用户名: 密码: 验证码:
锌离子添加和颗粒尺度调控对自絮凝酵母SPSC01乙醇耐性的影响及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生产成本高是燃料乙醇生产面临的主要问题。由于能耗成本大约占燃料乙醇总生产成本的30%,仅次于原料成本,降低能耗成为燃料乙醇产业的重要需求。超高浓度发酵可以提高发酵终点的乙醇浓度,减少精馏操作的能耗及废槽液量,进而节省废糟液处理的能耗,是燃料乙醇创新技术发展的主要方向。由于高浓度乙醇对酵母细胞的强毒性作用,超高浓度乙醇会出现发酵速率慢,糖发酵不彻底的现象,不仅发酵罐设备生产强度显著降低,而且浪费原料。因此,开展酵母细胞乙醇耐性机理的研究,开发相应的调控策略,对燃料乙醇生产实现超高浓度发酵具有重要的理论和实际意义。
     本文以自絮凝酵母SPSC01为研究对象,使用合成培养基,研究了必需营养源(NH4)2SO4、K2HPO4和维生素及六种重要的二价金属离子(MgSO4·7H2O、CaCl2·2H2O、FeSO4·7H2O、CoCl2·6H2O、ZnSO4·7H2O和MnCl2·4H2O)对酵母细胞生长、乙醇耐性和发酵终点乙醇浓度的影响。实验结果表明:添加三种营养源对细胞生长和乙醇耐性提高有促进作用;Mg2+、Ca2+和Zn2+能提高酵母细胞的乙醇耐性和发酵终点乙醇浓度,但Mn2+、Fe2+和C02+对酵母细胞乙醇耐性没有明显影响,Co2+对提高发酵终点乙醇浓度有促进作用,Mn2+对乙醇浓度没有明显影响,Fe2+则降低发酵终点乙醇浓度。在此基础上,利用均匀设计法对与乙醇耐性和发酵终点乙醇浓度相关的七个因素进行优化,得到了用于预测酵母细胞乙醇耐性和发酵终点乙醇浓度的回归方程,对以乙醇冲击条件下酵母细胞存活率表示的最大乙醇耐性和发酵终点最高乙醇浓度进行了预测,结果分别为(91.1±1.74)%和47.90±0.95 g l-1,与实验值(90.2±0.89)%和47.15±0.85 g l-1吻合良好,比单因素优化获得的最大乙醇耐受性83.5%和发酵终点最高乙醇浓度43.70 g l-1相比有明显提高,表明这些因素之间存在协同效应,这些研究结果为提高发酵系统酵母细胞乙醇耐性和发酵终点乙醇浓度奠定了基础。
     在研究工作中首次发现了锌离子对提高酵母细胞乙醇耐性的促进作用,因此进一步考察了分别添加0.01、0.05和0.1g l-1硫酸锌对高浓度(培养基葡萄糖浓度245 g l-1)乙醇连续发酵的影响。实验结果表明:锌的添加能改变自絮凝酵母颗粒的平均粒度,提高其对乙醇和高温胁迫的耐性,使连续发酵终点乙醇浓度相应提高,因此调控培养基中的锌离子浓度,是提高絮凝酵母乙醇耐性的新途径;进一步的研究工作揭示,酵母胞内锌的积累能提高其麦角固醇和海藻糖的含量,这两种物质对提高酵母细胞乙醇耐性有重要的作用,和未添加锌离子的对照组相比,添加0.05 g l-1硫酸锌可以使发酵终点乙醇浓度提高8.4%,甘油浓度下降42.0%,抗乙醇和高温胁迫的耐性分别提高了20%左右。
     由于锌离子添加和自絮凝酵母粒度分布都影响其乙醇耐性,为了进一步揭示这一现象的机理,研究了培养基中添加0.05 g l-1锌离子和改变自絮凝酵母粒度分布对酵母细胞的保护作用及代谢通量的变化。为了区分这两个因素的影响,锌离子添加组颗粒大小调节为300μm,并与未添加锌离子的同一尺度自絮凝酵母乙醇发酵实验组进行比较。研究结果显示,与自絮凝酵母平均粒径为100和200μm的实验组相比,平均粒径为300μm的实验组乙醇浓度、酵母细胞存活率和糖吸收速率都达到最大,分别为110.0 g l-1、58.0%和286.69C-mmol l-1 h-1,而发酵副产物甘油、琥珀酸、乙酸和丙酮酸浓度分别降低了15.7%、24.5%、48.4%和50.0%。添加0.05g l-1硫酸锌使细胞内总麦角固醇和海藻糖含量分别增加了71.6%和96.5%,在发酵液中未检测到丙酮酸,甘油浓度降低了37.6%,乙醇浓度提高了9.1%,酵母细胞存活率提高了31.0%,葡萄糖代谢、麦角固醇、海藻糖和乙醇节点的碳流通量分别提高了5.3%、28.6%、43.3%和9.1%。
     此外,自絮凝酵母颗粒平均粒径的增加能增强反应器对细胞的截留作用,提高发酵罐内的生物量浓度,进而增加酵母颗粒群体对葡萄糖的表观吸收能力,使酵解途径碳流量增大,最终导致乙醇浓度的增加。锌离子添加和自絮凝酵母颗粒尺度增大导致乙醇浓度的增加,使胞内大分子生物合成如DNA、RNA、蛋白质和磷脂等节点的碳流量受到明显的抑制,用于维持代谢的ATP能耗增加,体现了高浓度乙醇产生的高负荷以及对细胞生长和发酵的强抑制作用。在超高浓度连续乙醇发酵过程中,酵母颗粒群体对葡萄糖的吸收速率仅为常规乙醇发酵条件下的1/2-1/3,因此提高超高浓度乙醇发酵中酵母细胞对碳底物的吸收能力是提高发酵终点乙醇浓度的关键。
High cost is the biggest challenge in fuel ethanol production, in which energy consumption comprises about 30%, the second largest only after feedstock consumption, and thus saving energy consumption is one of the most effective strategies to make fuel ethanol more economically competitive. Very high gravity (VHG) fermentation can significantly increase ethanol titer in the fermentation broth, which not only saves energy consumption for the downstream distillation but also for the waste distillage treatment due to its significant reduction. However, high ethanol concentration severely inhibits yeast cells, and stuck fermentation frequently occurs, with more sugars unfermented and ethanol yield compromised correspondingly. Therefore, exploration of the mechanism underlying the ethanol tolerance of yeast cells is one of the prerequisites for developing effective VHG ethanol fermentation process.
     In the present work, the effect of nutrients including (NH4)2SO4, K2HPO4, vitamins and bivalent metal ions from MgSO4·7H2O, CaCl2·2H2O, FeSO4·7H2O, CoCl2·6H2O, ZnSO4·7H2O and MnCl2·4H2O on the growth of yeast cells, their ethanol tolerance and production was investigated using a defined medium and the self-flocculating yeast SPSC01. The experimental results indicated that the supplementation of (NH4)2SO4, K2HPO4 and vitamins stimulated the growth of yeast cells and improve their ethanol tolerance and production, correspondingly, so did the supplementation of Mg2+, Ca2+ and Zn2+. Although the supplementation of Mn2+, Fe2+ and Co2+ had no effect on the ethanol tolerance, Co2+ improved the ethanol production, but Mn2+ had no such an effect, and Fe2+ affected it negatively. The supplementation of the seven nutrients was further optimized by the uniform design, and regression equations for ethanol tolerance and production predictions were developed. The maximum ethanol tolerance characterized by the viability of yeast cells suffered from ethanol shock treatment and ethanol production were estimated to be (91.1±1.74)% and 47.90±0.95 g l-1, respectively, which were validated by the experimental results of (90.2±0.89)% and 47.15±0.85 g l-1, correspondingly. Meanwhile, compared with the maximum ethanol tolerance and production of 83.5% and 43.70 g l-1 achieved via the single factor optimization, improvement in the two parameters were observed, indicating the synergistic role of these factors on the yeast cells.
     Since the supplementation of Zn2+ significantly improved the ethanol tolerance and production of the yeast cells, zinc sulfate was thus supplemented at the concentrations of 0.01, 0.05 and 0.10 g l-1 to further investigate its impact on the ethanol fermentation. It was observed that Zn2+ affected the flocculation of the yeast, and improved its ethanol tolerance, thermal tolerance and ethanol production, indicating that a process engineering strategy for improving VHG ethanol fermentation could be developed based on the Zn2+ supplementation. Moreover, intracellular accumulation of Zn2+ stimulated the accumulation of ergosterol and trehalose, two components that are beneficial for yeast cells to protect from ethanol inhibition. In comparison with the control without Zn2+ supplementation, ethanol production was improved by 8.4%, thermal and ethanol tolerance by 20.0%, while glycerol production decreased by 42% under 0.05 g l-1 zinc sulfate supplementation conditions.
     Furthermore, the impact of the size of the yeast flocs on the ethanol fermentation was studied by controlling their size at 100,200 and 300μm, which was characterized by their average chord monitored by the focused beam reflectance measurement. For the yeast flocs with the size of 300μm,0.05 g l-1 zinc sulfate was supplemented, with no Zn2+ supplementation as the control. The experimental results illustrated that the yeast flocs with the size of 300μm exhibited maximum ethanol production, ethanol tolerance and glucose consumption, with 110.0 g l-1 ethanol produced,58.0% viability remained for the yeast cells after 20% (v/v) ethanol shock for 5 h and glucose uptake rate of 286.69 C-mmol l-1 h-1. Intracellular ergosterol and trehalose accumulations were improved by 71.6% and 96.5%, respectively, for the yeast flocs with the size of 300μm and supplemented with 0.05 g l-1 zinc sulfate, but glycerol decreased by 37.6%. No pyruvate accumulation was observed in the Zn2+ supplementation group, and ethanol production was increased by 9.1% with 31.0% improvement of the yeast cell viability. And in the meantime, carbon fluxes at the node of glucose uptake, ergosterol, trehalose and ethanol were enhanced by 5.3%,28.6%,43.3% and 9.1%, correnpondingly.
     Moreover, the retention of the self-flocculating yeast was improved for the yeast flocs with relatively large size and higher biomass concentration was achieved within the bioreactor, contributing to more glucose consumed and carbon flux to ethanol production. The decrease in the fluxes to the growth of the yeast cells such as DNA, RNA, protein and lipid biosynthesis as well as the increase of ATP consumption for the maintenance indicated that improved ethanol production resulted from Zn2+ supplementation and the increased yeast floc size raised more energy burden on the yeast cells, and glucose uptake of the yeast flcos was compromised under VHG conditions, making the improvement of glucose uptake rate the key to improve VHG ethanol fermentation.
引文
[1]申渝,酵母细胞超高浓度乙醇连续发酵震荡行为的研究.博士学位论文,大连理工大学,2009.
    [2]Mlawule R. Mashego, Mickel L.A. Jansen, Jacobus L. Vinke,Walter M. van Gulik, Joseph J. Heijnen. Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucoselimited chemostats. FEMS Yeast Research,2005,5:419-430.
    [3]Ingram L O. Microbial tolerance to alcohol:role of the cell membrane. Trends in Biotechnology,1986, 4:40-44.
    [4]Casey G. P., Ingledew W M. Ethanol tolerance in yeasts. Critical Reviews in Microbiology,1986,13: 219-290.
    [5]D'Amore T., Panchal C.J., Russell I., Stewart G.G. A study of ethanol tolerance in yeast. Critical Reviews in Biotechnology,1990,9:287-304.
    [6]贺家明,赵祥颖,陈苏萍.酵母耐乙醇性状及提高其耐性的途径.酿酒科技,2000,2:84.
    [7]Bai, F.W., Anderson, W.A., Moo-Young, M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances,2008,26:89-105.
    [8]耿曙光,谭雨清.环境对乙醇酵母产生乙醇耐性的影响.酿酒,2005,4:28-29.
    [9]Bell W, Sun W., Hohmann S., Wera S., Reinders A., DeVirqilio C., Wiemken A., Thevelein J.M. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. The Journal of Biological Chemistry,1998,273:33311-33319.
    [10]Mihiri N., De Silva-Udawatta John F. Cannon. Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Molecular Microbiologogy,2001,40:1345-1356.
    [11]Crowe J.H., Crowe L.M., Chapman D. Preservation of membranes in anhydrobiotic organisms. Science,1984,223:701-703.
    [12]CharlemagneGilles Hounsa, E. Vincent Brandt, Johan Thevelein, Stefan Hohmann and Bernard A. Prior. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology, 1998,144:671-680.
    [13]Mansure J.J, Panek A.D., Crowe L.M., Crowe J.H. Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica et Biophysica Acta,1994,1191(2):309-316.
    [14]Mari Simola, Anna-Liisa Ha-Enninen, Satu-Maarit Stranius, Marja Makarow.Trehalose is required for conformational repair of heatdenatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Molecular Microbiology,2000, 37(1):42-53.
    [15]吕烨,肖冬光,东芹,郭学武.酵母海藻糖酶缺失突变株的构建及其耐性.微生物学报,2008,10:1301-1307.
    [16]吕烨,肖冬光,东芹,吴文韬.海藻糖含量与酿酒酵母乙醇耐性的关系.酿酒科技,2008,7:17-19.
    [17]Thomas S. D., Hossack J. A., Rose A. H. Plasma membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Archives of Microbiology,1978,117:239-245.
    [18]所丽娜,肖冬光,郭学武,张昕.麦角甾醇与乙醇酵母耐性之间的关系.酿酒科技,2008,9:27-29.
    [19]Hayashida S., Ohta K. Effects of phosphatidylcholine or ergosteryloleate on physiological properties of Saccharomyces sake. Agricultural and Biological Chemistry,1980,44:2561-2567.
    [20]WalkerCaprioglio H.M., Casey W.M., Parks L.W. Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Applied Environmetal Microbiology, 1990,56:2853-2857.
    [21]Tosun, A., Ergun, M. Use of experimental design method to investigate metal ion effects in yeast fermentations. Journal of Chemical Technology and. Biotechnology,2007,82:11-15.
    [22]Hu, C.K., Bai, F.W., An, L.J. Enhancements in ethanol tolerance of a selfflocculating yeast by calcium ion through decrease in plasma membrane permeability. Chinese Journal of Biotechnology,2003a,19: 715-719.
    [23]Hu, C.K., Bai, F.W., An, L.J.,2003b. Enhancing ethanol tolerance of a self-flocculating fusant of Schizosaccharomyces pombe and Saccharomyces cerevisiae by Mg2+via reduction in plasma membrane permeability. Biotechnology Letters,2003b,25:1191-1194.
    [24]Bromberg, S.K., Bower, P.A., Duncombe, G.R., Fehring, J., Gerber, L., Tata, M. Requirements for zinc, manganese, calcium and magnesium in wort. Journal of the American Society of Brewing Chemists,1997,55:123-128.
    [25]Chandrasena, G., Walker, G.M. Use of response surface to investigate metal ion interaction in yeast fermentations. Journal of the American Society of Brewing Chemists,1997,55:24-29.
    [26]Birch R M, Walker G M. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme and Microbial Technology,2000,26:678-687.
    [27]Petrov V.V., Okorokov L.A. Increase of the anion and proton permeability of Saccharomyces carlsbergensis plasmalemma by nalcohols as a possible cause of its deenergization.Yeast,1990,6: 311-318.
    [28]Nabais, R.C., SaCorreia, I., Viegas, C.A., Novais, J.M. Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts. Applied and Environmental Microbiology,1988,54:2439-2446.
    [29]Walker G.M., Maynard A. I. Magnesiumlimited growth of Saccharomyces cerevisiae. Enzyme and Microbial Technology,1996,18:455-459.
    [30]Walker G.M. The roles of magnesium in biotechnology. Critical Reviews in Biotechnology,1994,14: 311-354.
    [31]Dombek M., Ingram I.O. Magnesium limitation and its role in the apparent toxicity of ethanol during yeast fermentation. Applied and Environmental Microbiology,1986,52:975-981.
    [32]潘丽军,付萍,郑志,罗水忠,姜邵通.米根霉乙醇脱氢酶突变株的筛选及其锌镁离子的调控研究,微生物学报,2006,46:586-590.
    [33]赵楠,赵飞,李玉花.锌指蛋白结构及功能研究进展.生物技术通讯,2009,20:131-134.
    [34]Miller J., McLachlan A.D., Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal,1985,4:1609-1614.
    [35]Dai, K.S., Liew C.C. Characterization of a novel gene encoding zinc finger domains identified from expressed sequence tags (ESTs) of a human heart cDNA database. Journal of Molecular and Cellular Cardiology,1998,130:2365-2375.
    [36]Lee M.S., Gippert G.P., Soman K.V., Case D.A., Wright P.E. Three-dimensional solution structure of a single zinc finger DNA-binding domain [J]. Science,1989,245:635-637.
    [37]Albertyn J., Hohmann S., Thevelein J.M., Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway [J]. Molecular and Cellular Biology,1994,14(6):4135-4144.
    [38]Eriksson P., Andre L., Ansell R., Blomberg A., Adler L.. Cloning and characterisation of GPD2, a second gene encoding snglycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison to GPD1 [J]. Molecular Microbiology,1995,17 (1):95-107.
    [39]Andre L., Hemming A., Adler L. Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol-3-phosphate dehydrogenase (NAD+) [J]. FEBS Letter,1991,286(12):13-17.
    [40]Albers E., Larsson C., Liden G., Niklasson C., Gustafsson L. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation [J]. Applied and Environmental Microbiology,1996,62 (9):3187-3195.
    [41]Ansell R., Granath K, Hohmann S., Thevelein J.M., Adler L. The two isoenzymes for yeast NAD+dependent glycerol-3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation [J]. The EMBO Journal,1997,16 (9):2179-2187.
    [42]于玲,杜金华,王秀菊,尹强.酿酒酵母对柠檬酸的耐性研究.食品工业科技,2008,6:148-151.
    [43]朱会霞,孙金旭,张伟,李长文.高产酵母菌Co158耐副产物特性研究.酿酒科技,2007,7:17-19.
    [44]胡小华.酵母数量性状主效基因的分离及克隆,博士学位论文,复旦大学,2005.
    [45]Inoue T, Iefuji H, FujiiT, Soga H., Satoh K. Cloning and characterization of a gene complementing the mutation of an ethanol sensitive mutant of sake yeast. Bioscience, Biotechnology and Biochemisty, 2000,64:229-236.
    [46]Kajiwara S, Suga K, Sone H, Nakamura K. Improved ethanol tolerane of Saccharomyces cerevisiae strains by increases in fatty acid unsaturation via metabolic engineering. Biotechnology Letter,2000, 22:1839-1843.
    [47]Takahashi T., Shimoi H., and K.Ito. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Journal of Genetics and Genomics,2001, 265:1112-1119.
    [48]Alper, H., Moxley, J., Nevoigt, E., Fink, G.R., Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science,2006,314:1565-1568.
    [49]Alfenore S., Cameleyre X., Benbadis L., Bideaux C., Uribelarrea J.L., Goma G., Molina-Jouve C., Guillouet S.E. Aeration strategy:a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Applied Microbiology and Biotechnology,2004,63:537-542.
    [50]胡纯铿.自絮凝酵母颗粒耐乙醇机制研究.博士学位论文.大连理工大学,2003.
    [51]薛颖敏,江宁.酿酒酵母X330高浓度发酵时耐乙醇性能的初步研究.生物工程学报,2006,3:508-513.
    [52]Ernandes J.R., Matulionis M., Cruz S.H., Bertolini M.C., Laluce C. Isolation of new ethanoltolerant yeasts for fuel ethanolproduction from sucrose Biotechnology lettesr,1990,12:463-468.
    [53]李筝,韩北忠,陈晶瑜,李双石,程超.优良酿酒酵母菌的发酵性能研究.中国酿造,2008,19:10-12.
    [54]易弋,伍时华.乙醇耐受性酵母菌的筛选.广西工学院学报,2008,03:42-46
    [55]Sridhar M., Kiran Sree N., Venkateswar Rao L. Effect of UV radiation on thermotolerance, ethanol tolerance and smotolerance of Saccharomyces cerevisiae VS1 and VS3 strains。Bioresource Technology,83 (2002) 199-202
    [56]陈驹声.传统和最新的发酵技术,北京,化学工业出版社,1990,85-87.
    [57]Park J.I., Grant C.M., Attfield P.A., Dawes I.W. The freezethaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. Applied and Environmental Microbiology,1997, 63:3818-3824.
    [58]Wei P.Y., Li Z.L., Lin Y.P., He P., Jiang N. Improvement of the multiplestress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freezethaw treatment。Biotechnology Letters,2007, 29:1501-1508.
    [59]李义勇,张亚雄.基因重组技术在工业微生物菌种选育中应用的研究进展.中国酿造,2009,1:11-13
    [60]Stephanpoulos G.. Metabolic engineering by genome shuffling [J].Nature Biotechnology,2002, 20:666-668.
    [61]陆筑凤,李超,王昌禄,龚国利,郭坤亮.Genome shuffling技术选育高耐性酿酒酵母.酿酒科技,2008,7:23-25
    [62]王灏,王航,孟春,郭养浩.基因组改组技术选育耐高温、耐高乙醇酿酒酵母菌株的研究.微生物学通报,2007,04:705-708
    [63]秦丽娜,江贤章,田宝玉,舒正玉,黄建忠.酿酒酵母乙醇脱氢酶Ⅰ基因的超表达.微生物学通报,2008,2:261-266
    [64]Parsek M.R., Greenberg E.P. Sociomicrobiology:the connections between quorum sensing and biofilms. Trends in Microbiology,2005,13(1):27-33.
    [65]吴红,宋志军,Hoiby N.细菌与细菌之间的信息交流革兰氏阴性细菌的Quorumsensing系统.自然科学进展,2003,13(7):679-687.
    [66]Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilm as complex differentiated communities. Annual Review of Microbiology,2002,56:187-209.
    [67]Byers J.T., Lucas C., Salmond George P.C., Welch M. Nonenzymatic turnover of an Erwinia carotovora quommsensing signaling molecule. Journal of Bacteriology,2002,184(4):1163-1171.
    [68]Hogan D. Quorum Sensing:Alcohols in a Social Situation.Current Biology,2006,16:457-458.
    [69]Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., Nickerson, K.W. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology,2001,67:2982-2992.
    [70]Deborah A.H. Talking to Themselves:Autoregulation and Quorum Sensing in Fungi. Eukaryotic Cell, 2006,5:613-619.
    [71]BrehmStecher, B. F., Johnson E. A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob. Agents Chemother,2003,47:3357-3360.
    [72]李曼,邱健,宋水山.真菌中的群体感应系统.微生物学通报,2007,34(3):566-568.
    [73]雷娟娟,赵心清,薛闯,葛旭萌,白凤武.絮凝颗粒粒度分布对自絮凝酵母SPSC01乙醇耐受能力的影响.生物工程学报,2008,2:309-314.
    [74]Lei, J.J., Zhao, X.Q., Ge, X.M., Bai, F.W. Ethanol tolerance and the variation of plasma membrane composition of yeast floc populations with different size distribution. Journal of Biotechnology,2007, 131:270-275.
    [75]Bailey J.E. Towards a science of metabolic engineering. Science,1991,252:6682-6741.
    [76]Nissen T.L., Kielland Brandt M.C., Nielsen J., Villadsen J. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation [J]. Metabolic Engineering,2000,2 (1):69-77
    [77]赵学明,王靖宇,陈涛.后基因组时代的代谢工程机遇与挑战.生物加工工程,2004,2:17.
    [78]徐桂转,常春,张百良.代谢工程在可再生资源生产燃料乙醇中的研究进展.酿酒科技,2005,9:43-47
    [79]吴婷婷,吴雪昌.高乙醇转化率酿酒酵母工程菌株构建研究进展.食品与发酵工业,2006,8:88-92
    [80]Ostergaard S., Olsson L., Nielsen J. Metabolic Engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews,2000,64(1):34-50.
    [81]张慧敏.酵母在不同培养环境下中间代谢途径代谢调控过程的研究,博士学位论文,浙江大学.2005.
    [82]Kern A., Tilley E., Hunter I.S., Legisa M., Glieder A.. Engineering primary metabolic pathways of industrial microorganisms. Journal of Biotechnology,2007.129:6-29.
    [83]赵学明,马红武,班睿.代谢工程的发展现状和未来.化学工程,1997,25:57-59.
    [84]Nissen T.L., Schulze U., Nielsen J., Villadsen J. Flux distributions in anaerobic, glucoselimited continuous cultures of Saccharomyces cerevisiae. Microbiology,1997,143:203-218.
    [85]Kacser H., Burns J.A. The control of flux.Symposia of the Society of the Experimental Biology.1973, 27:65-104.
    [86]Heinrich R., Rapoport A.T. A linear steady state treatment of enzymatic chains:Genenal properties, control effector strength. European Journal of biochemistry,1974,42:89-95.
    [87]Pissara P. N., Nielsen J., Bazin M. J. Pathway kinetics and metabolic control analysis of a highyielding strain of Penicillium chrysogenum during fed batch cultivations. Biotechnology and Bioengineering, 1996,51(2):168-176.
    [88]Marcos J.A.B., Shimizu K. Estimation of bidirectional metabolic fluxes from MS and NMR data using Positional representations. Genome informatics,2001,12:63-72.
    [89]Shi D.J., Wang C.L., Wang K.M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology,2009,36:139-147.
    [90]Hirasawa T.,Yoshikawa K., Nakakura Y., Nagahisa K., Furusawa C., Katakura Y., Shimizu H., Shioya S. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. Journal of Biotechnology,2007,131(1):34-44.
    [91]Chance E.M., Seeholzer S.H., Kobayashi K.,Williamson J.R. Methematical analysis of isotope labelling in the citric acid cycle with application to 13C NMR studies in perfused rat hearts. Journal of Biological chemistry,1983,258:13785-13794.
    [92]Klein C.J.L., Olsson L., Nielsen J.. Nitrogenlimited continuous cultivations as a tool to quantify glucose control in Saccharomyces cerevisiae. Enzyme and Microbial Technology,1998,23:91-100.
    [93]Thomas D.S., Rose A.H. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasmamembrane lipid composition. Archive Microbiology. 1979,122 (1):49-55.
    [94]方心芳.应用微生物学实验法,北京,中国财政经济出版社,1962:75-76.
    [95]张学群.啤酒工艺控制指标及检测手册,北京,中国轻工业出版社,1993:385-386.
    [96]薛颖敏,江宁.酿酒酵X330高浓度发酵时耐乙醇性能的初步研究.生物工程学报,2006,3:508-513.
    [97]Wang M., Zhao J.S., Yang Z.Y., Du Z.K., Yang Z.Y.. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae. Bioelectrochemistry,2007,71:107-112.
    [98]Dickinson J.R., Schweizer, M.The Metabolism and Molecular Physiology of Saccharomyces cerevisiae, Philadelphia, PA:Taylor & Francis,1999.
    [99]Carlson, M. Glucose repression in yeast. Current Opinion in Microbiolog,1999,2:202-207.
    [100]Slininger P. J. Nitrogen source and mineral optimization enhance Dxylose conversion to ethanol by the yeast Pichia stipitis NRRL Y-7124. Applied Microbiology and Biotechnology,2006, 72:1285-1296.
    [101]Aon J., Cortassa S. Involvement of nitrogen metabolism in the triggering of ethanol fermentation in aerobic chemostat cultures of Saccharomyces cerevisiae. Metabolic Engineering,2001,3:250-264.
    [102]Tomas V.S., Zetic V.G., Stanzer D., Grba S.,Vahcic N. Zinc, copper and manganese enrichment in yeast Saccharomyces cerevisiae. Food Technology and Biotechnology,2004,42:115-120.
    [103]Couri S., Pinto G.A.S., Senna L.F., Martelli L.H. Influence of metal ions on pellet morphology and polygalacturonase synthesis by Aspergillus niger 3T5B8. Brazilian Journal of Microbiology,2003,34: 16-21.
    [104]Birch R.M., Ciani M., Walker G.M. Magnesium, calcium and fermentative metabolism in wine yeasts. Journal of Wine Research,2003,14:315.
    [105]Birch R.M., Dumont A., Walker, G.M. The role of magnesium and calcium in governing yeast agglomeration. Food Technology and Biotechnology,2002,40:199-205.
    [106]Wang F.Q., Gao C.J., Yang C.Y., Xu P. Optimization of an ethanol production medium in very high gravity fermentation. Biotechnology Letters,2007,29:233-236.
    [107]Zhang W., Yu X.J., Yuan Q. Uniform Design:a new approach of designing fermentation media. Biotechnology Techniques,1993,7:379-384.
    [108]Slininger P.J., Branstrator L.E., Lomont J.M., Dien B.S., Okos M.R., Ladisch M.R., Bothast R.J. Stoichiometry and kinetics of xylose fermentation by Pichia stipitis. Annuals of the New York Academy of Sciences,1990,589:25-40.
    [109]Slininger P.J., Branstrator L.E., Bothast R.J., Okos M.R., Ladisch M.R. Growth, death, and oxygen uptake kinetics of Pichia stipitis on xylose. Biotechnology Bioengeering,1991,37:973-980.
    [110]Ge X.M., Zhang L., Bai F.W. Impacts of temperature, pH, divalent cations, sugars and ethanol on the flocculating of SPSC01. Enzyme and Microbial Technology,2006,39:783-787.
    [111]Jones R.P., Greenfield P.F. A review of yeast ionic nutrition:growth and fermentation requirements. Process Biochemistry,1984,19:48-60.
    [112]Walker G.M. Metals in yeast fermentation processes. Advances in Applied Micrbiology,2004, 54:197-229.
    [113]Bai F.W., Chen L.J., Zhang Z., Anderson W.A., Moo-Young M. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Journal of Biotechnology,2004,110:287-293.
    [114]Heath A.R., Fawell P.D., Bahri P.A., Swift J.D. Estimating average particle size by focused beam reflectance measurement (FBRM). Particle and Particle Systems Characterization,2002,19:84-95.
    [115]Ge X.M., Zhao X.Q., Bai F.W. On-line monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnology Bioengineering,2005,90:523-531.
    [116]Parrou J.L., Teste M.A., Francois J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae:genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology,1997,143:1891-1900.
    [117]Shobayashi, M., Mitsueda, S.I., Mariko, A., Fujii, T., Iwashita, K., Iefuji, H.. Effects of culture condition on ergosterol biosynthesis by Saccharomyces cerevisiae. Bioscience Biotechnology and Biochemistry,2005,69:2381-2388.
    [118]Liu H.J., Liu D.H., Zhong J.J. Interesting physiological response of the osmophilic yeast Candida krusei to heat shock. Enzyme and Microbiol Technology,2005,36:409-416.
    [119]刘旭胜.松针作为土壤改良物和地面覆盖物对越橘生长的影响.硕士学位论文.大连理工大学,2007.
    [120]Wu Y., Peng X., Guo B., Fan J., Zhang Z., Wang J., Cui A., Gao Y. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(Ⅱ) in living cells. Organic and Biomolecular Chemistry,2005,3:1387-1392.
    [121]Hu C.K., Bai F.W., An L.J. Effect of Flocculence of a Self-flocculating Yeast on its Tolerance to Ethanol and the Mechanism. Chinese Journal of Biotechnology,2005,21:123-128.
    [122]Plesset J., Palm C., McLaughlin C.S. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communication,1982, 108:1340-1345.
    [123]Megumi S, Mitsueda S I, Mariko A. Effects of culture condition on ergosterol biosynthesis by Saccharomycescerevisiae. Bioscience and Biotechnology Biochemistry,2005,69:2381-2388.
    [124]Shang F., Wen S., Wang X., Tan T. Effect of nitrogen limitation on the ergosterol production by fedbatch culture of Saccharomyces cerevisiae. Journal of Biotechnology,2006,122: 285-292.
    [125]Iwahashi H., Obuchi K., Fujii S., Komatsu Y. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae [J]. Cell and Molecular Biology, 1995,41:763-769.
    [126]Soto T., Fernandez J., Vicente-Soler J., Cansado J., Gacto M. Accumulation of trehalose by overexpression of tpsl, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Applied and Environment Microbiology,1999,65:2020-2024.
    [127]Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek,1990,58:209-217.
    [128]Lucie A. Hazelwood, Michael C. Walsh, Marijke A. H. Luttik, Pascale Daran-Lapujade, Jack T. Pronk, and Jean-Marc Daran. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae. Applied and Environmental Microbiology,2009,75:6876-6885.
    [129]Leskovac V., Trivic S., Pericin D. The three zinc-containing alcohol dehydrogenases from baker's yeast Saccharomyces cerevisiae. FEMS Yeast Research,2002,2:481-494.
    [130]Cibis E., Kent C.A., Krzywonos M., Garncarek Z., Garncarek B., Miskiewicz, T. Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria. Bioresource Technology,2002, 85:57-61.
    [131]Vallee B.L., Auld D.S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry,1990,29:5647-5659.
    [132]Schwabe J.W., Klug A. Zinc mining for protein domains.Nature Structural and Molecular Biology, 1994,1:345-349.
    [133]Schjerling P., Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Research,1996,24:4599-4607.
    [134]Hamer D.H. Metallothionein. Annual Review of Biochemistry,1986,55:913-951.
    [135]Ingledew W.M. Alcohol production by Saccharomyces cerevisiae:a yeast primer, in the alcohol textbook.3rd ed. UK:Nottingham University Press,1999.
    [136]胡纯铿,自絮凝酵母颗粒耐乙醇机制研究.博士学位论文.大连理工大学,2003.
    [137]Geng X.M., Zhang S.F., Wang Q., Zhao Z.B. Determination of organic acids in the presence of inorganic anions by ion chromatography with suppressed conductivity detection. Journal of Chromatography A,2008,1192:187-190.
    [138]Verduyn C., Postma E., Scheffers W. A., Van Dijken J. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. Journal of General Microbiology,1990,136: 395-403.
    [139]Herbert D., Phipps P.J., Strange R.E. Chemical analysis of microbial cells. Methods in Microbiology, 1971,5B:209-344.
    [140]Benthin S., Nielsen J., Villadsen J. A simple and reliable method for the determination of cellular RNA content. Biotechnology Techniques,1991,5:39-42.
    [141]Zhao X.Q. Xue C., Ge X.M., Yuan W.J., Wang J.Y., Bai F.W. Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. Journal of Biotechnology,2009,139:55-60.
    [142]Andreas K.G., Margarida M.S., Bjarke C., Jens N. Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different condition of glucose repression. Journal of Biotechnology,2001,183:1441-1451.
    [143]Varela C., Pizarro F., Agosin E.. Biomass Content governs fermentation rate in nitrogen-deficient wine musts. Applied and Environment Microbiology,2004,70:3392-3400.
    [144]Bjorkqvist S., Ansell R., Adler L., Liden G. Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied and Environmental Microbiology,1997,63:128-132.
    [145]Nissen T.L., Hamann C.W., Kielland Brandt M.C., Nielsen J., Villadsen J. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis [J]. Yeast, 2000,16 (5):463-474
    [146]Parrou J.L., Enjalbert B., Plourde L., Bauche A., Gonzalez B., Francois J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast,1999,15:191-203.
    [147]Jouhten P., Rintala E., Huuskonen A., Tamminen A., Toivari M., Wiebe M., Ruohonen L., Penttila M., Maaheimo H. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Systems Biology,2008,2:260.
    [148]Devantier R., Scheithauer B., Villas-Boas S.G., Pedersen S., Olsson L. Metabolite profiling for analysis of yeast stress response during very high gravity ethanol fermentations. Biotechnology Bioengineering,2005,90:703-714.
    [149]Smukalla S., Caldara M., Pochet N., Beauvais A., Guadagnini S., Yan C., Vinces M.D., Jansen A., Prevost M.C., Latge J.P., Fink G.R., Foster KR., Verstrepen K.J. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell,2008,135:726-737.
    [150]Lin Y.H., Bayrock D., Ingledew W.M.. Metabolic flux variation of Saccharomyces cerevisiae cultivated in a multistage continuous stirred tank reactor fermentation environment [J]. Biotechnology Progress,2001,17:1055-1060.
    [151]Guimaraes P.M., Londesborough J.. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high-and very high-gravity worts. Yeast,2008,25:47-58.
    [152]Wu H., Zheng X., Araki Y., Sahara H., Takagi H., Shimoi H.. Global gene expression analysis of yeast cells during sake brewing. Applied and Environment Microbiology,2006,72:7353-7358.
    [153]Koebmann B.J., Westerhoff H.V., Snoep J.L., Nilsson D., Jensen P.R.The glycolytic flux in Escherichia coli is controlled by the demand for ATP. Journal of Bacteriology,2002,184:3909-3916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700