用户名: 密码: 验证码:
松香—壳聚糖基梳状离子型高分子表面活性剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子表面活性剂是一类分子量在几千至几万以上且有表面活性的高分子化合物,因其兼有高分子化合物和表面活性剂的性能,故越来越受到广泛的关注。
     本论文以脱氢枞胺为原料首次合成了3-氯-2-羟丙基脱氢枞基氯化铵(CHPDMDHA)和烯丙基二甲基脱氢枞基氯化铵(ADMDHA),并创新提出以CHPDMDHA和ADMDHA作为活性季铵盐对壳低聚糖(LWCTSs)、N-羧甲基壳聚糖(N-CMC)、N,O-羧甲基壳聚糖(N,O-CMC)、N-羧乙基壳聚糖(N-CEC)和N,O-羧乙基壳聚糖(N,O-CEC)进行改性,分别得到了CHPDMDHA接枝壳低聚糖(CHPDMDHA-g-LWCTSs)、CHPDMDHA接枝羧烷基壳聚糖(CHPDMDHA-g-CACTSs)、ADMDHA接枝壳低聚糖(ADMDHA-g-LWCTSs)和ADMDHA接枝羧烷基壳聚糖(ADMDHA-g-CACTSs)等4个系列松香改性壳聚糖类梳型高分子表面活性剂。采用FT-IR、NMR、元素分析等手段表征了产物结构,并研究了所合成化合物的表面活性、乳化性能、抑菌性能及抗肿瘤活性,初步探讨了这些典型性能与结构间的关系,研究结果对松香改性壳聚糖类高分子表面活性剂的开发有一定理论指导意义。
     采用吊片法研究了CHPDMDHA、ADMDHA和松香改性壳聚糖类梳型高分子表面活性剂的表面活性。结果表明,CHPDMDHA、ADMDHA和松香改性壳聚糖类梳型高分子表面活性剂都具有较好的表面活性。CHPDMDHA的表面活性优于结构相似的C12~C16烷基二甲基苄基氯化铵,ADMDHA的表面活性也优于结构相似的C16或C18的烷基二甲基烯丙基氯化铵。松香改性壳聚糖类梳型高分子表面活性剂的临界胶束浓度(cmc)介于0.75×10-4~7.31×10-2mol/L之间,且随壳低聚糖分子量的增大而增大,随季铵化度(DQ)的增加而减小;cmc时对应的表面张力(γcmc)介于31.4~39.4mN/m之间,且随壳低聚糖分子量的增大或DQ的增加而降低。
     研究了CHPDMDHA、ADMDHA和松香改性壳聚糖类梳型高分子表面活性剂对基于液体石蜡-水乳液体系稳定性的影响。结果表明,CHPDMDHA的乳化性能优于C12~C16烷基二甲基苄基氯化铵;ADMDHA的乳化性能优于C16或C18的烷基二甲基烯丙基氯化铵。 CHPDMDHA-g-LWCTSs、 CHPDMDHA-g-CACTSs、 ADMDHA-g-LWCTSs、ADMDHA-g-CACTSs的乳液稳定时间均随DQ的增加或壳低聚糖分子量的增大而延长。
     采用平板二倍稀释法测定了CHPDMDHA、ADMDHA、羧烷基壳聚糖(CA-CTS)、CHPDMDHA-g-LWCTSs、 CHPDMDHA-g-CACTSs、 ADMDHA-g-LWCTSs和ADMDHA-g-CACTSs对绿脓杆菌(Pseudomonas aeruginosa)、产气肠杆菌(Escherichiaaerogenes)、肺炎克雷伯氏菌(Klebsiella pneumonia)和大肠埃希氏杆菌(Escherichia coil)等革兰氏阴性菌及金黄色葡萄球菌(Staphylococcus aureus)和表皮葡萄球菌(Staphylococcusepidermidis)等革兰氏阳性菌的最小抑菌浓度(MIC值),初步研究了它们的抑菌性能与其结构间的关系。结果表明:CHPDMDHA、ADMDHA对金黄色葡萄球菌和表皮葡萄球菌抑制作用明显,其MIC值分别为16和64及8和8μg/mL;CA-CTS对大肠埃希氏杆菌、表皮葡萄球菌和绿脓杆菌的抑菌效果较好,且CA-CTS的抑菌能力随其取代度或分子量的增加而降低;CHPDMDHA-g-LWCTSs对绿脓杆菌抑制作用尤为明显,其MIC值随DQ的增加呈先减小后增大的趋势,随壳低聚糖分子量的增大而增大;CHPDMDHA-g-CACTSs对大肠埃希氏杆菌的MIC值随DQ的增加或亲水基中壳低聚糖分子量的增大呈先减小后增大的趋势;ADMDHA-g-LWCTSs对绿脓杆菌、产气肠杆菌和大肠埃希氏杆菌有较好的抑制作用,且其MIC值随壳低聚糖分子量的增加呈先减小后增大的趋势,随DQ的增大而减小;ADMDHA-g-N-CMC和ADMDHA-g-N-CEC对产气肠杆菌、肺炎克雷伯氏菌、大肠埃希氏杆菌和金黄色葡萄球菌的抑制效果较好,且其抑菌能力随DQ的增加而增强,随壳低聚糖分子量的增加呈先增强后减弱的趋势。
     采用MTT比色法测定了CHPDMDHA、 ADMDHA、 CA-CTS、CHPDMDHA-g-LWCTSs、 CHPDMDHA-g-CACTSs、 ADMDHA-g-LWCTSs和ADMDHA-g-CACTSs对肺癌H460细胞、乳腺癌MCF7细胞、肝癌SMMC7721细胞和胃癌MKN45细胞的半数抑制浓度(IC50)。结果表明,CHPDMDHA-g-CACTSs3000对4种肿瘤细胞的生长有一定的抑制作用。其中CHPDMDHA-g-N-CMC3000对胃癌MKN45细胞、 CHPDMDHA-g-N,O-CMC3000对肝癌SMMC7721细胞、CHPDMDHA-g-N,O-CEC3000对肝癌SMMC7721细胞和胃癌MKN45细胞的IC50均小于100μg/mL;ADMDHA-g-N-CEC3000对乳腺癌MCF7细胞、肝癌SMMC7721细胞和胃癌MKN45细胞具有一定的杀伤作用,其IC50分别为75.99、62.69、99.93μg/mL;ADMDHA对肺癌H460细胞、乳腺癌MCF7细胞、肝癌SMMC7721细胞和胃癌MKN45细胞的IC50分别为7.10、10.00、4.91、5.63μg/mL,CHPDMDHA对胃癌MKN-45细胞的IC50为9.45μg/mL,说明ADMDHA和CHPDMDHA在体外对这些受试肿瘤细胞具有较好杀伤抑制作用。
Polymeric surfactants are the macromolecular compound with surface activities and theirmolecular weight is over from several thousand to tens of thousands. They have attracted moreand more attentions because they have the properties of both macromolecular compound andsurfactant.
     CHPDMDHA and ADMDHA were synthesized for the first time withdehydroabietylamine as basic material. The quaterary modifications of LWCTSs, N-CMC,N,O-CMC, N-CEC and N,O-CEC with CHPDMDHA and ADMDHA as active quaternaryammonium salt were put forward innovatively. Four series of rosin modified chitosancomb-like polymeric surfactants involving CHPDMDHA-g-LWCTSs,CHPDMDHA-g-CACTSs, ADMDHA-g-LWCTSs and ADMDHA-g-CACTSs were obtainedrespectively. The products were characterized by FT-IR, NMR and elemental analysis.Meanwhile, the surface activity, emulsifying ability, antibacterial activities and antitumoractivities in vitro were also investigated for the synthesized compound. The relationshipsbetween the performance and the structure were discussed preliminarily. It is expected that theresearch results could play a guiding role for the development of polymeric ionic surfactantsbased on rosin and chitosan.
     The surface activities of CHPDMDHA, ADMDHA and rosin modified chitosan comb-likepolymeric surfactant were estimated by hanging plate method. The results showed thatCHPDMDHA, ADMDHA and rosin modified chitosan comb-like polymeric surfactant alldisplayed good surface activities. The surface activities of CHPDMDHA is better than that ofthe C12~C16alkyl dimethyl benzyl ammonium chloride which has the similar structure withCHPDMDHA. The surface activity of ADMDHA is also better than that of the C16or C18alkyl dimethyl allyl ammonium chloride which has the similar structure with ADMDHA.Thecritical micelle concentration (cmc) of rosin modified chitosan comb-like polymeric surfactants obtained in our investigation were varied from0.75×10-4mol/L to7.31×10-2mol/L, andincreased with the increase of molecular weight (Mw) of LWCTS and decreased with theincrease of quaternary degree (DQ). Their surface tensions at cmc (γcmc) in aqueous solutionwere varied from31.4mN/m to39.4mN/m and decreased with the increase of the Mw ofLWCTS or the DQ.
     The influences of CHPDMDHA, ADMDHA, and rosin modified chitosan comb-likepolymeric surfactant on the emulsion stability based on paraffin-water system wereinvestigated respectively. The results showed that the emulsifying ability of CHPDMDHA isbetter than that of the C12~C16alkyl dimethyl benzyl ammonium chloride and the emulsifyingability of ADMDHA is also better than that of the C16or C18alkyl dimethyl allyl ammoniumchloride. The emulsification time of CHPDMDHA-g-LWCTSs, CHPDMDHA-g-CACTSs,ADMDHA-g-LWCTSs and ADMDHA-g-CACTSs were extended with the increase of the DQor Mw of LWCTS.
     The minimum inhibition concentrations (MICs) of CHPDMDHA, ADMDHA, CA-CTS,CHPDMDHA-g-LWCTSs, CHPDMDHA-g-CACTSs, ADMDHA-g-LWCTSs andADMDHA-g-CACTSs against Pseudomonas aeruginosa, Escherichia aerogenes, Klebsiellapneumonia, Escherichia coil, Staphylococcus aureus, and Staphylococcus epidermidis wereestimated by the2-fold agar dilution method. The relationship between the product’santibacterial activities and their structure were investigated preliminarily. The results showedthat CHPDMDHA and ADMDHA could exhibit obvious inhibitory effects on Staphylococcusaureus and Staphylococcus epidermidis, their MICs were16, and64,8and8μg/mL,respectively. The CA-CTSs could behaviour a good antibacterial activity against Escherichiacoil, Staphylococcus epidermidis, and Pseudomonas aeruginosa and their antibacterialactivities against these bateria declined declined with the increase of their degree ofsubstitution (DS) or the molecule weight. The CHPDMDHA-g-LWCTSs could exhibit moreobvious inhibitory effects against Pseudomonas aeruginosa, their MICs tended to decrease atbegin and then increase with the increasing of DQ and to increase with the increase of Mw of LWCTS. The MICs of CHPDMDHA-g-CACTSs against Escherichia coil tended to decrease atbegin and then increase with the increasing of DQ or Mw of LWCTSs contained in thehydrophilic group. The ADMDHA-g-LWCTSs could behave more obvious inhibitory effectsagainst Pseudomonas aeruginosa, Escherichia aerogenes, and Escherichia coil, their MICsdecreased at begin and then increased with the increase of Mw of LWCTSs, and decreased withthe increasing of the DQ. The ADMDHA-g-N-CMC and ADMDHA-g-N-CEC could exhibit agood inhibitory effect against Escherichia aerogenes, Klebsiella pneumonia, Escherichia coil,and Staphylococcus aureus, their antibacterial activities strengthened with the increasing of DQand tended to increase at begin and then decrease with the increase of Mw of LWCTS.
     The half inhibitory concentration (IC50) of CHPDMDHA, ADMDHA, CA-CTS,CHPDMDHA-g-LWCTSs, CHPDMDHA-g-CACTSs, ADMDHA-g-LWCTSs andADMDHA-g-CACTSs against human lung cancer H460cells, breast cancer MCF7cells,hepatoma SMMC7721cells and gastric cancer MKN45cells were estimated by MTT method.The research results showed that CHPDMDHA-g-CACTSs3000displayed extensive antitumoractivities against the tested tumor cells. The IC50of CHPDMDHA-g-N-CMC3000againstgastric cancer MKN45cells, CHPDMDHA-g-N,O-CMC3000against hepatoma SMMC7721cells, and CHPDMDHA-g-N,O-CEC3000against hepatoma SMMC7721cells and gastriccancer MKN45cells were all lower than100μg/mL. The ADMDHA-g-N-CEC3000couldbehave some antimuor activities against breast cancer MCF7cells, hepatoma SMMC7721cellsand gastric cancer MKN45cells and its IC50against these cancer cells were75.99,62.69, and99.93μg/mL, respectively. The IC50of ADMDHA against lung cancer H460cells, breastcancer MCF7cells, hepatoma SMMC7721cells and gastric cancer MKN45cells were7.10,10.00,4.91and5.63μg/mL, respectively; the IC50of CHPDMDHA against gastric cancerMKN45cells was9.45μg/mL, these data indicated they could display better antitumoractivities in vitro against these tested tumor cells.
引文
[1]董国君,苏玉,王桂香.表面活性剂化学.北京:北京理工大学出版社,2009:1-5
    [2] C. S. Chern. Emulsion Polymerization Mechanisms and Kinetics. Prog Polym Sci,2006,31:443-486
    [3]丁秋炜,徐俊英,滕大勇.高分子表面活性剂对细乳液聚合的影响.天津化工,2011,25(5):1-4
    [4]陈雷.高分子表面活性剂提高稠油采收率技术的研究与应用.精细石油化工进展,2011,12(8):26-28
    [5]朱永闯,李莉.亲水性高分子表面活性剂的研究及应用进展.广东化工,2011,38(7):59-60
    [6]俞洁,陆泉芳,杨武等.辉光放电电解等离子体引发合成丙烯酰胺一丙烯酸共聚物水凝胶及其对阳离子染料的吸附性能.功能高分子学报,2012,25(3):271-277
    [7]程发,张晓红,李桂凤等.淀粉脂肪酸酯的制备.天津大学学报,1995,28(6):814—819
    [8] J. Aburto, I. Alic, E. Borredon, et al. Preparation of Long Chain Esters of Starch using Fatty AcidChlorides in the Absence of all Organic Solvent. Starch/Starke,1999,51(4):132—135
    [9] D. Bikiaris, E. Pavlidou, J. Prinos. Biodegradation of Octanoated Starch and its Blends with LDPE.Polymer Degradhtion and Stability,1998,60:437—447
    [10]周宝文,哈成勇,莫坚强等.木质素磺酸盐表面活性剂的研究和应用进展.高分子通报,2013,5:76-80
    [11] M. V. Alonso, M. Oliet, F. Rodriguez, et al. Modification of Ammonium Lignosulfonate by Phenolationfor use in Phenolic Resins. Bioresour Technol,2005,96(9):1013-1018
    [12]向育君,徐伟箭,夏新年等.木质素磺酸盐研究及其主要应用最新进展.高分子通报,2010,9:99-104
    [13]王万林,王海滨,霍冀川等.木质素磺酸盐减水剂改性研究进展.化工进展,2011,30(5):1039-1044
    [14] J. L. Drury, D. J. Mooney. Hydrogels for Tissue Engineering: Scaffold Design Variables andApplications. Biomaterials,2003,24(24):4337-4351
    [15] C. Y. Wang, S. Q. Ye, L. Dai, et al. Enzymatic Desorption of Layer-by-layer Assembled MultilayerFilms and Effects on the Release of Encapsulated Indomethacin Microcrystals. Carbohydrate Research,2007,342(15):2237-2243
    [16] G. Orive, S. Ponce, M. Lgartua, et al. Biocompatibility of Microcapsules for Cell IimmobilizationElaborated with Different Type of Alginates. Biomaterials,2002,23(18):3825-3831
    [17]杨继生,陈生碧,方云.表面活性剂对海藻酸钠稀水溶液剪切粘度的影响.物理化学学报,2009,25(4):752-756
    [18]裴立军,蔡照胜,商士斌等.天然高分子表面活性剂的研究进展.化工科技,2012,20(6):52-56
    [19]蔡京荣.天然高分子基类表面活性剂研究概况.化工技术与开发,2010,39(1):30-34
    [20] G. A. R. Roberts, X. E. Taylor. Surface activity and Foam-enhancing Properties of N-(2-hydroxyalkyl)chitosans. Proceedings of5th International Conference of Advanced Chitin Chitosan. London: Elsevier,1992:179-186
    [21] M. Y. Lee, K. J. Hong, Y. Shin-Ya, et al. Adsorption of Hexavalent Chromium by Chitosan–BasedPolymeric Surfactants. Journal of Applied Polymer Science,2005,96:44-50
    [22] N Fricke, H Keul, M M ller. Synthesis of Chitosan Surfactants. Macromolecular Chemistry and Physics,2009,210(9):752–768
    [23] J. Grant, H. Lee, R. C. W. Liu, et al. Intermolecular Interactions and Morphology of Aqueous Polymer/Surfactant Mixtures Containing Cationic Chitosan and Nonionic Sorbitan Esters. Biomacromolecules,2008,9(8):2146–2152
    [24]郭乃妮,杨建洲,李玉红.松香类表面活性剂的合成研究进展.皮革与化工,2008,25(6):11-14
    [25]段文贵,陈小鹏,王琳琳.松香催化加氢本证动力学研究.林产化学与工业,2002,1-5
    [26] W. J. Gotfstein, L. C. Cheney. Dehydroabietylamine, a New Resolving Agent. J Org Chem,1965,30:2072–2073
    [27]饶小平,宋湛谦,商士斌.松香基双羧酸盐双子表面活性剂的合成及性能.生物质化学工程,2011,45(6):1-4
    [28] W. H. Jia, X. P. Rao, Z. Q. Song. Microwave-Assisted Synthesis and Properties of a Novel CationicGemini Surfactant with the Hydrophenanthrene Structure. J Surfact Deterg,2009,12(3):261-267
    [29] L. J. Pei, Z. S. Cai, S. B. Shang, et al. Synthesis and Performance of Allyl Dimethyl DehydroabietylAmmonium Chloride. J Surfact Deterg,2014,17(2):279-286
    [30] M. Persson, P. Stenius, G. Str m, et al. Solubilization, Micellization, and Phase Equilibria ofPolyoxyethylene Derivatives of Dehydroabietic acid. J Phys Chem,1980,84(12):1557–1560
    [31] P. S. Piispanen, U. R. M. Kjellin, B. Hedman, et al. Synthesis and Surface Measurements of SurfactantsDerived from Dehydroabietic Acid. J Surfact Deterg,2003,6(2):125-130
    [32]张海容,白宝林,任光明等.甲壳素、壳聚糖研究与应用进展.忻州师范学院学报,2006,22(2):1-4
    [33] M. E. I. Badawy, E. I. Rahea, T. M. Rogge, et al. Synthesis and Fungicidal Activity of New N,O-acylChitosan Derivatives. Biomacromolecules,2004,5(2):589-595
    [34] F. C. Stenger, V. Cechinel-Filho, C. Meyre-Silva, et al. Synthesis of Laurylchitosan and Its use in theSeparation of Flavonoids from Aleurites moluccana by Matrix Solid-Phase Dispersion.Chromatographia Supplement,2009,69(2):183-187
    [35] M. N. V. Kumar. A Review of Chitin and Chitosan Applications. React Funct Polym,2000,46(1):1-27
    [36] X. H. Zhu, A. Ding. One-step Construction of Sensor Based on Nanocomposite of Platinum andChitosan Formed by Electrodeposition and Its Application for Determination of Nitrite. Int JElectrochem Sci,2013,8(1):135-148
    [37] R. J. Verheul, M. Amidi, S van der Wal, et al. Synthesis, Characterization and In Vitro BiologicalProperties of O-methyl free N, N, N-trimethylated Chitosan. Biomaterials,2008,29(27):3642–3649
    [38] F. Croisier, C. Jér me. Chitosan-based Biomaterials for Tissue Engineering. European Polymer Journal,2013,49(4):780-792
    [39] D. M. Chen, W. Li, Y. R. Wu, et al. Preparation and Characterization of Chitosan/MontmorilloniteMagnetic Microspheres and Its Application for the Removal of Cr (VI). Chemical Engineering Journal,2013,22(1):8-15
    [40] Z. D. Wang, L. C. Zheng, C. C. Li, et al. A Novel and Simple Procedure to SynthesizeChitosan-graft-polycaprolactone in an Ionic Liquid,2013,94(1):505-510
    [41] D. Mostafa Amin, E. S. Adel Zaki, A. H. Mohamed Mohamed, et al. Thermal Stability and Degradationof Chitosan Modified by Cinnamic Acid. Open Journal of Polymer Chemistry,2012,2(1):14-20
    [42]蔡京荣,李仲谨.淀粉基类高分子表面活性剂研究概况.中国洗涤用品工业,2009,1:74-78
    [43]胡飞.辛烯基琥珀酸淀粉酯理化性质的研究.粮食与饲料工业,2005,1:25-27
    [44]陈煦,张燕萍,吴嘉根.十二烯基琥珀酸淀粉酯性质的研究.无锡轻工大学学报,2000,1:58-61
    [45] Y. S. Jeon, C. Lchon, A. Viswanathan, et al. Studies of Starch Estefjfication: Reactions with AlkenylSuccinates in Aqueous Slurry Systems. Starch,1999,51(2-3):90-93
    [46] A. Jonhed, L. J rnstr m. Phase and Gelation Behavior of2-hydroxy-3-(N, N-dimethyl–N-dodecylammonium) Propykoxy Starches. Starch,2003,55(12):569-575
    [47] J. Smidrkal, R. Cervenkova, V. Filip. Two-stage Synthesis of Sorbitan Esters, and Physical Properties ofthe Products. European Journal of Lipid Science and Technology,2004,106(12):851-855
    [48] M. Nichifor, S. Lopes, M. Bastos, et al. Self-Aggregation of AmphiphilicCationic Polyelectrolytes Based on Polysaccharides. The Journal of Physical Chemistry B,2004,108(42):16463-16472
    [49] M. Kuentz, P. Egloff, D. R thlisberger. A Technical Feasibility Study of Surfactant-free DrugSuspensions using Octenyl Succinate-modified Starches. European Journal of Pharmaceutics andBiopharmaceutics,2006,63(1):37-43
    [50] S. Varona,. Martín, M. J. Cocero. Formulation of a Natural Biocide Based on Lavandin Essential Oilby Emulsification using Modified Starches. Chemical Engineering and Processing,2009,48(6):1121-1128
    [51]宋湛谦,周永红.利用生物质资源发展表面活性剂.精细与专用化学品,2005,13(20):1-3
    [52] A. P. Abbott, T. J. Bell, S. Handa, et al. O-Acetylation of Cellulose and Monosaccharides using Zincbased Ionic Liquid. Green Chem.,2005,7:705–707
    [53] C. F. Liu, A. P. Zhang, W. Y. Li, et al. Succinoylation of Cellulose Catalyzed with Iodine in Ionic Liquid.Industrial Crops and Products,2010,31(2):363-369
    [54] L. M. Matuana, J. J. Balatinecz, R. N. S. Sodhi, et al. Surface Characterization of Esterified CellulosicFibers by XPS and FTIR Spectroscopy. Wood Science and Technology,2001,35:191-201
    [55] J. E. Sealey, G. Samaranayake, J. G. Todd, et al. Novel Cellulose Derivatives. IV. Preparation andThermal Analysis of Waxy Esters of Cellulose. Journal of Polymer Science Part B: Polymer Physics,1996,34(9):1613-1620
    [56] D. W. O'Connell, C. Birkinshaw, T. F. O'Dwyer. Heavy Metal Adsorbents Prepared from theModification of Cellulose: A Review. Bioresource Technology,2008,99(15):6709-6724
    [57] S. C. Fox, B. Li, D. Xu, et al. Regioselective Esterification and Etherification of Cellulose: A Review.Biomacromolecules,2011,12(6):1956–1972
    [58] K. C. Gupta, K. Khandekar. Temperature-Responsive Cellulose by Ceric (IV) Ion-Initiated GraftCopolymerization of N-Isopropylacrylamide. Biomacromolecules,2003,4(3):758–765
    [59] R. Tankhiwale, S. K. Bajpai. Graft Copolymerization onto Cellulose-based Filter Paper and itsFurtherDevelopment as Silver Nanoparticles loaded Antibacterial Food-packaging Material. Colloids andSurfaces B: Biointerfaces,2009,69(2):164-168
    [60] T. J. Podlas. Crosslinking cellulose polymers. US4035195A
    [61] L. Goetz, A. Mathew, K. Oksman, et al. A Novel Nanocomposite Film Prepared from CrosslinkedCellulosic Whiskers. Carbohydrate Polymers,2009,75(1):85-89
    [62] M. W. Frey, L. Li, M. Xiao, et al. Dissolution of Cellulose in Ethylene Diamine/salt Solvent Systems.Cellulose,2006,13:147-155
    [63] H. Qi, C. Chang, L. Zhang. Effects of Temperature and Molecular Weight on Dissolution of Cellulose inNaOH/urea Aqueous Solution. Cellulose,2008,15:779-787
    [64] L. Yan, Z. Gao. Dissolving of Cellulose in PEG/NaOH Aqueous Solution. Cellulose,2008,15:789-796
    [65] Y. P. Wei, F. Cheng, G. L. Hou, et al. Amphiphilic Cellulose: Surface Activity and AqueousSelf-assembly into Nano-sized Polymeric Micelles. Reactive&functional polymers,2008,68(5):981-989
    [66] Z. X. Li, L. G. Wang, Y. Huang. Photoinduced Graft Copolymerization of Polymer Surfactants Based onHydroxyethyl Cellulose. Journal of Photochemistry and Photobiology A: Chemistry,2007,190(1):9-14
    [67] P. Hong, C. Fa, Y. P. Wei, et al. Surface Properties and Synthesis of the Cellulose-based AmphotericPolymeric Surfactant. Carbohydrate Polymers,2007,69(4):625-630
    [68]曹亚,李惠林,左榘等.羧甲基纤维素-十二烷基醇聚氧乙烯醚丙烯酸酯共聚物表面活性剂在水溶液中的胶束形态.高分子学报,2000,3:345-349
    [69]曹亚,李惠林,徐僖.羧甲基纤维素系列高分子表面活性剂的嵌段结构对其形态和性能的影响.高分子学报,2001,1:3-7
    [70]曹亚,李惠林.羧甲基纤维素系列高分子表面活性剂形成微乳液的研究.高等学校化学学报,2000,21(1):160-164
    [71]刘竹,何静,袁同琦等.木质纤维-丙烯酰胺共聚合成高分子表面活性剂.北京林业大学学报,2009,31(S1):31-34
    [72]韦瑞松,段文贵,许雪棠等. N,N-二羟乙基去氢枞酸酰胺的合成.广西大学学报(自然科学版),2008,33(1):63-66
    [73]崔国友,莫炳荣,陈文纳等.含松香骨架甜菜碱类两性表面活性荆的合成.日用化学工业,2007,37(3):206-208
    [74]岑波,段文贵,赵树凯等. N-去氢枞基新型甜菜碱类两性表面活性剂的合成.化学世界,2004,45(3):150-153
    [75] Z. S. Cai, C. S. Yang, X. M. Zhu. Synthesis of3-Dehydroabietylamino-2-HydroxypropylTrimethylammonium Chloride and its Antibacterial Activity. Tenside Surfactants Detergents,2010,47(1):24-27
    [76]周文富,赖文忠,陈芳琴等.丙烯酸松香聚氧乙烯蔗糖酯的合成与结构表征.精细化工,2000,17(12):704-707
    [77]谢晖,温静卫,周永红.改性松香基非离子表面活性剂的合成及性能.南京工业大学学报,2004,26(5):33-36
    [78]崔锦峰,康博,杨保平.马来松香-聚氧乙烯醚双酯羧酸钠表面活性剂.兰州理工大学学报,2009,35(6):64-67
    [79]王艳娜,谢晖,周永红.松香醇聚氧乙烯醚琥珀酸单酯磺酸盐的表面活性.南京工业大学学报,2004,26(4):71-74
    [80]胡立红,周永红,宋湛谦.松香基聚葡萄糖苷的合成及性能.林产化学与工业,2006,26(1):11-14
    [81] S. L. Zhao, H. S. Wang, Y. M. Pan, et al.3-[(3-Dehydroabietamidopropyl)dimethylammonio]-1-propane-sulfonate as a new type of chiral surfactant for enantiomer separation in micellarelectrokinetic chromatography, Journal of Chromatography A,2007,1145(1-2):246–249
    [82] A. Heras, N. M. Rodríguez, V. M. Ramos, et al. N-methylene Phosphonic Chitosan: a Novel SolubleDerivative. Carbohydrate Polymers,2001,44(1):1-8
    [83] K. Y. Lee, W. H. Jo, I. C. Kwon, et al. Physicochemical Characteristics of Self-Aggregates ofHydrophobically Modified Chitosans. Langmuir,1998,14(9):2329–2332
    [84] G. B. Jiang, D. P. Quan, K. R. Liao, et al. Preparation of Polymeric Micelles based on Chitosan bearinga small Amount of highly Hydrophobic Groups. Carbohydrate Polymers,2006,66(4):514-520
    [85]段文贵,申长茂,方华祥等.马来松香酰化壳聚糖的微波合成、表征及其药控缓释行为.高校化学工程学报,2008,22(6):935-940
    [86]唐有根,蒋刚彪,谢光东.新型壳聚糖两性高分子表面活性剂的合成.湖南化工,2000,30(1):30-33
    [87]隋卫平,蒋晓杰,翟利民等.两亲性羧甲基壳聚糖衍生物的表面活性研究.高等学校化学学报,2004,25(1):99-102
    [88] G. Z. Sun, X. G. Chen, J. Zhang, et al. Adsorption Characteristics of Residual Oil on AmphiphilicChitosan Derivative. Water Science and Technology,2010,61(9):2363-2374
    [89] W. P. Sui, G. L. Song, G. H. Chen, et al. Aggregate Formation and Surface Activity Property of anAmphiphilic Derivative of Chitosan. Colloids Surface A: Physicochemical and Engineering Aspects,2005,256(1):29-33
    [90] W. P. Sui, Y. H. Wang, S. L. Dong, et al. Preparation and Properties of an Amphiphilic Derivative ofSuccinyl-chitosan. Colloids and Surface A: Physicochemical and Engineering Aspects,2008,316(1-3):171-175
    [91] S. Sagnella, K. Mai-Ngam. Chitosan Based Surfactant Polymers Designed to Improve BloodCompatibility on Biomaterials. Colloids and Surfaces B: Biointerfaces,2005,42(2):147-155
    [92] K. Mai-ngam. Comblike Poly(ethylene oxide)/Hydrophobic C6Branched Chitosan Surfactant Polymersas Anti-infection Surface Modifying Agents. Colloids and Surfaces B: Biointerfaces,2006,49(2):117-125
    [93] P. S. Khiew, S. Radimana, N. M. Huang, et al. Preparation and Characterization of ZnS NanoparticlesSynthesized from Chitosan Laurate Micellar Solution. Materials Letters,2005,59(8-9):989–993
    [94] C. Onésippe, S. Lagerge. Studies of the Association of Chitosan and Alkylated Chitosan withOppositely Charged Sodium Dodecyl Sulfate. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2008,330(2-3):201-206
    [95] O. E. Philippova, E. V. Volkov, N. L. Sitnikova, et al. Two Types of Hydrophobic Aggregates inAqueous Solutions of Chitosan and Its Hydrophobic Derivative, Biomacromolecules,2001,2(2):483-490
    [96] M. Y. Lee, K. J. Hong, T. Kajiuchi, et al. Synthesis of Chitosan-based Polymeric Surfactants and theirAdsorption Properties for Heavy Metals and Fatty Acids. International Journal of BiologicalMacromolecules,2005,36(3):152-158
    [97]段文贵,申长茂,方华祥等.马来松香酰化壳聚糖的微波合成、表征及其药控缓释行为.高校化学工程学报,2008,22(6):935-940
    [98]陈春红.松香-壳聚糖基聚合物的微波合成研究.广西大学硕士学位论文,2007,58-80
    [99] W. G. Duan, C. G. Shen, H. X. Fang, et al. Synthesis of Dehydroabietic Acid-modified Chitosan and itsDrug Release Behavior. Carbohydrate Research,2009,344(1):9-13
    [100] H. L. Sanders. Quaternary ammonium salts. US2623870A
    [101]武文洁,赵小华.松香类表面活性剂的合成及其应用.皮革化工,2006,23(2):31-36
    [102]王延,宋湛谦,梁梦兰. N-脱氢枞基-N,N-二甲基季铵盐类阳离子表面活性剂的合成及性质.日用化学工业,1997(4):16-17
    [103]梁梦兰,叶建峰.松香衍生物的季胺盐阳离子表面活性剂的合成与性能表征.化学世界,2000,41(3):138-141
    [104]王道林,牛之猛,刘华东.光学活性拆分剂脱氢枞胺的制备性纯化及其表征.北京理工大学学报,2004,24(4):357-359
    [105]蒋福斌,曾华辉,杨正业等.松香基双季铵盐阳离子表面活性剂的合成与性能.精细化工,2007,24(11):1074-1079
    [106]严德志.脱氢枞胺系列衍生物的合成及生物活性的研究.南京林业大学硕士学位论文,2011,12-25
    [107]郑忠,胡纪华.表面活性剂的物理化学原理.广州:华南理工大学出版社,1995:73-74
    [108]毛培坤.表面活性剂产品工业分析.北京:化学工业出版社,2003:430-433,447-450
    [109]徐叔云,卞如濂,陈修.药理实验方法学:第3版.北京:人民卫生出版社,2003,1647-1664
    [110] Y. L. Tang, Y. H. Shi, W. Zhao, et a1. Discovery of a Novel Antimicrobial Peptide using MembraneBinding-based Approach, Food Control,2009,20:149-156
    [111] T. Farias, Z. Jerzy, R. Aramis, et al. Benzalkonium chloride and sulfamethoxazole adsorption ontonatural clinoptilolite: Effect of time, ionic strength, pH and temperature. Journal of Colloid andInterface Science,2011,363(2):465-475
    [112] T. Farias, L. C. de Menorval, J. Zajac, et al. Solubilization of drugs by cationic surfactants micelles:Conductivity and1H NMR experiments. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2009,345(1-3):51-57
    [113] C. A. Gracia, S. Gómez-Barreiro, J. Nimo, et al. Static and dynamic light-scattering studies on micellarsolutions of alkyldimethylbenzylammonium chlorides. Journal of Colloid and Interface Science,2004,276(2):408-413
    [114]张智宏,沈钟,邵长生.新型季铵盐型表面活性剂应用研究.日用化学工业,1999,3:1-3
    [115]谢瑜,张昌辉,徐旋.聚合季铵盐阳离子表面活性剂的合成和性能研究.日用化学品科学,2008,31(2):21-24
    [116] Z. Y. Huang, H. S. Lu, Y. He. Amphoteric hydrophobic associative polymer: I synthesis, solutionproperties and effect on solution properties of surfactant. Colloid Polym Sci,2006,285(3):365-370
    [117]张海容,白宝林,任光明等.甲壳素、壳聚糖研究与应用进展.忻州师范学院学报,2006,22(2):1-4
    [118] M. EI. Badawy, EI. Rahea, T. M. Rogge, et al. Synthesis and fungicidal activity of new N, O-acylchitosan derivatives. Biomacromolecules,2004,5(2):589-595
    [119] F. C. Stenger, V. Cechinel-Filho, C. Meyre-Silva, et al. Synthesis of Laurylchitosan and Its use in theSeparation of Flavonoids from Aleurites moluccana by Matrix Solid-Phase Dispersion.Chromatographia Supplement,2009,69(2):183-187
    [120]嵇胜全,朱爱萍,潘颖楠. N-羧乙基壳聚糖对重金属汞离子絮凝效果的研究.工业水处理,2011,31(10):71-74
    [121]葛为公,杨红梅,黄崇基等.羧甲基壳聚糖的制备及抑菌作用的研究.华夏医学,2005,18(6):903-904
    [122]袁文,尹学琼,贺永宁等.壳聚糖羧烷基化的研究进展.化学试剂,2007,29(5):277-280;286
    [123]易喻,杨好,应国清. N-邻苯二甲酰化壳聚糖的合成和性能.化工进展,2006,25(5):542-545
    [124]蔡照胜.季铵化羧烷基壳聚糖的制备、结构和性能研究.北京:中国林业科学研究院博士学位论文,2009:35-41
    [125]吴迪,刘辉,浦金辉等.羧甲基壳聚糖的抑菌性研究进展.华南国防医学杂志,2013,27(3):211-214
    [126] L. P. Sun, Y. M. Du, L. H. Fan, et al. Preparation, characterization and antimicrobial activity ofquaternized carboxymethyl chitosan and application as pulp-cap. Polymer,2006,47(6):1796-1804
    [127] X. Y. Li, X. Y. Kong, Z. L. Zhang, et al. Cytotoxicity and biocompatibility evaluation ofN,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. InternationalJournal of Biological Macromolecules,2012,50(5):1299-1305
    [128] M. Rinaudo. Chitin and chitosan: Properties and applications. Prog. Polym. Sci,2006,31(7):603-632
    [129]王鸿博,高卫东.甲壳素及壳聚糖在纺织工业中的应用.纺织导报,2003,1:26-28
    [130] N. Liu, X. G. Chen, H. J. Park, et al. Effect of MW and Concentration of Chitosan on AntibacterialActivity of Eseheriehia Coli. Carbohydrate Polymers,2006,64(1):60-65
    [131] C. Q. Qin, B. Zhou, L. T. Zeng, et al. The Physicochemical Properties and Antitumor Activity ofCellulose—treated Chitosan. Food Chemistry,2004,84(1):107-115
    [132]金鑫荣,柴平海,张文清.低聚水溶性壳聚糖的制备方法及研究进展.化工进展,1998,2:17-21
    [133] S. Yashita, K. Sato, Y. Takamori. Y.Efect of chitosan deaeetylation degree on the production ofehitooligosae—eharides by Bacillus sp Chitosanase. Kichin Kitosan Kenkyu,1999,5(2):178-189
    [134] A. B. Vishu Kumar, M. C. Varadaraj, R. G. Lalitha, et al. Low molecular weight chitosans: preparationwith the aid of papain and characterization. Biochimiea et Biophysica Acta (BBA): General Subjects,2004,1670(2):137—146
    [135] F. S. Kittur, B. Kumara, L. R. Gowda, et al. Chitosanolysis by a pectinase isozyme of aspergillusnigeranon-specific activity. Carbohydrate Polymers,2003,53(2):191-196
    [136] S. Trzeinski, D. U. Staszewska. U.Kinetics of ultrasonic degration and polymerization degreedistribution of sonochemically degration chitosan. Carbohydrate Polymers,2004,56(4):489-498
    [137] X. P. Rao, Z. Q. Song, L. He. Synthesis and antitumor activity of novel-aminophosphonates fromditerpenic dehydroabietylamine. Heteroatom Chemistry,2008,19(5):512-516
    [138] W. J. Gottstein, L. C. Cheney. Dehydroabie tylamine. A New Resolving Agent. Journal of OrganicChemistry,1965,30(6):2072-2073
    [139] V. S. Nande, U. V. Barabde, D. M. Morkhade, et al. Synthesis and characterization of PEGylatedderivatives of rosin for sustained drug delivery. Reactive&Functional Polymers,2006,66(11):1373-1383
    [140] S. Savluchinske-Feio, M. J. M. Curto, B. Gigante, et al. Antimicrobial activity of resin acid derivatives.Applied Microbiology and Biotechnology,2006,72(3):430-436
    [141] S. Shimizu, P. A. R. Pires, O. A. EI. Seoud.1H and13C NMR Study on the Aggregation of(2-Acylaminoethyl)trimethylammonium Chloride Surfactants in D2O. Langmuir,2003,19(23):9645-9652
    [142] W. W. Wilkerson, W. Galbraith, I. Delucca, et al. Topical antiinflammatory dehydroabietylaminederivatives. IV. Bioorganic&Medicinal Chemistry Letters,1993,3(10):2087-2092
    [143]陈江华,廖青. H2O2-HAc降解制高性能水溶性壳聚糖的工艺研究.天津化工,2004,1:7—9
    [144] E. J. Ivani. Amino-polysaccharides and copolymers thereof for contact lenses and ophthalmiccompositions. US4447562A
    [145] H. Sebag, G. Vanlerberghe. Cosmetic compositions for the skin containing a chitosan derivative. US3953608A
    [146] G. Kogan, Y. A. Skorik, C. A. R. Gomes, et al. Antioxidant and antimutagenic activity ofN-(2-carboxyethyl)chitosan. Toxicology and Applied Pharmacology,2004,201(3):303–310
    [147]邵志会,汪琴,王爱勤. N-羧丁基壳聚糖的吸湿性和保湿性.应用化学,2002,19(11):1091-1093
    [148] X. Y. Li, X. Y. Kong, Z. L. Zhang, et al. Cytotoxicity and biocompatibility evaluation ofN,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. InternationalJournal of Biological Macromolecules,2012,50(5):1299-1305
    [149]伏国庆,冯小强,杨声等.水溶性壳聚糖和壳寡糖的吸湿保湿性能及对几种致病菌抑制作用的研究.实用医技杂志,2007,14(21):2887-2889
    [150] B. B. Aam, E. B. Heggset, A. L. Norberg, et al. Production of Chitooligosaccharides and TheirPotential Applications in Medicine. Mar. Drugs,2010,8:1482-1517
    [151] R. Huang, E. Mendis, N. Rajapakse, et al. Strong electronic charge as an important factor foranticancer activity of chitooligosaccharides (COS). Life sciences,2006,78(20):2399-2408
    [152] W. Li, Z. Y. Li, W. S. Liao, et al. Chemical modification of Biopolymers—mechanism of model graftcopolymer fixation of Chitosan. J. Biomater. Sci. Polym. Ed,1993,4(5):557-566
    [153] R. Jayakumar, M. Prabaharan, R. L. Reis Graft copolymerized chitosan—present status andapplications. Carbohydrate Polymers,2005,62(2):142-158
    [154] J. M. Joshi, V. K. Sinha. Graft copolymerization of2-hydroxyethylmethacrylate onto carboxymethylchitosan using CAN as an initiator. Polymer,2006,47(6):2198-2204
    [155]杨莉燕,刘太奇,王亚昆.羧甲基壳聚糖接枝甲基丙烯酸共聚物的合成研究.新技术新工艺,2006,11:50-52
    [156] M. W. Sabaa, N. A. Mohamed, R. R. Mohamed. Synthesis, characterization and antimicrobial activityof poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydrate Polymers,2010,79(4):998-1005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700