plant diseases and Vectors: Ecology and Epidemiology. New York: Academic Press, 1981. 61~104.
    [2] Doi Y M,Teranaka M,Ybra K,et al. Mycoplasma or PLT-group-like microorganisms found in the phloem elements of plants infected with mulberry lows,or potato witches’-broom,aster yellows or paulownia witches’-broom. Ann. Phytopathol.soc.Jpn, 1967, 33: 259~266.
    [3] Lee I M, Davis R E, Gundersen D E. Phytoplasma: Phytopathogenic mollicutes. Annual Review of Microbiology, 2000, 54: 221~255.
    [4] Seemüller E, Marcone C, Lauer U, et al. Current status of molecular classification of the phytoplasmas. Journal of Plant Pathology, 1998, 80(1): 3~26.
    [5] Lee I M, Gundersen D E, Davis R E, et al. Identification and analysis of a genomic strain cluster of mycoplasmalike organisms associated with Canadian peach (eastern) X disease, western X disease, and clover yellow edge. J Bacterio, l992, 174(20): 6694~6698.
    [6] Harrison N A, Richardson P A, Tsai J H, et al. PCR assay for detection of the Phytoplasma associated with maize bushy stunt disease. Plant disease, 1996, 80(3): 263-269.
    [7]郑宏春,冯小东,白重炎,等.枣疯病的研究现状.延安大学学报(自然科学版), 1996, 15(3): 65~67.
    [8]张秦风,朱象三.我国小麦类菌原体(MLO)病害.陕西农业科学, 1994, (1): 17~18.
    [9]冷怀琼,周毅,李庆,等.梨树衰退病的研究Ⅰ病原物的鉴定.四川农业大学学报, 1997, 15(1): 45~48.
    [10]陈子文,陈永萱,陈泽安.枣疯病研究进展.南京农业大学学报, 1991, 14(4): 49~55.
    [11]田国忠,朱水芳.抗病和感病泡桐无性系组培苗对嫁接传染植原体的不同反应.林业科学, 1999, 35(4): 31~34.
    [12] Lee I M, Gundersen-Rindal D E, Bertaccini A. Phytoplasma: Ecology and genomic diversity. Phytopathology, 1998, 88(12): 1359~1366.
    [13] Lim P O, Sears B B. 16SrDNA sequence indicates that plant-pathogenic mycoplasma-like organism are evolutionary distinct from animal mycoplasmas. Bateriol, 1989, 171: 5901~5906.
    [14] Lim P O, Sears B B. 16SrDNA sequence of the ribosomal protein genes rp12 and rpsl9 from a plant-pathogenic mycoplasmalike organism. Microbiol Left, 1991, 54:71~74.
    [15] NAMBA, S.Taxonomy of phytoplasmas. Plant protection, 1996, 50: 152~156.
    [16] Lee I-M, Hammond R W, Davis R E, et al. Universal amplification and analysis of pathogen 16SrRNA for classification and identification of mycoplasmalike organisms. Phytopathology, 1993, 83(8): 834~842.
    [17] Lee I-M, Gundersen-Rindal D E, Davis R E, et al. Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences [In Process Citation]. Int J Syst Bacteriol, 1998, 48(4): 1153~1169.
    [18] Lee I-M, Davis R E, Gundersen-Rindal D E. Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol, 2000, 54: 221~255.
    [19] Wei W Zhao Y, Lee I-M, Davis R E, et al. Classification of phytoplasmas based on computer-simulated restriction fragment length polymorphism analysis of 16S rRNA gene sequences. In: International Organization for Mycoplasmology.2006.
    [20] Seemüller E, Kirkpatrick B C. Detection of phytoplasma infections in plants. In: Molecular and Diagnostic Procedures in Mycoplasmology. New York: Academic Press, Inc., 1996. 299~311.
    [21] Lee I-M, Davis R E. Mycoplasmas which infect plants and insects. In: Mycoplasmas: Molecular Biology and Pathogenesis. J Maniloff, R N McElhansey, L R Finch, JB Baseman, eds. Washington, D.C: American Society for Microbiology, 1992. 379~390.
    [22] Musetti R, Favali M A, Carraro L, et al. An attempt to differentiate by microscopic methods two plant mycoplasma-like organisms. Cytobios, 1992, 72(289): 71~82.
    [23] Musetti R, Favali M A, Carraro L, et al. Histological detection of mycoplasma-like organisms causing leptonecrosis in plum trees. Cytobios, 1994, 78(313): 81~90.
    [24] Musetti R, Favali M A, Pressacco L. Histopathology and polyphenol content in plants infected by phytoplasmas. Cytobios, 2000, 102(401): 133~147.
    [25] Musetti R, Loi N, Carraro L, et al. Application of immunoelectron microscopy techniques in the diagnosis of phytoplasma diseases. Microsc Res Tech, 2002, 56(6): 462~464.
    [26] Seemüller E. Fluorescence zoptischer direct nachweisvon mycoplasma ahnlichen organism in phloem pear-decline and tribe such kranker. Baume Phytopath Z, 1976, 85: 368~372.
    [27] Deeley J, Stevens W A, Fox R T V. Use of Dienes’stain to detect plant diseases induced by mycoplasmalike organisms. Phytopathology, 1979, 69: 1169~1171.
    [28] Hiruki C, Rocha A. Histochemical diagnosis of mycoplasma infections in Catharanthusroseus by means of a fluorescent DNA-binding agent, 4'-6'-diamidino-2-phenylindole-2HCl (DAPI). Canadian Journal of Plant Pathology. 1986, 8(2): 185~188.
    [29] Douglas S M. Detection of mycoplasmalike organisms in peach and chokecherry with X-disease by fluorescence microscopy. Phytopathology. 1986, 76(8): 784~787.
    [30] Haggis G H, Sinha R C. Scanning electron microscopy of mycoplasmalike organisms after freeze fracture of plant tissuesaffectedwithcloverphyllodyandaster yellows. Phytopathology. 1978, 68: 677~680.
    [31] Marcone C, Ragozzino A. Comparative ultrastructural studies on genetically different phytoplasmas using scanning electron microscopy. Petria, 1996, 6: 125~136.
    [32] Milne R G, Ramasso E, Lenzi R, et al. Pre-and post-embedding immunogold labeling and electron microscopy in plant host tissues of three antigenically unrelated MLOs: primula yellows, tomato big bud and bermudagrass white leaf. Eur J Plant Pathol, 1995, 101(1): 57~67.
    [33] Vera C, Milne R G. Immunosorbent electron microscopy and gold label antibody decoration of MLOs from crude preparations of infected plants and vector insects. Plant Pathol, 1994, 43(1): 190~199.
    [34] Lin N S, Hsu Y H, Hsu H T. Immunological detection of plant viruses and a mycoplasmalike organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 1990, 80: 824~828.
    [35]林木兰,杨继红,陈捷.泡桐丛枝病类菌原体单克隆抗体的研制及初步应用.植物学报, 1993, 35(9): 710~715.
    [36] Chen T A, Jiang X F. Monoclonal antibodies against the maize bushy stunt agent. Can J Microbiol, 1988, 34 (1): 6~11.
    [37] Hsu H T, Lee I-M, Davis R E, et al. Immunization for generation of hybridoma antibodies specifically reacting with plants infected with a mycoplasmalike orgnism(MLO) and their use in detection of MLO antignes. Phytopathology. 1990, 80(10): 946~950.
    [38] Jiang Y P, Chen T A, Chiykowski L N, et al. Production of monoclonal antibodies to peach eastern X-disease agent and their use in disease detection. Can J Plant Pathol, 1989, 11: 325~331.
    [39] Lin C P, Chen T A. Monoclonal antibodies against the aster yellows agent. Science, 1985, 227: 1233~1235.
    [40] Guo Y H, Cheng Z M, Walla J A, et al. Diagnosis of X-disease phytoplasma in stone fruits by a monoclonal antibody developed directly from a woody plant. J Environ Hortic, 1998, 16:33~37.
    [41] Clark M F, Morton A, Buss S L. Preparation of mycoplasma immunogens from plants and a comparison of polyclonal and monoclonal antibodies made against primula yellows MLO-associated antigens. Ann Appl Biol, 1989, 114(1): 111~124.
    [42] Sinha R C, Chiykowski L N. Purification and serological detection of mycoplasmalike organisms from plants affected by peach eastern X-disease. Can J Plant Pathology, 1984, 6: 200~205.
    [43] Sinha R C, Chiykowski L N. Serological detection of mycoplasmalike organisms in plant and vector leafhoppers using polycolonal antibodies. Zentralblatt fur Bacterlologie, Suppl, 1990, 20: 276~279.
    [44] Guo Y H, Cheng Z M, Walla J A, Zhang Z. Diagnosis of X-disease phytoplasma in stone fruits by a monoclonal antibody developed directly from a woody plant. J Environ Hortic, 1998, 16: 33~37.
    [45]林木兰,张春立,杨继红.用核酸杂交技术检测泡桐丛枝病类菌原体.科学通报, 1994, 39(4): 376~380.
    [46] Deng S, Hiruki C. Localization of pathogenic mycoplasma-like organisms in plant tissues using in situ hybridization. Proc Japan Acad Sci, 1991, 67: 1197~1202.
    [47] Lee I M,Davis R E,Chen T A,et al. A genotype based system for identification and cIasificationof mycoplasma like organism(MLOs) in the aster yellows MLOs strain cluster. Phytopathology, 1992, 82: 977~986.
    [48]兰平,李文凤.甘薯丛枝病植原体的PCR检测.植物学通报. 2001, 18(2): 210~215.
    [49] Wei, W., Kawakita H., Sato, M. Detection of a small population of mulberry dwarf (MD)-phytoplasmas in symptomless-mullberry trees by nested PCR. Seric. Sci. Jpn. 2000,69: 261~269.
    [50]何放亭,武红巾,陈子文,戴群.几种植物类菌原体(MLOs)的分子检测及其遗传相关性比较.植物病理学报, 1996, 26(3):251~255.
    [51] Bhat A I, Madhubala R, Hareesh P S, Anandaraj M. Detection and characterization of the phytoplasma associated with a phyllody disease of black pepper (Piper nigrum L.) in India. Sci Hortic-amsterdam, 2006, 107(2): 200~204.
    [52] Pilkingtona L J, Gibb K S, Gurra G M, et al. Detection and identification of a phytoplasma from lucerne with Australian lucerne yellows disease, 2003, 52(6): 754~762.
    [53] Torres L, Galdeano E, Docampo D, et al. Characterization of an aster yellows phytoplasma associated with catharanthus little leaf in Argentina. Journal of Plant Pathology, 2004, 86(3): 209~214.
    [54] Kaminska M, Dziekanowska D, Rudzinska-Langwald A. Detection of phytoplasma infection in rose, with degeneration symptoms. Journal of Phytopathology (1986), 2001, 149(1): 3~10.
    [55] Khan J A, Srivastava P, Singh S K. Efficacy of nested-PCR for the detection of phytoplasma causing spike disease of sandal. Curr Sci India, 2004, 86(11): 1530~1538.
    [56] Khadhair A H, Evans I R, Choban B. Identification of aster yellows phytoplasma in garlic and green onion by PCR-based methods. Microbiol Res, 2002, 157(3): 161~167.
    [57] Khan A J, Botti S, Al-Subhi A M, et al. Molecular identification of a new phytoplasma associated with alfalfa witches'-broom in Oman. Phytopathology, 2002, 92(10): 1038~1047.
    [58]周国辉,许东林.广东桉树黄化(丛枝)病植原体分子鉴定与检测.植物保护学报, 2005, 32(4): 387~391.
    [59]庄启国,刘应高,潘欣,等.四川斑竹丛枝病植原体检测及16S rDNA片断序列分析.四川农业大学学报, 2005, 23(4): 417~419,431.
    [60]庄启国,杨静,余应建,刘应高.斑竹丛枝病过氧化物酶和多酚氧化酶的研究.四川农业大学学报, 2005, (3).
    [61] Rajan J, Clark M F. Detection of apple proliferation and other MLOs by immuno-capture PCR(IC-PCR). Acta Hortic, 1995, 386: 511~514.
    [62] Cordova I, Jones P, Harrison N A, et al. In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Molecular Plant Pathology, 2003, 4(2): 99~108.
    [63]廖晓兰,朱水芳,陈红运,黄文胜,罗宽,赵文军,马荣群,朱建裕.植原体TaqMan探针实时荧光PCR检测鉴定方法的建立.植物病理学报, 2002, 32(4): 361~367.
    [64]山西省果树志.山西省园艺学会编.北京:中国经济出版社, 1991. 230~267.
    [65]曲泽洲,王永蕙.中果果树志.枣卷.中果林业出版社. 1993.
    [66]崔诚,桂超林.经济植物的组织培养与快速繁殖.北京:农业出版社, 1985.
    [67]周俊义,刘孟军,候保林.枣疯病研究进展.果树学报, 1998, 15(4): 354~359.
    [68]陈作义.枣疯病病原体的电子显微镜研究-Ⅱ.类菌质体.科学通报, 1978, (12): 751.
    [69]徐绍华.枣疯病病枝超薄切片类菌原体的电镜研究.微生物学报, 1980, 20(2):219~220.
    [70]史春霖,张凤舞,陈子文.冰冻断裂的枣疯病病树韧皮组织中类支原体的扫描电镜观察.微生物学报, 1984 (24): 139~141.
    [71]田砚亭,王红艳,牛辰,等.枣树脱除类菌原体(MLO)技术的研究.北京林业大学学报,1993, 15(2): 20~26.
    [72]黄文晋,崔晓江,林木兰.类菌原体研究现状与发展趋势.微生物通报, 1994,21(1): 37~40.
    [73]韩国安,郭永红,陈永萱.用单克隆抗体检测枣疯病类菌原体.南京农业大学学报, 1990, 13(1): 123.
    [74]田国忠.植物类菌原体的检测和鉴定研究新动态.植物检疫, 1992(增刊): 70~72.
    [75]朱文勇.骏枣茎尖培养脱除枣疯病MLO.园艺学报, 1996, 23(2): 197~198.
    [76]陈子文,张凤舞,田旭东.枣疯病传病途径的研究.植物病理学报, 1984, 14(3):141~145.
    [77]王焯,张承安,周佩珍,等.枣疯病传病昆虫分布调查.植物保护学报, 1986, 13(3): 174.
    [78]王焯.枣疯病几个有关问题.落叶果树, 1995(4): 8~10.
    [79]程丽芬,毛静琴,梁凤玉,等.枣疯病的发病规律及防治田,山西林业科技, 1995, 3: 36~37.
    [80]翟建文,尔吉辉,马玉树,等.枣疯病的发生及综合防治技术.河北林业科技, 2002(增刊): 56~58.
    [81] Fischhand. Callus Formation from Protoplasts of Betula papyrifera March.Cell Suspension Culture. Plant Physiol, 1988, 133(39): 247~251.
    [82] Gupta.Seaffold attaChment regions increase reporter gene expression in stably transformed plant cells. The plant cell, 1993(5): 603~608.
    [83] Horsch, R.B. A Simple and general method for transferring genes into plants. Science, 1985, 277: 1229~1231.
    [84]朱水芳,赵宝庆,胡加彬,等.植原体病害研究进展及其检疫重要性.植物检疫, 1998, 12(4): 237~240.
    [85]廖小兰,朱水芳,罗宽.植原体的分类及分于生物学研究进展.植物检疫, 2003, 6(3): 167.
    [86] Lee I-M, Hammond R W, Davis R E, et al. Universal amplification and analysis of pathogen 16SrRNA for classification and identification of mycoplasmalike organisms.Phytopathology, 1993, 83(8): 834~842.
    [87] Lee I-M, Davis R E, Sinclair W A, et al. Genetic relatedness of mycoplasmalike organisms detected in Ulmus spp. in the United States and Italy by means of DNA probes and polymerase chain reactions. Phytopathology, 1993, 83(8): 829~833.
    [88]魏梅生.引起葡萄黄化病的植原体及其检测.植物检疫, 2001, 15(5): 318~320.
    [89] Daire X, Clair D, Larrue J, et al. Survey for grapevine yellows phytoplasmas in diverse European countries and Israel. Vitis, 1997, 36(1): 53~54.
    [90] Osler R, Boudon-Padieu E, Carraro L, et al. First results on the trials in progress to identify the vector of the agent of a grapevine yellows in Italy. Phytopathologia Mediterranea, 1992, 31(3): 175~181.
    [91] Batlle A, Lavina A, Kuszala C, et al. Detection of flavescence doree phytoplasma in grapevine in northern Spain. Vitis, 1997, 36(4): 211~212.
    [92] Magarey PA, Wachtel MF. Australian grapevine yellows. International Journal of Tropical Plant Disease, 1986(4): 1~14.
    [93] Bonfiglioli RG, Guerrini S, Symons RH. Cooperative Research Centre for Viticulture: Sampling program for grapevine yellows diseases. The Australian Grapegrower and Winemaker, 1996, 394: 22~24.
    [94] Liefting LW, Andersen MT, Beever RE, et al. Sequence heterogeneity in the two 16S rRNA genes of phormium yellow leaf phytoplasma. Applied and Environmental Microbiology, 1996, 62(9): 3133~3139.
    [95] Nazia Loi1, Paolo Ermacora1, Luigi Carraro1, et al. Production of monoclonal antibodies against apple proliferation phytoplasma and their use in serological detection.European Journal of Plant Pathology, 2002, 108: 81~86,.
    [96] Noreth M. Virus, Mycoplasma and Rickettsia diseases of fruit trees. Lancaster, Boston, USA/Dordrecht, Netherlands: M. Nijhoff pub., 1986. 583~589.
    [97] Seemüller E. Apple proliferation. In: Compendium of apple and pear diseases. St Paul, Minnesota, USA: American Phytopathological Society, 1990. 67~68.
    [98] M. Garcia, et al. Seasonal detection of pear decline phytoplasma by nested-PCR in different pear cultivars. Plant Pathology, 2003, 52: 513~520.
    [99] Noreth M. Virus, Mycoplasma and Rickettsia diseases of fruit trees. Lancaster, Boston, USA/Dordrecht, Netherlands: M. Nijhoff pub., 1986. 583~589.
    [100] Kirpatrick B C, et al. Cloning and detection of DNA from nonculturable plant pathogenic mycoplasma like organism. Science, 1987, 238: 197~200.
    [101] Thakur PD, Handa A, Chowfla SC, et al. Outbreak of a phytoplasma disease of peach in the northwestern. Himalayas of India. Acta Horticulturae, No. 1998, 472:737~739.
    [102] EPPO. PQR database (version 4.4). Paris, France: European and Mediterranean Plant Protection Organization. 2005.
    [103] Lee Ing Ming, et al. Phytoplasma: ecology and genomic diversity. Phytopathology, 1998, 88(12):1359~1366.
    [104]巩艳红,刘军,张健,等.毛豹皮樟的叶片DNA提取及其RAPD引物筛选.西北林学院学报,2004,19(4): 35~37.
    [105]张潞生,李传友,贾建航,等.弥猴桃雌雄性别的AFLP鉴别中DNA模板的制备.果树科学,1999, 16(3): 171~175.
    [106]陈静,王文江.适于AFLP分析的核桃幼叶DNA提取方法.河北农业大学学报, 2004 27(6): 44~47.
    [107]曾强成,郑世英,沈亮,等.金丝小枣基因组DNA的优化提取方法.生物技术通讯, 2004,15(2): 152~153.
    [108] Wei W, Kawakita H, and Sato M. Detection of a small population of mulberry dwarf (MD)-phytoplasmas in symptomless-mulberry trees by nested PCR[J]. J. Seric. Sci. Jpn., 2000, 69: 261~269.
    [109]刘孟军,赵锦,周俊义.枣疯病病情分级体系研究.河北农业大学学报. 2006, 29 (1): 31~33.
    [110]林钧安,高锦梁,洪健.实用生物电子显微术.辽宁:辽宁科学技术出版社, 1989: 52~68.
    [111] The IRPCM Phytoplasma/Spiroplasma Working Team– Phytoplasma taxonomy group. 'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol, 2004, 54(4): 1243~1255.
    [112] Schneider B, Seemüller E, Smart C D, et al. Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. Molecular and Diagnostic Procedures in Mycoplasmology. Razin R, Tully J G, eds. San Diego, Calif: Academic Press, 1995: 369~380.
    [113] Lee I-M, Bertaccini A, Vibio M, et al. Detection of multiple phytoplasmas in perennial fruit trees with decline symptoms in Italy. Phytopathology. 1995, 85: 728~735.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700