用户名: 密码: 验证码:
MucR蛋白影响羊种布鲁氏菌毒力的靶点鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病(Brucellosis)是一种由布鲁氏菌(Brucella spp)引起的严重的人兽共患病,给人类的健康和畜牧业的发展带来巨大的危害。转录调控因子MucR是布鲁氏菌的一个重要的毒力因子,但mucR基因缺失引起布鲁氏菌毒力降低的原因以及MucR蛋白调控的靶点基因尚未研究清楚。本文试图通过转录组测序分析及染色质免疫共沉淀探讨上述问题。
     为了确定转录组测序和染色质免疫共沉淀的最佳条件,通过lacZ报告基因和Western blot检测了MucR蛋白在不同生长阶段和应激环境中的转录和翻译水平,结果显示在生长迟缓期和对数期早期,MucR蛋白随着细菌密度的增加而增加,当细菌到达对数期后期,MucR蛋白的表达水平达到最高并且基本保持不变。这种细菌表达水平随细菌密度而变化的特点使我们怀疑MucR蛋白的表达可能与细菌的群体感应系统存在一定的联系。研究发现,在群体感应相关基因vjbR的缺失株中mucR基因的转录水平与亲本菌株16M无差异,说明MucR蛋白的表达不依赖于VjbR的调控。当布鲁氏菌处于不同的应激环境中,MucR蛋白会在pH4.5的条件下迅速减少。为了研究MucR蛋白水平降低是由于蛋白合成水平降低还是蛋白降解增强,采用氯霉素抑制细菌蛋白的合成后检测MucR蛋白降解的特性,结果表明MucR蛋白水平降低主要是由于在pH4.5的环境中蛋白降解作用增强引起的。根据上述结果,确定转录组测序和染色质免疫共沉淀的最佳细菌培养条件应该是将布鲁氏菌在正常的TSB培养基中培养至对数期后期。
     为了研究MucR蛋白的毒力相关机制,通过转录组测序技术检测了mucR基因缺失后引起布鲁氏菌转录谱的变化,结果显示442个基因的表达水平显著改变,其中310个基因表达水平上调,132个基因表达水平下调。通过COG聚类分析发现这些差异基因主要与布鲁氏菌的代谢途径、生物外膜合成途径、DNA转录翻译以及修复等生物过程密切相关。这些差异表达的基因中,一些重要的毒力因子,如群体感应系统、Ⅳ型分泌系统、反硝化途径、DNA修复途径、耐受缺铁环境、耐受酸性环境、生物膜合成相关基因的异常表达可能是mucR缺失株毒力降低的重要原因。环境应激实验的结果显示,mucR基因缺失后会影响细菌对酸性环境、缺铁环境、阳离子多肽的耐受能力,这说明nucR基因缺失后,可能无法适应宿主细胞内的上述应激环境而导致生存和增殖能力的降低。
     为了进一步研究MucR的调控靶点,通过染色质免疫共沉淀技术验证了77个差异表达的基因是否被MucR蛋白直接调控,最终筛选到14个MucR蛋白的直接结合位点,包括7个转录调控相关基因,2个细菌外膜合成相关基因,2个金属离子转运相关基因,1个抵御酸性环境相关基因,1个反硝化途径相关基因以及1个编码碱性磷酸酶的基因。上述结果解释了mucR基因缺失后布鲁氏菌对酸性环境和缺铁环境的敏感,细胞外膜特性的改变以及反硝化途径相关基因的差异表达是由于MucR蛋白调控靶点的异常表达引起的。
     本研究揭示了布鲁氏菌mucR基因缺失后毒力降低的原因和MucR蛋白的调控靶点,为布鲁氏菌的调控网络和胞内生存机制提供了重要的参考依据。
Brucellosis is a serious zoonotic disease caused by Brucella spp,which threats human health and animal husbandry. Transcriptional regulator MucR is a virulence factor of Brucella spp., while the related mechanism of Brucella virulence of MucR and its target genes is still unknown. In this study, we used RNA-seq and chromatin Immunoprecipitation to solve these questions.
     To determine the optimum condition of RNA-seq and chromatin Immunoprecipitation, lacZ report gene assay and Western blot were used to detect the expression level of mucR gene at different growth stages and stress conditions. It showed that the transcriptional level and translational level of the mucR gene were increased at lag phase and early logarithmic phase, and achieved the highest level during the late logarithmic phase. This feature made us consider that the expression of MucR might be affected by quorum sensing system. Our date showed that the expression of MucR was almost the same in△vibR and16M, and it suggested that the expression of MucR was not affected by quorum sensing related protein VjbR. When Brucella melitensis16M was cultured at different stress mediums, the expression levels of MucR were also detected, and this protein was rapidly decreased at acidic medium (pH4.5). To detect if the decrease of MucR was caused by proteolysis, bacterial protein synthesis was inhibited by chloromycetin, and it demonstrated that the decrease of MucR was mainly caused by the enhancement of proteolysis. According to above results, the optimum condition of RNA-seq and chromatin Immunoprecipitation is culturing bacteria to late logarithmic phase in TSB medium.
     To study the MucR related mechanism of bacterial virulence, we performed RNA-seq analysis using Brucella melitensis RNA obtained from B. melitensis16M and the mucR mutant. In total, the expression levels of442genes were significantly changed in the mucR mutant, including310up-regulated genes and132down-regulated genes. According to the result of COG analysis, these differently expressed genes were involved in metabolism, cell wall/envelope biogenesis, and transcriptional regulation. Results of stress assays demonstrated that MucR was involved in tolerance to acid, iron-limitation, and cationic polypeptides. These results mentioned above should be the possible reasons of the attenuation of the mucR mutant.
     The target genes regulated by MucR were also detected in our study.77differently expressed genes were verified by chromatin immunoprecipitation, and14target genes were found. These target genes contained7genes involved in transcriptional regulation,2genes encoding outer membrane proteins,2metal ion transport genes,1gene involved in resistance of acidic stress,1gene related to denitrification, and1alkaline phosphatase. These results suggested that the sensitive to acidic and iron-limiting environment, changes of bacterial outer membrane properties, and different expression of genes involved in denitrification pathway were caused by different expression of MucR target genes in mucR mutant.
     Our study demonstrated MucR related mechanism of bacterial virulence and the target genes regulated by MucR, which provided insights for further studies of Brucella regulation network and intracellular survival mechanisms.
引文
[1]Percin D. Microbiology of Bracella. Recent Pat Antiinfect Drug Discov,2013;8(1):13-17.
    [2]Foster G, Osterman B S, Godfroid J, et al. Brucella ceti sp. nov. and Bracella pinnipedialis sp. nov. for Brucella strains with cetaceans and seals as their preferred hosts. Int J Syst Evol Microbiol, 2007,57(Pt 11):2688-2693.
    [3]Scholz H C, Hubalek Z, Sedlacek I, et al. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol,2008,58(Pt2):375-382.
    [4]Scholz H C, Nockler K, Gollner C, et al. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol,2010,60(Pt 4):801-808.
    [5]Velasco J, Romero C, Lopez-Goni I, et al. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol,1998,48 Pt 3:759-768.
    [6]Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis,2006,6(2):91-99.
    [7]Franz D R, Jahrling P B, Friedlander A M, et al. Clinical recognition and management of patients exposed to biological warfare agents. JAMA,1997,278(5):399-411.
    [8]Pappas G, Panagopoulou P, Christou L, et al. Brucella as a biological weapon. Cell Mol Life Sci, 2006,63(19-20):2229-2236.
    [9]Monreal D, Grillo M J, Gonzalez D, et al. Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun,2003,71(6):3261-3271.
    [10]MORSE E V. Canine brucellosis-a review of the literature. J Am Vet Med Assoc, 1951,119(895):304-308.
    [11]Lucero N E, Corazza R, Almuzara M N, et al. Human Brucella canis outbreak linked to infection in dogs. Epidemiol Infect,2010,138(2):280-285.
    [12]Corbel M J. Brucellosis:an overview. Emerg Infect Dis,1997,3(2):213-221.
    [13]Sohn A H, Probert W S, Glaser C A, et al. Human neurobrucellosis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg Infect Dis,2003,9(4):485-488.
    [14]Scholz H C, Nockler K, Gollner C, et al. Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol,2010,60(Pt 4):801-808.
    [15]王茂武,宫新生,尚德秋,等.辽宁省布氏菌病调查报告.中国地方病防治杂志,2004(04):250-251.
    [16]赵凤菊.布鲁氏菌病的流行情况及危害.中国畜牧兽医文摘,2011(02):62-63.
    [17]吴清民.动物布鲁氏菌病新型防控技术及研究进展.兽医导刊,2011(09):46-47.
    [18]Crump J A, Griffin P M, Angulo F J. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin Infect Dis,2002,35(7):859-865.
    [19]Roop R N, Gaines J M, Anderson E S, et al. Survival of the fittest:how Brucella strains adapt to their intracellular niche in the host. Med Microbiol Immunol,2009,198(4):221-238.
    [20]Balasubramaniam S, Kumar S, Sharma A, et al. Microsatellite (GT)n polymorphism at 3'UTR of SLC11A1 influences the expression of brucella LPS induced MCP1 mRNA in buffalo peripheral blood mononuclear cells. Vet Immunol Immunopathol,2013,152(3-4):295-302.
    [21]Sieira R. Regulation of virulence in Brucella:an eclectic repertoire of transcription factors defines the complex architecture of the virB promoter. Future Microbiol,2013,8(9):1193-1208.
    [22]Lavigne J P, Patey G, Sangari F J, et al. Identification of a new virulence factor, BvfA, in Brucella suis. Infect Immun,2005,73(9):5524-5529.
    [23]Inon DIN, Briones G, Tolmasky M, et al. Molecular cloning and characterization of cgs, the Brucella abortus cyclic beta(1-2) glucan synthetase gene:genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol,1998,180(17):4392-4400.
    [24]Porte F, Naroeni A, Ouahrani-Bettache S, et al. Role of the Brucella suis lipopolysaccharide O antigen in phagosomal genesis and in inhibition of phagosome-lysosome fusion in murine macrophages. Infect Immun,2003,71(3):1481-1490.
    [25]de Jong M F, Sun Y H, den Hartigh A B, et al. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Mol Microbiol,2008,70(6):1378-1396.
    [26]Barquero-Calvo E, Chaves-Olarte E, Weiss D S, et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One, 2007,2(7):e631.
    [27]Forestier C, Deleuil F, Lapaque N, et al. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. J Immunol,2000,165(9):5202-5210.
    [28]Radhakrishnan G K, Yu Q, Harms J S, et al. Brucella TIR Domain-containing Protein Mimics Properties of the Toll-like Receptor Adaptor Protein TIRAP. J Biol Chem,2009,284(15):9892-9898.
    [29]Salcedo S P, Marchesini M I, Lelouard H, et al. Brucella control of dendritic cell maturation is dependent on the TIR-containing protein Btpl. PLoS Pathog,2008,4(2):e21.
    [30]Spera J M, Ugalde J E, Mucci J, et al. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci U S A,2006,103(44):16514-16519.
    [31]Gee J M, Valderas M W, Kovach M E, et al. The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect Immun,2005,73(5):2873-2880.
    [32]Steele K H, Baumgartner J E, Valderas M W, et al. Comparative study of the roles of AhpC and KatE as respiratory antioxidants in Brucella abortus 2308. J Bacteriol,2010,192(19):4912-4922.
    [33]Tatum F M, Morfitt D C, Halling S M. Construction of a Brucella abortus RecA mutant and its survival in mice. Microb Pathog,1993,14(3):177-185.
    [34]Hornback M L, Roop R N. The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J Bacteriol,2006,188(4):1295-1300.
    [35]Haine V, Dozot M, Dornand J, et al. NnrA is required for full virulence and regulates several Brucella melitensis denitrification genes. J Bacteriol,2006,188(4):1615-1619.
    [36]Valderas M W, Alcantara R B, Baumgartner J E, et al. Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol,2005,107(3-4):307-312.
    [37]Kahl-McDonagh M M, Ficht T A. Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun,2006,74(7):4048-4057.
    [38]Endley S, McMurray D, Ficht T A. Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol, 2001,183(8):2454-2462.
    [39]Robertson G T, Roop R J. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol, 1999,34(4):690-700.
    [40]Loisel-Meyer S, Jimenez D B M, Basseres E, et al. Requirement of norD for Brucella suis virulence in a murine model of in vitro and in vivo infection. Infect Immun,2006,74(3):1973-1976.
    [41]Parent M A, Bellaire B H, Murphy E A, et al. Brucella abortus siderophore 2,3-dihydroxybenzoic acid (DHBA) facilitates intracellular survival of the bacteria. Microb Pathog,2002,32(5):239-248.
    [42]Gonzalez C M, Sangari F J, Aguero J, et al. Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology,2002,148(Pt 2):353-360.
    [43]Paulley J T, Anderson E S, Roop R N. Brucella abortus requires the heme transporter BhuA for maintenance of chronic infection in BALB/c mice. Infect Immun,2007,75(11):5248-5254.
    [44]Martinez-Nunez C, Altamirano-Silva P, Alvarado-Guillen F, et al. The two-component system BvrR/BvrS regulates the expression of the type IV secretion system VirB in Brucella abortus. J Bacteriol,2010,192(21):5603-5608.
    [45]Liu W, Dong H, Liu W, et al. OtpR regulated the growth, cell morphology of B. melitensis and tolerance to beta-lactam agents. Vet Microbiol,2012,159(1-2):90-98.
    [46]Rinaldi J, Gallo M, Klinke S, et al. The beta-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction. J Mol Biol, 2012,420(1-2):112-127.
    [47]Weeks J N, Galindo C L, Drake K L, et al. Brucella melitensis VjbR and C12-HSL regulons: contributions of the N-dodecanoyl homoserine lactone signaling molecule and LuxR homologue VjbR to gene expression. BMC Microbiol,2010,10:167.
    [48]Rambow-Larsen A A, Rajashekara G, Petersen E, et al. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. J Bacteriol,2008,190(9):3274-3282.
    [49]Sieira R, Arocena G M, Zorreguieta A, et al. A MarR-Type regulator directly activates transcription from the Brucella abortus virB promoter by sharing a redundant role with HutC. J Bacteriol, 2012,194(23):6431-6440.
    [50]Dong H, Liu W, Peng X, et al. The effects of MucR on expression of type IV secretion system, quorum sensing system and stress responses in Brucella melitensis. Vet Microbiol, 2013,166(3-4):535-542.
    [51]Delory M, Hallez R, Letesson J J, et al. An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M. J Bacteriol,2006,188(21):7707-7710.
    [52]Ferooz J, Lemaire J, Delory M, et al. RpoEl, an extracytoplasmic function sigma factor, is a repressor of the flagellar system in Brucella melitensis. Microbiology,2011,157(Pt 5):1263-1268.
    [53]Haine V, Sinon A, Van Steen F, et al. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun, 2005,73(9):5578-5586.
    [54]L O Pez-Go N I I, Moriy O N I, Others. Brucella:molecular and cellular biology. Horizon Bioscience,2004.
    [55]Sieira R, Arocena G M, Bukata L, et al. Metabolic control of virulence genes in Brucella abortus: HutC coordinates virB expression and the histidine utilization pathway by direct binding to both promoters. J Bacteriol,2010,192(1):217-224.
    [56]郝艳华,张维,陈明.细菌双组分系统的研究进展.中国农业科技导报,2012(02):67-72.
    [57]Lopez-Goni I, Guzman-Verri C, Manterola L, et al. Regulation of Brucella virulence by the two-component system BvrR/BvrS. Vet Microbiol,2002,90(1-4):329-339.
    [58]Guzman-Verri C, Manterola L, Sola-Landa A, et al. The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc Natl Acad Sci U S A,2002,99(19):12375-12380.
    [59]Manterola L, Moriyon I, Moreno E, et al. The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. J Bacteriol,2005,187(16):5631-5639.
    [60]Manterola L, Guzman-Verri C, Chaves-Olarte E, et al. BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect Immun, 2007,75(10):4867-4874.
    [61]Pei J, Turse J E, Wu Q, et al. Brucella abortus rough mutants induce macrophage oncosis that requires bacterial protein synthesis and direct interaction with the macrophage. Infect Immun, 2006,74(5):2667-2675.
    [62]Rinaldi J, Gallo M, Klinke S, et al. The beta-scaffold of the LOV domain of the Brucella light-activated histidine kinase is a key element for signal transduction. J Mol Biol, 2012,420(1-2):112-127.
    [63]Carrica M C, Fernandez I, Marti M A, et al. The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol Microbiol, 2012,85(1):39-50.
    [64]Dorrell N, Spencer S, Foulonge V, et al. Identification, cloning and initial characterisation of FeuPQ in Brucella suis:a new sub-family of two-component regulatory systems. FEMS Microbiol Lett, 1998,162(1):143-150.
    [65]Lestrate P, Dricot A, Delrue R M, et al. Attenuated signature-tagged mutagenesis mutants of Brucella melitensis identified during the acute phase of infection in mice. Infect Immun, 2003,71(12):7053-7060.
    [66]Mirabella A, Yanez V R, Delrue R M, et al. The two-component system PrlS/PrlR of Brucella melitensis is required for persistence in mice and appears to respond to ionic strength. Microbiology, 2012,158(Pt 10):2642-2651.
    [67]Nealson K H, Platt T, Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol,1970,104(1):313-322.
    [68]Taminiau B, Daykin M, Swift S, et al. Identification of a quorum-sensing signal molecule in the facultative intracellular pathogen Brucella melitensis. Infect Immun,2002,70(6):3004-3011.
    [69]Delrue R M, Deschamps C, Leonard S, et al. A quorum-sensing regulator controls expression of both the type Ⅳ secretion system and the flagellar apparatus of Brucella melitensis. Cell Microbiol, 2005,7(8):1151-1161.
    [70]Rambow-Larsen A A, Rajashekara G, Petersen E, et al. Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type Ⅳ secretion system and flagella. J Bacteriol,2008,190(9):3274-3282.
    [71]de Jong M F, Sun Y H, den Hartigh A B, et al. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type Ⅳ secretion system. Mol Microbiol,2008,70(6):1378-1396.
    [72]Leonard S, Ferooz J, Haine V, et al. FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. J Bacteriol,2007,189(1):131-141.
    [73]Uzureau S, Godefroid M, Deschamps C, et al. Mutations of the quorum sensing-dependent regulator VjbR lead to drastic surface modifications in Brucella melitensis. J Bacteriol, 2007,189(16):6035-6047.
    [74]Godefroid M, Svensson M V, Cambier P, et al. Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm. FEMS Immunol Med Microbiol, 2010,59(3):364-377.
    [75]Haseltine W A, Block R. Synthesis of guanosine tetra-and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes. Proc Natl Acad Sci USA,1973,70(5):1564-1568.
    [76]Battesti A, Bouveret E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol,2006,62(4):1048-1063.
    [77]Vinella D, Albrecht C, Cashel M, et al. Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol,2005,56(4):958-970.
    [78]Gallant J, Palmer L, Pao C C. Anomalous synthesis of ppGpp in growing cells. Cell, 1977,11(1):181-185.
    [79]Traxler M F, Summers S M, Nguyen H T, et al. The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol,2008,68(5):1128-1148.
    [80]Srivatsan A, Wang J D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol,2008,11(2):100-105.
    [81]Dozot M, Boigegrain R A, Delrue R M, et al. The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. Cell Microbiol,2006,8(11):1791-1802.
    [82]Hanna N, Ouahrani-Bettache S, Drake K L, et al. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics,2013,14:459.
    [83]Gruber T M, Gross C A. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol,2003,57:441-466.
    [84]Villain-Guillot P, Bastide L, Gualtieri M, et al. Progress in targeting bacterial transcription. Drug Discov Today,2007,12(5-6):200-208.
    [85]白卉,闫华,侯征,等.细菌RNA聚合酶亚单位研究进展.生理科学进展,2011(01):47-51.
    [86]Kazmierczak M J, Wiedmann M, Boor K J. Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev,2005,69(4):527-543.
    [87]Kim H S, Caswell C C, Foreman R, et al. The Brucella abortus general stress response system regulates chronic mammalian infection and is controlled by phosphorylation and proteolysis. J Biol Chem,2013,288(19):13906-13916.
    [88]Bittinger M A, Milner J L, Saville B J, et al. rosR, a determinant of nodulation competitiveness in Rhizobium etli. Mol Plant Microbe Interact,1997,10(2):180-186.
    [89]Bittinger M A, Handelsman J. Identification of genes in the RosR regulon of Rhizobium etli. J Bacteriol,2000,182(6):1706-1713.
    [90]Janczarek M, Skorupska A. Rhizobium leguminosarum bv. trifolii rosR gene expression is regulated by catabolic repression. FEMS Microbiol Lett,2009,291(1):112-119.
    [91]Janczarek M, Jaroszuk-Scisel J, Skorupska A. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii. Antonie Van Leeuwenhoek,2009,96(4):471-486.
    [92]Martin M, Lloret J, Sanchez-Contreras M, et al. MucR is necessary for galactoglucan production in Sinorhizobium meliloti EFB1. Mol Plant Microbe Interact,2000,13(1):129-135.
    [93]Bertram-Drogatz P A, Quester I, Becker A, et al. The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY. Mol Gen Genet,1998,257(4):433-441.
    [94]Bahlawane C, Baumgarth B, Serrania J, et al. Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters. J Bacteriol,2008,190(10):3456-3466.
    [95]Mueller K, Gonzalez J E. Complex regulation of symbiotic functions is coordinated by MucR and quorum sensing in Sinorhizobium meliloti. J Bacteriol,2011,193(2):485-496.
    [96]Arenas-Gamboa A M, Rice-Ficht A C, Kahl-McDonagh M M, et al. Protective efficacy and safety of Brucella melitensis 16MDeltamucR against intraperitoneal and aerosol challenge in BALB/c mice. Infect Immun,2011,79(9):3653-3658.
    [97]Mirabella A, Terwagne M, Zygmunt M S, et al. Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications. J Bacteriol,2013,195(3):453-465.
    [98]Caswell C C, Elhassanny A E, Planchin E E, et al. Diverse genetic regulon of the virulence-associated transcriptional regulator MucR in Brucella abortus 2308. Infect Immun, 2013,81(4):1040-1051.
    [99]Gottesman S. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol,2003,19:565-587.
    [100]Gottesman S, Roche E, Zhou Y, et al. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev, 1998,12(9):1338-1347.
    [101]Gottesman S, Clark W P, de Crecy-Lagard V, et al. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. Sequence and in vivo activities. J Biol Chem, 1993,268(30):22618-22626.
    [102]Kessel M, Maurizi M R, Kim B, et al. Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J Mol Biol,1995,250(5):587-594.
    [103]Wang J, Hartling J A, Flanagan J M. The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell,1997,91(4):447-456.
    [104]Beuron F, Maurizi M R, Belnap D M, et al. At sixes and sevens:characterization of the symmetry mismatch of the ClpAP chaperone-assisted protease. J Struct Biol,1998,123(3):248-259.
    [105]Grimaud R, Kessel M, Beuron F, et al. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem,1998,273(20):12476-12481.
    [106]Hoskins J R, Kim S Y, Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem,2000,275(45):35361-35367.
    [107]Levchenko I, Luo L, Baker T A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev,1995,9(19):2399-2408.
    [108]Blanchard J S. Old approach yields new antibiotic. Nat Med,2005,11(10):1045-1046.
    [109]Kessel M, Wu W, Gottesman S, et al. Six-fold rotational symmetry of ClpQ, the E. coli homolog of the 20S proteasome, and its ATP-dependent activator, ClpY. FEBS Lett,1996,398(2-3):274-278.
    [110]Van Melderen L, Gottesman S. Substrate sequestration by a proteolytically inactive Lon mutant. Proc Natl Acad Sci U S A,1999,96(11):6064-6071.
    [111]Tomoyasu T, Gamer J, Bukau B, et al. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J, 1995,14(11):2551-2560.
    [112]Kihara A, Akiyama Y, Ito K. Dislocation of membrane proteins in FtsH-mediated proteo lysis. EMBO J,1999,18(11):2970-2981.
    [113]Krzywda S, Brzozowski A M, Verma C, et al. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Structure, 2002,10(8):1073-1083.
    [114]Krzywda S, Brzozowski A M, Karata K, et al. Crystallization of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli. Acta Crystallogr D Biol Crystallogr,2002,58(Pt 6 Pt 2):1066-1067.
    [115]Varshavsky A. The N-end rule. Cell,1992,69(5):725-735.
    [116]Hoskins J R, Kim S Y, Wickner S. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem,2000,275(45):35361-35367.
    [117]Gonciarz-Swiatek M, Wawrzynow A, Um S J, et al. Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J Biol Chem,1999,274(20):13999-14005.
    [118]Gonzalez M, Frank E G, Levine A S, et al. Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein:in vitro degradation and identification of residues required for proteolysis. Genes Dev,1998,12(24):3889-3899.
    [119]Levchenko I, Luo L, Baker T A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev,1995,9(19):2399-2408.
    [120]Ishii Y, Amano F. Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem J,2001,358(Pt 2):473-480.
    [121]Hoskins J R, Yanagihara K, Mizuuchi K, et al. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc Natl Acad Sci U S A,2002,99(17):11037-11042.
    [122]Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem,1998,67:425-479.
    [123]Withey J H, Friedman D I. A salvage pathway for protein structures:tmRNA and trans-translation. Annu Rev Microbiol,2003,57:101-123.
    [124]Herman C, Thevenet D, Bouloc P, et al. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev,1998,12(9):1348-1355.
    [125]Kihara A, Akiyama Y, Ito K. A protease complex in the Escherichia coli plasma membrane:HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY. EMBO J,1996,15(22):6122-6131.
    [126]Kihara A, Akiyama Y, Ito K. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the eⅡ degrading protease, by HflKC (HflA). Proc Natl Acad Sci U S A,1997,94(11):5544-5549.
    [127]Guo F, Esser L, Singh S K, et al. Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J Biol Chem,2002,277(48):46753-46762.
    [128]Wah D A, Levchenko I, Baker T A, et al. Characterization of a specificity factor for an AAA+ ATPase:assembly of SspB dimers with ssrA-tagged proteins and the ClpX hexamer. Chem Biol, 2002,9(11):1237-1245.
    [129]Robertson G T, Kovach M E, Allen C A, et al. The Brucella abortus Lon functions as a generalized stress response protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol, 2000,35(3):577-588.
    [130]Ekaza E, Guilloteau L, Teyssier J, et al. Functional analysis of the ClpATPase ClpA of Brucella suis, and persistence of a knockout mutant in BALB/c mice. Microbiology,2000,146 (Pt 7):1605-1616.
    [131]Ekaza E, Teyssier J, Ouahrani-Bettache S, et al. Characterization of Brucella suis clpB and clpAB mutants and participation of the genes in stress responses. J Bacteriol,2001,183(8):2677-2681.
    [132]Hussain H, Johnston A W. Iron-dependent transcription of the regulatory gene ros of Agrobacterium radiobacter. Mol Plant Microbe Interact,1997,10(9):1087-1093.
    [133]Janczarek M, Skorupska A. Modulation of rosR Expression and Exopolysaccharide Production in Rhizobium leguminosarum bv. trifolii by Phosphate and Clover Root Exudates. Int J Mol Sci, 2011,12(6):4132-4155.
    [134]Sieira R. Regulation of virulence in Brucella:an eclectic repertoire of transcription factors defines the complex architecture of the virB promoter. Future Microbiol,2013,8(9):1193-1208.
    [135]Janczarek M, Skorupska A. The Rhizobium leguminosarum bv. trifolii RosR:transcriptional regulator involved in exopolysaccharide production. Mol Plant Microbe Interact, 2007,20(7):867-881.
    [136]Bahlawane C, McIntosh M, Krol E, et al. Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact,2008,21(11):1498-1509.
    [137]D'Souza-Ault M R, Cooley M B, Kado C I. Analysis of the Ros repressor of Agrobacterium virC and virD operons:molecular intercommunication between plasmid and chromosomal genes. J Bacteriol, 1993,175(11):3486-3490.
    [138]Cooley M B, D'Souza M R, Kado C I. The virC and virD operons of the Agrobacterium Ti plasmid are regulated by the ros chromosomal gene:analysis of the cloned ros gene. J Bacteriol, 1991,173(8):2608-2616.
    [139]Janczarek M, Kutkowska J, Piersiak T, et al. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol, 2010,10:284.
    [140]Bandara A B, Schurig G G, Sriranganathan N, et al. The putative penicillin-binding proteins 1 and 2 are important for viability, growth and cell morphology of Brucella melitensis. Vet Microbiol, 2009,133(4):387-393.
    [141]Fernandez-Prada C M, Nikolich M, Vemulapalli R, et al. Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun, 2001,69(7):4407-4416.
    [142]Sun Y H, den Hartigh A B, Santos R L, et al. virB-Mediated survival of Brucella abortus in mice and macrophages is independent of a functional inducible nitric oxide synthase or NADPH oxidase in macrophages. Infect Immun,2002,70(9):4826-4832.
    [143]Wang Y, Chen Z, Qiao F, et al. The type IV secretion system affects the expression of Omp25/Omp31 and the outer membrane properties of Brucella melitensis. FEMS Microbiol Lett, 2010,303(1):92-100.
    [144]Sangari F J, Seoane A, Rodriguez M C, et al. Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun,2007,75(2):774-780.
    [145]Hornback M L, Roop R N. The Brucella abortus xthA-1 gene product participates in base excision repair and resistance to oxidative killing but is not required for wild-type virulence in the mouse model. J Bacteriol,2006,188(4):1295-1300.
    [146]Tatum F M, Morfitt D C, Hailing S M. Construction of a Brucella abortus RecA mutant and its survival in mice. Microb Pathog,1993,14(3):177-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700