用户名: 密码: 验证码:
开式向心涡轮背部间隙流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开式向心涡轮通过削去进口段转子轮盘来降低转子重量及轮盘离心应力,广泛应用于微小型燃气轮机中。受削去轮盘的影响,开式向心涡轮转子在叶片进口段同时存在叶片背部间隙及轮盘背部间隙背部间隙流使动叶通道内二次流结构变得更加复杂,同时更为严重的是,叶片背部间隙内较高的热负荷及轮盘背部间隙内燃气倒灌现象将对涡轮转子寿命造成不利影响。本文使用数值计算方法,分析开式向心涡轮背部间隙流的流动与传热特性,主要工作内容如下:
     1.对开式向心涡轮动叶通道内间隙二次流结构进行研究,同时分析间隙流对出口气动参数的影响。结果发现,叶顶间隙流、叶片背部间隙流及轮盘背部间隙流相互作用,动叶通道内存在复杂的间隙二次流结构。同时,间隙流将会改变出口气流角分布并降低涡轮效率,其对出口气动参数分布存在较大影响。
     2.对开式向心涡轮叶片背部间隙内部流场结构进行研究,同时分析叶片背部间隙内部流动机制。结果表明,轮盘顶部径向速度及科氏力突然降低,造成叶片背部间隙进出口压差在低径向位置区域迅速减小。受此影响,叶片背部间隙内泄漏流和刮削流相互作用,此消彼长;间隙内存在复杂的分离、再附、回流及射流等流动现象。
     3.在开式向心涡轮叶片背部间隙内部流场结构分析的基础上,对叶片背部区域传热特性进行研究,同时采取措施减小叶片背部热负荷。结果发现,间隙内复杂的传热系数分布主要受泄漏流再附及刮削流射流效应的影响。增加间隙大小虽然将增大泄漏流损失,但是却能降低刮削流射流效应造成的高传热系数;叶片背部吸力面肩壁凹槽能够有效降低间隙内流速及再附强度,从而大幅降低叶片背部传热系数。
     4.对开式向心涡轮轮盘背部间隙密封流流动特性进行研究,在不同密封设计方案下,分析轮盘背部间隙密封流对涡轮效率、轴向推力、冷却效率及燃气密封效率的影响。结果表明,选取较大的轮盘直径能够在一定程度上提高涡轮效率,但是较大的轮盘直径不仅将增大涡轮轴向推力,而且还将大幅降低密封流冷却效率及燃气密封效率。在同样的轮盘直径下,径向间隙密封的冷却效率和燃气密封效率高于轴向间隙密封。
Deeply scalloped radial turbine rotors "scallop" their disk to reduce weight and centrifugal stress, and are widely used in modern microturbines. The blade backface clearance and the backface cavity clearance are introduced due to the scalloped disk. The backface clearance flows lead to a complicated secondary flow structure in the blade passage, and what is worse, the high thermal load in the blade backface clearance and the hot gas ingestion in the backface cavity clearance are unfavorable for the turbine rotor durability. In this paper, the flow structure and heat transfer of the backface clearance flows in deeply scalloped radial turbines are numerically investigated, and the main contents are as follow:
     1. The secondary flow structure due to the clearance flows in the blade passage is investigated, and their influences on the blade outlet parameters are also discussed. It is found that the tip clearance flow, blade backface clearance flow and backface cavity clearance flow interact with each other and the secondary flow structure in the blade passage is complicated. The clearance flow can affect the flow angle at the outlet and reduce the efficiency which has a great impact on the distribution of blade outlet parameters.
     2. The flow structure in the blade backface clearance is investigated and the flow mechanism in the clearance is analyzed. It is shown that the radial velocity and Coriolis force are reduced significantly near the disk rim, and the pressure difference across the blade backface clearance decreases drastically. As a result, the leakage flow and the scraping flow interact with each other in the blade backface clearance, and the complex flow separation, reattachment, recirculation and impingement are also found.
     3. Based on the flow structure in the blade backface clearance, the heat transfer in the blade backface region is analyzed, and methods are proposed to reduce the thermal load in this region. It is illustrated that the distribution of heat transfer coefficient in the blade backface clearance is mainly governed by the flow reattachment and impingement. Although the leakage loss increases with increasing the clearance height, a larger clearance height can decrease the high heat transfer coefficient due to the impingement effect of the scraping flow. By using the suction side squealer geometry, the velocity and the flow reattachment in the blade backface clearance decrease, and the heat transfer coefficient on the blade backface is reduced remarkably.
     4. The backface cavity clearance flow is investigated and its influence on the turbine efficiency, axial thrust, cooling and sealing effectiveness is analyzed for three sealing geometry schemes. It is found that, although the sealing geometry with a larger disk radius has the relatively higher turbine efficiency, the axial thrust increases and the cooling and sealing effectiveness is very low. With the same disk radius, the sealing geometry with a radial clearance shows a better performance on cooling and sealing effectiveness than that with an axial clearance.
引文
[1]Soares C. Micro turbines:Applications for Distributed Energy Systems. London: Butterworth-Heinemann,2007.
    [2]Hedman B, Darrow K. Microturbine Market Review. Microturbine and Industrial Gas Turbine Peer Review Meeting,2002.
    [3]Niedzwiecki R W, Meitner P L. Small Gas Turbine Engine Technology. NASA TR-87-C-6,1987.
    [4]杜建一,王云,徐建中.分布式能源系统与微型燃气轮机的发展与应用.工程热物理学报,2004,25(5):786-788.
    [5]杨策,刘宏伟,李晓,买靖东.微型燃气轮机技术.热能动力工程,2003,18(1):1-4.
    [6]Rodgers C. Review of Mixed Flow and Radial Turbine Options. AIAA Paper No. 1990-2414,1990.
    [7]Mowill J, Strom S. An Advanced Radial-Component Industrial Turbine Engine. ASME Journal of Engineering for Power,1983,105(4):947-952.
    [8]朱大鑫.涡轮增压与涡轮增压器.北京:机械工业出版社,1992.
    [9]Wood H J. Current Technology of Radial-Inflow Turbines for Compressible Fluids. ASME Journal of Engineering for Power,1963,85(1):72-83.
    [10]翁一武,苏明,翁史烈.先进微型燃气轮机的特点与应用前景.热能动力工程,2003,18(2):111-116.
    [11]Snyder P H. Cooled High-Temperature Radial Turbine Program II-Final Report. NASA CR-189122,1992.
    [12]Rogo C. Variable Area Radial Turbine Fabrication and Test Program. NASA CR-175091, 1986.
    [13]Rodgers C, Geiser R. Performance of a High-Efficiency Radial/Axial Turbine. ASME Journal of Turbomachinery,1987,109(2):151-154.
    [14]Dresser-Rand. KG2-3E Gas Turbine Generator Package.
    [15]OPRA-Turbines. OP 16 Gas Turbine Engine-General Description.
    [16]Engineering Staff of Garrett Turbine Engine Company. Advanced Gas Turbine (AGT) Technology Development Project. NASA CR-179485,1985.
    [17]Large G D, Finger D G, Linder C G. Analytical Design of an Advanced Radial Turbine. NASA CR-165170,1981.
    [18]Rodgers C. Fast Start Apu Technology. SAE-861712,1986.
    [19]Peacock R E. A Review of Turbomachinery Tip Gap Effects:Part 1:Cascades. International Journal of Heat and Fluid Flow,1982,3(4):185-193.
    [20]Peacock R E. A Review of Turbomachinery Tip Gap Effects:Part 2:Rotating Machinery. International Journal of Heat and Fluid Flow,1983,4(1):3-16.
    [21]Rodgers C. The Characteristics of Radial Turbines for Small Gas Turbines. ASME Paper No. GT2003-38026,2003.
    [22]Futral S M, Holeski, D E. Experimental Results of Varying the Blade-Shroud Clearance in a 6.02-Inch Radial Inflow Turbine. NASA TN D-5513,1970.
    [23]Feng Z P, Deng Q H, Li J. Aerothermodynamic Design and Numerical Simulation of Radial Inflow Turbine Impeller for a 100 Kw Microturbine. ASME Paper No. GT2005-68276,2005.
    [24]邓清华,牛久芳,丰镇平.叶轮顶部间隙对向心透平总体性能影响的研究.工程热物理学报,2006,27(3):408-410.
    [25]Dambach R, Hodson H P, Huntsman I. An Experimental Study of Tip Clearance Flow in a Radial Inflow Turbine. ASME Journal of Turbomachinery,1999,121(4):644-650.
    [26]Dambach R, Hodson H P. Tip Leakage Flow in a Radial Inflow Turbine with Varying Gap Height. Journal of Propulsion and Power,2001,17(3):644-650.
    [27]邓清华,牛久芳,丰镇平.向心涡轮叶轮顶部间隙泄漏流动特性研究.中国科学E辑:技术科学,2009,39(4):618-625.
    [28]Deng Q H, Niu J F, Feng Z P. Tip Leakage Flow in Radial Inflow Rotor of a Microturbine with Varying Blade-Shroud Clearance. ASME Paper No. GT2007-27722, 2007.
    [29]Arnold D J, Balje O E. High-Temperature Potential of Uncooled Radial Turbines. ASME Journal of Engineering for Power,1978,100(2):294-302.
    [30]Tirres L. A Comparison of the Analytical and Experimental Performance of the Solid Version of a Cooled Radial Rotor. AIAA Paper No.91-2133,1991.
    [31]Simonyi P S, Boyle R J. Comparison of a Quasi-3D Analysis and Experimental Performance for Three Compact Radial Turbines. AIAA Paper No.91-2128,1991.
    [32]Heidmann J D, Beach T A. An Analysis of the Viscous Flow through a Compact Radial Turbine by the Average Passage Approach. NASA TM-102471,1990.
    [33]Larosiliere L M. Navier-Stokes Analysis of Radial Turbine Rotor Performance. AIAA Paper No.93-2555,1993.
    [34]Cox G, Wu J, Finnigan B. A Study on the Flow around the Scallops of a Mixed-Flow Turbine and Its Effect on Efficiency. ASME Paper No. GT2007-27330,2007.
    [35]Heuer T, Engels B, Klein A, Heger H. Numerical and Experimental Analysis of the Thermo-Mechanical Load on Turbine Wheels of Turbochargers. ASME Paper No. 2006-90526,2006.
    [36]Verstraete T, Alsalihi R A, Braembussche V D. Numerical Study of the Heat Transfer in Micro Gas Turbines. ASME Paper No. GT2006-90161,2006.
    [37]Bohn D, Heuer T, Kusterer K. Conjugate Flow and Heat Transfer Investigation of a Turbo Charger:Part I:Numerical Results. ASME Paper No. GT2003-38445,2003.
    [38]Johnson B V, Mack G J, Paolillo R E, Daniels W A. Turbine Rim Seal Gas Path Flow Ingestion Mechanisms. AIAA Paper No.94-2703,1994.
    [39]Daily J W, Nece R E. Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. ASME Journal of Basic Engineering,1960,82(1): 217-230.
    [40]Bayley F J, Owen J M. The Fluid Dynamics of a Shrouded Disk System with a Radial Outflow of Coolant. ASME Journal of Engineering for Power,1970,92(3):335-341.
    [41]Phadke U P, Owen J M. An Investigation of Ingress for an "Air-Cooled" Shrouded Rotating Disk System with Radial-Clearance Seals. ASME Journal of Engineering for Power,1983,105(1):178-182.
    [42]Phadke U P, Owen, J M. Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems, Part 1:The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment. International Journal of Heat and Fluid Flow,1988,9(2): 98-105.
    [43]Chew J W, Dadkhah S, Turner A B. Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow. ASME Journal of Turbomachinery,1992.114(2):433-438.
    [44]Owen J M. Prediction of Ingestion through Turbine Rim Seals-Part I:Rotationally Induced Ingress. ASME Journal of Turbomachinery,2011,133(3):031005.
    [45]Graber D J, Daniels W A, Johnson B V. Disk Pumping Test, Final Report. Air Force Wright Aeronautical Laboratories, Report No. AFWAL-TR-87-2050,1987.
    [46]Owen J M. Prediction of Ingestion through Turbine Rim Seals-Part II:Externally Induced and Combined Ingress. ASME Journal of Turbomachinery,2011,133(3): 031006.
    [47]Campbell D A. Gas Turbine Disc Sealing System Design. AGARD Conference on Seal Technology in Gas Turbine Engines, AGARD-CP-237,1978.
    [48]Kobayashi N, Matsumato M, Shizuya M. An Experimental Investigation of a Gas Turbine Disk Cooling System. ASME Journal of Engineering for Gas Turbines and Power,1984,106(1):136-141.
    [49]Phadke U P, Owen J M. Aerodynamic Aspects of the Rim Sealing of Gas-Turbine Rotor-Stator Systems, Parts 2:The Performance of Simple Seals in a Quasi-Axisymmetric External Flow. International Journal of Heat and Fluid Flow,1988, 9(2):106-112.
    [50]Phadke U P, Owen J M. Aerodynamic Aspects of the Rim Sealing of Gas-Turbine Rotor-Stator Systems, Parts 3:The Effect of Nonaxisymmetric External Flow on Seal Performance. International Journal of Heat and Fluid Flow,1988,9(2):113-117.
    [51]Chew J W, Green T, Turner A B. Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow. ASME Paper No.94-GT-126,1994.
    [52]Green T, Turner A B. Ingestion into the Upstream Wheelspaces of an Axial Turbine Stage. ASME Paper No.92-GT-303,1992.
    [53]Bohn D, Rudzlnski B, Surken N. Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion into the Upstream Cavity of an Axial Turbine Stage. ASME Paper No.2000-GT-284,2000.
    [54]Roy R P, Xu G, Feng J. Study of Main-Stream Gas Ingestion in a Rotor-Stator Disk Cavity. AIAA Paper No.2000-3372,2000.
    [55]Roy R P, Feng J, Narzary D, Paolillo R E. Experiment on Gas Ingestion through Axial-Flow Turbine Rim Seals. ASME Journal of Engineering for Gas Turbines and Power,2005,127(3):573-582.
    [56]Cao C, Chew J W, Millington P R, Hogg S I. Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine. ASME Journal of Engineering for Gas Turbines and Power, 2004,126(4):786-793.
    [57]Hills N J, Chew J W, Turner A B. Computational and Mathematical Modeling of Turbine Rim Seal Ingestion. ASME Journal of Turbomachinery,2002,124(2):306-315.
    [58]Bunker R S, Laskowski G M, Bailey J C, Palafox P, et al. An Investigation of Turbine Wheelspace Cooling Flow Interactions with a Transonic Hot Gas Path-Part 1: Experimental Measurements. ASME Journal of Turbomachinery,2011,133(2):021015.
    [59]Laskowski G M, Bunker R S, Bailey J C, Ledezma G, et al. An Investigation of Turbine Wheelspace Cooling Flow Interactions with a Transonic Hot Gas Path-Part II:CFD Simulations. ASME Journal of Turbomachinery,2011,133(4):041020.
    [60]Hiett G F, Johnston I H. Experiments Concerning the Aerodynamic Performance of Inward Flow Radial Turbines. Proc IMechE, Conference Proceedings,1963,178(8): 28-42.
    [61]Denton J D. Loss Mechanisms in Turbomachines. ASME Journal of Turbomachinery, 1993,115(4):621-656.
    [62]Mclean C, Camci C, Glezer B. Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage:Part I-Aerodynamic Measurements in the Stationary Frame. ASME Journal of Turbomachinery,2001,123(4):687-696.
    [63]Mclean C, Camci C, Glezer B. Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage:Part II-Aerodynamic Measurements in the Rotational Frame. ASME Journal of Turbomachinery,2001,123(4):697-703.
    [64]Marini R, Girgis S. The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage. ASME Paper No. GT2007-27429,2007.
    [65]Blanco E R, Hodson H P, Vazquez R. Effect of the Leakage Flows and the Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade. ASME Paper No. GT2006-90767,2006.
    [66]唐晓娣,刘火星,邹正平.涡轮轮毂封严冷气对主流影响实验研究.燃气涡轮试验 与研究,2008,21(4):16-21.
    [67]周杨,牛为民,邹正平,刘火星等.轮毂封严气体对高压涡轮二次流动的影响.推进技术,2006,27(6):515-520.
    [68]杨策,施新.径流式叶轮机械理论及设计.北京:国防工业出版社,2004.
    [69]Lakshminarasimha A N, Tabakoff W, Metwally M. Laser Doppler Velocimeter Measurements in the Vortex Region of a Radial Inflow Turbine. Journal of Propulsion and Power,1992,8(1):184-191.
    [70]Pasin M, Tabakoff W. Laser Measurements of Unsteady Flow Field in a Radial Turbine Guide Vanes. AIAA Paper No.92-0394,1992.
    [71]Putra M A, Joos F. Investigation of Secondary Flow Behavior in a Radial Turbine Nozzle. ASME Paper No. GT2006-90019,2006.
    [72]Simpson A T, Spence S W T, Watterson J K. A Comparison of the Flow Structures and Losses within Vaned and Vaneless Stators for Radial Turbines. ASME Journal of Turbomachinery,2009,131(3):031010.
    [73]Zangeneh M, Dawes W N, Hawthorne W R. Three Dimensional Flow in Radial-Inflow Turbines. ASME Paper No.88-GT-103,1988.
    [74]Pasin M, Tabakoff W. Laser Measurements of the Flow Field in a Radial Turbine Rotor. AIAA Paper No.93-0156,1993.
    [75]Huntsman I, Hodson H P. An Experimental Assessment of the Radial Inflow Turbine Aerodynamic Performance of a Low-Speed. AIAA Paper No.94-2932,1994.
    [76]Li C, Zhuge W L, Zhang Y J, Zhang S Y, et al. Investigation of the Secondary Flow Structure in the Mixed Flow Turbine for a High Pressure Ratio Turbocharger. ASME Paper No. GT2008-50941,2008.
    [77]Heidmann J. A Three-Dimensional Navier-Stokes Stage Analysis of the Flow through a Compact Radial Turbine. AIAA Paper No.91-2564,1991.
    [78]Murugan D M, Tabakoff W, Hamed A. Flow Field Investigation and Flow Analysis in the Exit Region of a Radial Turbine. AIAA Paper No.94-3075,1994.
    [79]Bunker R S. A Review of Turbine Blade Tip Heat Transfer. Annals of the New York Academy of Sciences,2001,934:64-79.
    [80]Mayle R E, Metzger D E. Heat Transfer at the Tip of an Unshrouded Turbine Blade. Proceedings of Seventh International Heat Transfer Conference,1982,3:87-92.
    [81]Bunker R S, Bailey J C, Ameri A A. Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine:Part 1-Experimental Results. ASME Journal of Turbomachinery,2000,122(2):263-271.
    [82]Azad G S, Han J-C, Teng S, Boyle R J. Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip. ASME Journal of Turbomachinery,2000,122(4):717-724.
    [83]Azad G S, Han J-C, Boyle R J. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade. ASME Journal of Turbomachinery,2000,122(4):725-732.
    [84]Kwak J S, Ahn J, Han J-C, Lee C P, et al. Heat Transfer Coefficients on the Squealer Tip and near-Tip Regions of a Gas Turbine Blade with Single or Double Squealer. ASME Journal of Turbomachinery,2003,125(4):778-787.
    [85]Newton P J, Lock G D, Krishnababu S K, Hodson H P, et al. Heat Transfer and Aerodynamics of Turbine Blade Tips in a Linear Cascade. ASME Journal of Turbomachinery,2006,128(2):300-309.
    [86]Dunn M G, Haldeman C W. Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade. ASME Journal of Turbomachinery,2000,122(4): 692-698..
    [87]Metzger D E, Dunn M G, Hah C. Turbine Tip and Shroud Heat Transfer. ASME Journal of Turbomachinery,1991,113(3):502-507.
    [88]Mumic F, Eriksson D, Sunden B. On Prediction of Tip Leakage Flow and Heat Transfer in Gas Turbines. ASME Paper No. GT2004-53448,2004.
    [89]Krishnababu S K, Newton P J, Dawes W N, Lock G D, et al. Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part I:Effect of Tip Geometry and Tip Clearance Gap. ASME Journal of Turbomachinery,2009,131(1):011006.
    [90]Krishnababu S K, Dawes W N, Hodson H P, Lock G D, et al. Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines-Part II:Effect of Relative Casing Motion. ASME Journal of Turbomachinery,2009,131(1):011007.
    [91]Molter S M. Dunn M G, Haldeman C W. Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine. ASME Paper No. GT2006-90048, 2006.
    [92]Ameri A A, Bunker R S. Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine:Part 2-Simulation Results. ASME Journal of Turbomachinery, 2000,122(2):272-277.
    [93]Bunker R S. Axial Turbine Blade Tips:Function, Design, and Durability. Journal of Propulsion and Power,2006,22(2):271-285.
    [94]Roelke R J. Radial Turbine Cooling. NASA-TM-105658,1992.
    [95]Futral S M, Wasserbauer C A. Off-Design Performance Prediction with Experimental Verification for Radial-Inflow Turbine. NASA TN D-2621,1965.
    [96]Stanitz J D. Some Theoretical Aerodynamic Investigations of Impellers in Radial and Mixed Flow Centrifugal Compressors. Transaction of ASME,1952,74(4):473-497.
    [97]Calvert G S, Okapun U. Design and Evaluation of a High Temperature Radial Turbine. USAAVLABS TR 68-69,1969.
    [98]Snyder P H, Roelke R J. The Design of an Air-Cooled Metallic High Temperature Radial Turbine. AIAA Paper No.88-2872,1988.
    [99]Vershure R W, Large G D, Meyer L J. A Cooled Laminated Radial Turbine Technology Demonstration. AIAA Paper No.80-0300,1980.
    [100]Meitner P L. Computer Code for Predicting Coolant Flow and Heat Transfer in Turbomachinery. NASA TP-2985,1990.
    [101]Adapco M. Three Dimensional Flow Analysis of the Internal Passage of a Cooled Radial Rotor. NY, Final Report,1991.
    [102]Rodgers C. Advanced Radial Inflow Turbine Rotor Program-Design and Dynamic Testing. NASA CR-135080,1976.
    [103]Calvert G S, Beck S C, Okapuu U. Design and Experimental Evaluation of a High-Temperature Radial Turbine. USAAMRDL TR 71-20,1971.
    [104]Tirres L, Dicicco L D, Nowlin B C. Experimental Evaluation of a Cooled Radial-Inflow Turbine. AIAA Paper No.93-1795,1993.
    [105]Dicicco L D, Nowlin B C, Tirres L. Measurement of the Coolant Channel Temperatures and Pressures of a Cooled Radial-Inflow Turbine. AIAA Paper No.94-2561,1994.
    [106]Johnson B V, Wagner J H. Heat Transfer Experiments in the Internal Cooling Passages of a Cooled Radial Turbine Rotor. NASA CR-198472,1996.
    [107]ANSYS-CFX. Computational Fluid Dynamics. ANSYS CFX Introduction.
    [108]孙纪宁.ANSYS CFX对流传热数值模拟基础应用教程.北京:国防工业出版社,2010.
    [109]ANSYS-CFX. Basic Solver Capability Theory. ANSYS CFX-Solver Theory Guide.
    [110]ANSYS-CFX. Discretization and Solution Theory. ANSYS CFX-Solver Theory Guide.
    [111]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001.
    [112]Simonyi P S, Roelke R J, Stabe R G, Nowlin B C, et al. Aerodynamic Evaluation of Two Compact Radial Inflow Turbine Rotors. NASA TP-3514,1995.
    [113]Roblik H E. Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency. NASA TN D-4384,1968.
    [114]Glassman A J. Computer Program for Design Analysis of Radial Inflow Turbines. NASA TND-8164,1976.
    [115]Ji C, Zou J, Ruan X D, Dario P, et al. A New Correlation for Slip Factor in Radial and Mixed-Flow Impellers. Proc IMechE, Part A:Journal of Power and Energy,2011,225(1): 114-119.
    [116]Whitfield A. The Preliminary Design of Radial Inflow Turbines. ASME Paper No. 89-GT-83,1989.
    [117]Spence S W T, Artt D W. An Experimental Assessment of Incidence Losses in a Radial Inflow Turbine Rotor. Proc IMechE, Part A:Journal of Power and Energy,1998,212(1): 43-53.
    [118]Johnson M W, Moore J. The Development of Wake Flow in a Centrifugal Impeller. ASME Journal of Engineering for Power,1980,102(2):382-389.
    [119]Heuer T, Engels B. Numerical Analysis of the Heat Transfer in Radial Turbine Wheels of Turbo Chargers. ASME Paper No. GT2007-27835,2007.
    [120]Heuer T, Engels B, Klein A, Heger H. Numerical and Experimental Analysis of the Thermo-Mechanical Load on Turbine Wheels of Turbochargers. ASME Paper No. GT2006-90526,2006.
    [121]Ameri A A, Steinthorsson E, Rigby D L. Effect of Squealer Tip on Rotor Heat Transfer and Efficiency. ASME Journal of Turbomachinery,1998,120(4):753-759.
    [122]Baskharone E A. Principles of Turbomachinery in Air-Breathing Engines. Cambridge: Cambridge University Press,2006.
    [123]Rajoo S, Martinez-Botas R F. Unsteady Effect in a Nozzled Turbocharger Turbine. ASME Journal of Turbomachinery,2010,132(3):031001.
    [124]Kreuz-Ihli T, Filsinger D, Schulz A, Wittig S. Numerical and Experimental Study of Unsteady Flow Field and Vibration in Radial Inflow Turbines. ASME Journal of Turbomachinery,2000,122(2):247-254.
    [125]Abidat M, Hachemi M, Hamidou M K, Baines N C. Prediction of the Steady and Non-Steady Flow Performance of a Highly Loaded Mixed Flow Turbine. Proc IMechE, Part A:Journal of Power and Energy,1998,212(3):173-184.
    [126]Kawakubo T. Unsteady Rotor-Stator Interaction of a Radial-Inflow Turbine with Variable Nozzle Vanes. ASME Paper No. GT2010-23677,2010.
    [127]庄礼贤,尹协远,马晖扬.流体力学.合肥:中国科学技术大学出版社,1997.
    [128]沈维道,蒋智敏,童钧耕.工程热力学(第三版).北京:高等教育出版社,2001.
    [129]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998.
    [130]童秉纲,尹协远,朱克勤.涡运动理论.合肥:中国科学技术大学出版社,1994.
    [131]Cohen H, Rogers G F C, Saravanamuttoo H I H. Gas Turbine Theory (4th Edition). London:Addison Wesley Longman Limited,1996.
    [132]王仲奇,秦仁.透平机械原理(修订本).北京:机械工业出版社,1987.
    [133]舒士甄,朱力,柯玄龄.叶轮机械原理.北京:清华大学出版社,1991.
    [134]Glassman A J. Turbine Design and Application. NASA SP-290,1994.
    [135]孙志刚.离心压气机内部流动特性与流场结构研究.博士学位论文,中国科学院工程热物理研究所,2011.
    [136]董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究.博士学位论文,哈尔滨工业大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700