用户名: 密码: 验证码:
陆地棉逆境胁迫相关同源基因的克隆及其在非生物胁迫下的表达特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐碱、低温和冻害等非生物逆境是影响植物生长发育的主要环境因素,严重地制约着农作物产量与品质的提高。在逆境胁迫下,植物能感知、传递胁迫信号,通过激活响应转录因子,启动抗逆功能基因的表达,使植物体内发生一系列的生理生化反应,抵御不良环境的危害,从而提高植物的耐逆性。
     NAC转录因子基因家族是植物所特有的基因家族,也是植物中最大的基因家族之一。NAC转录因子最初来源于矮牵牛NAM基因和拟南芥ATAF1, ATAF2和CUC基因的一段共有的序列。近年来,通过对大量NAC型转录因子基因的功能和特征分析证明该家族基因在植物的胁迫应答过程中起着重要的作用。碱性/螺旋-环-螺旋(bHLH)转录因子家族是一个在动植物中广泛存在的功能多样性的基因家族。近年来,从已经获得全基因组序列的物种中鉴定了几百个bHLH型转录因子基因。一些植物的bHLH型转录因子也被鉴定和特征分析,其功能涉及生长发育以及胁迫响应等。然而,bHLH型转录因子家族的大多数成员仍有待于研究。
     棉花是世界性的重要经济作物,其中陆地棉占全球棉花种植面积的95%以上,然而在其生长区域频繁遭受着干旱、高盐、低温等非生物胁迫的侵袭,严重影响着棉花的生长发育和产量的提高。本研究选用我国生产上广泛利用的抗逆品种陆地棉晋棉19为试验材料,选择了与胁迫相关的NAC型以及bHLH型转录因子基因进行研究,以期获得在作物抗逆性改良方面具有应用潜力的候选转录因子基因,对棉花的抗逆育种以及阐述棉花耐受胁迫的分子机制都有着重要的意义。
     本研究取得了以下研究进展:
     首次从陆地棉晋棉19中分离到了6个NAC型胁迫相关转录因子GhNAC1-GhNAC6.在拟南芥中,NAC基因在非生物胁迫的信号调控中起着重要的作用。我们把这个结果拓展到了棉花上,利用拟南芥的NAC基因氨基酸序列为搜索探针扫描陆地棉EST数据库,重叠候选的ESTs,我们从陆地棉中获得了6个推测的编码NAC型蛋白的全长cDNA序列。根据推测的这6个全长cDNA序列,我们设计了巢式PCR引物对和横跨全长ORF的PCR引物对,然后将这6个NAC型胁迫相关的转录因子GhNACl-GhNAC6从陆地棉晋棉19的叶片中克隆。这六个全长的cDNA序列(GhNAC1-GhNAC6),每个都含有一个单个完整的ORF,分别编码276,299,298,346,356和327个氨基酸,推测的分子量分别为31.9,33.8,33.9,38.4,40.2和37.0 KDa,等电点分别为5.83,5.74,6.54,8.87,8.17和5.39。这六个基因都具有保守的内含子/外显子结构,然而具有不同的内含子长度和染色体位置。GhNAC1-GhNAC6序列具有很高的相似性,特别是在NAC结构域区。半定量RT-PCR分析表明,这六个基因都能够在叶片中丰富的表达,而在根、茎和纤维中微量的表达或者不表达。实时定量RT-PCR分析表明,这六个基因不同程度的受到了干旱、高盐、低温和ABA的诱导。根据胁迫诱导的NAC蛋白系统进化树分析结果,我们鉴定的这6个陆地棉NAC蛋白分布在这5个亚家族中的4个,分别为ATAF, AtNAC3, NAP和NAM,它们中的3个亚家族,ATAF, AtNAC3和NAP类NAC基因蛋白已在大量植物中被证明参与生物与非生物环境的胁迫响应。
     首次从陆地棉晋棉19中分离到了bHLH型胁迫相关的转录因子GhbHLH1。众所周知,植物激素ABA在调控植物响应干旱胁迫中起着重要的作用,AtMYC2(和GhbHLH1同源)已经被证明其作为转录因子涉及拟南芥的干旱和ABA应答通路。本研究用AtMYC2的氨基酸序列为搜索探针扫描陆地棉EST数据库,重叠候选的ESTs,拼接出一个新的棉花bHLH转录因子的cDNA序列。根据这个拼接的cDNA序列,设计了一对横跨这个转录因子全长ORF的特异引物。最终,我们从胁迫诱导的陆地棉晋棉19的叶片cDNA中,利用RT-PCR的方法分离到了这个可能在棉花中调控ABA应答的重要基因(GhbHLH1)。全长GhbHLH1的cDNA序列有2025bp的开放阅读框,编码674个氨基酸,推测的分子量和等电点分别为73.6 kDa和5.46。序列比对表明,GhbHLHl蛋白含有一个60个氨基酸长的bHLH结构域,其氨基酸序列和拟南芥的bHLH转录因子有很高的同源关系,特别是和在胁迫反应中起重要作用的AtMYC2。半定量RT-PCR分析表明,GhbHLH1基因能够在根、茎、叶和开花7天后的纤维中组成性的表达,特别是在开花7天后的纤维中表达量最强。虽然GhbHLH1基因能够组成性的在根、茎、叶和开花7天后的纤维中表达,但是实时荧光定量RT-PCR表明在叶片中GhbHLH1的表达能够短暂的被ABA和PEG的处理所诱导,而GhbHLH1的表达却不被高盐和低温影响。GhbHLH1基因的进一步功能验证正在进行中。
Drought, salinity, cold and freeze are the key environment factors affecting plant growth and development, and seriously limit the increase of yield and improvement of quality of crops. Under abiotic stress, plants could sense and transduce the signals caused by stress to transcription factors through a series of phosphorization responses. The functional genes related to stress tolerance are then initiated; a series of physio-chemical reactions are activated to alleviate the damage caused by abiotic stress, finally the stress tolerance of plants is enhanced.
     NAC transcription factor family genes are plant specific transcriptional regulators, and this gene family is one of the biggest gene families in plant. The NAC domain was originally characterized from consensus sequences from petunia NAM and from Arabidopsis ATAF1, ATAF2, and CUC2. NAC transcription factor genes play very important roles in stress response. The basic helix-loop-helix (bHLH) proteins are a group of functionally diverse transcription factors found in both plants and animals. Recently, hundreds of bHLH genes were identified in organisms whose genome sequences were available. Several plant bHLH-type proteins have been characterized, which act as development and growth and stress response. However, the biological roles of most members of this gene family in plant remain to be studied.
     Cotton (Gossypium spp.) is a major cash crop for both textiles and food. Upland cotton (Gossypium hirsutum L.) accounts for>95%of world cotton production. However, cotton-growing areas are subject to extreme drought, salinity, and temperature, each of which can impede cotton growth and production. Our research focused on identifying the NAC type and bHLH type ranscription factor genes involved in abiotic from Gossypium hirsutum L cv Jinmian 19(a widely used stresses-resistant cultivar in china for breeding) and providing new targets for producing tolerance-enhanced transgenics. It is of important significance to cotton stress-tolerant breeding and clarification of stress-tolerant molecular mechanism.
     Progresses of this research are following:
     We identified six abiotic stress related NAC-type transcription factors (GhNAC1-GhNAC6) for the first time in cotton. In A. thaliana, NAC-domain proteins contribute to abiotic stress signal transduction pathways. We extend these results to cotton. NAC domain protein sequences from A. thaliana were used as queries to screen the G. hirsutum L. EST database, and contigging the candidate ESTs. We obtain six putative full-length cDNA sequences encoding NAC-like proteins in cotton. We designed Nested-PCR prime pairs and PCR prime pairs of full-length ORF based on this six putative cDNA sequences, then six abiotic stress related NAC-type transcription factors (GhNAC1-GhNAC6) were isolated from leaves cDNA of upland cotton cv Jinmian 19. For six cDNA sequences of GhNAC1 to GhNAC6, each contained a single complete ORF encoding a predicted 276,299,298,346, 356 and 327-amino acids protein with a calculated molecular mass of 31.9,33.8,33.9,38.4, 40.2 and 37.0 KDa, respectively, as well as an isoelectric point of 5.83,5.74,6.54,8.87, 8.17 and 5.39, respectively. All six have conserved intron-exon structure, although they differ in intron length and chromosomal location. The predicted proteins, GhNAC1-GhNAC6, are similar in sequence, especially in the NAC domain. Semi-quantitative RT-PCR reveals that all GhN AC genes were highly expressed in leaves while they had little to no expression in stems, roots and 7-day-post anthesis fibers. Based on real-time quantitative RT-PCR, the genes were differentially regulated under drought, high salt, cold and/or ABA conditions. Based on a phylogenetic analysis, six GhNAC belong to four NAC protein subfamilies, ATAF, AtNAC3, NAP and NAM. Three of these subfamilies, ATAF, AtNAC3 and NAP, include a large number of stress-regulated NAC genes in other plants.
     We identified an abiotic stress related bHLH-type transcription factor (GhbHLHl) for the first time in cotton. The phytohormone ABA was known to play a vital role in modulating plant responses to drought stress, and AtMYC2 (a GhbHLH1 homolog) had been proved to act as transcriptional activator involved in the dehydration and ABA response pathway in Arabidopsis. Here, using AtMYC2 amino acid sequence as a querying probe to screen Gossypium hirsutum L. EST database and contigging the candidate ESTs, the putative cDNA sequence of cotton bHLH transcription factor was assembled. Further a pair of specific primers flanking the sequence of open reading frame of cotton bHLH transcription factor was designed based on this assembled cDNA sequence, then a key gene GhbHLHl, positively regulating ABA response in cotton (Gossypium spp.) was isolated from leaves cDNA of drought-treated upland cotton cv Jinmian 19 by RT-PCR approach. The full-length cDNA of GhbHLHl has an open reading frame of 2,025 bp, encoding a protein of 674 amino acids with a calculated molecular mass of 73.6 kDa and an isoelectric point of 5.46. Sequence alignment shows that GhbHLH1 contains a 60 amino acid long bHLH domain. We found that the deduced amino acid sequence of GhbHLHl showed high homology with bHLH domain proteins in Arabidopsis, especially with AtMYC2, which plays an important role in response to stress stimuli. Semi-quantitative RT-PCR reveals that GhbHLH1 is strongly expressed in 7-day-post anthesis fibers but weak in roots, stems and leaves. Based on real-time quantitative RT-PCR, the expression of GhbHLHl in leaves was transitorily induced by ABA and PEG treatments, although its transcripts were accumulated in various organs. However, its expression was not affected by salt and cold treatments. In addition, the further functional analysis of GhbHLH1 gene is in progress.
引文
1. 黄骥,王建飞,张红生.植物C2H2型锌指蛋白的结构与功能[J].遗传,2004,26(3):414-418
    2. 贾士荣,郭三堆,安道昌.转基因棉花[M].北京:科学出版社,2001
    3. 焦芳婵,毛雪,李润植.转基因植物的胁迫耐性[J].生物技术通讯,2001,12(2):135-139
    4.刘强,赵南明,Yamaguchi-Shinozaki K,等.DREB转录因子在提高植物抗逆性中的作用[J].科学通报,2000,1:11-16
    5. 汤章城.植物的抗逆性和节水栽培[J].植物生理学通讯,1997,6:473474
    6. 袁钧,刘巷禄,郝秀忍,等.晋棉19的选育及稳产性分析[J].中国棉花,1999,26(2):27-28
    7. 杨致荣,毛雪,李润植.植物次生代谢基因工程研究进展[J].植物生理分子生物学报,2005,31(1):11
    8. 杨致荣,王兴春,李西明,等.高等植物转录因子的研究进展[J].遗传,2004,26:403408
    9. 王东,杨金水.棉花类耐盐锌指蛋白基因的克隆与结构分析[J].复旦学报(自然科学版),2002,41(4):4246
    10.王玉军,郝宇钧,戴继助,等.OsbHLH1基因在拟南芥中表达及耐低温能力的研究[J].高技术通讯,2004,4:35-38
    11. Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression[J]. Plant Cell,1997,9(10):1859-1868
    12. Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as trans-criptional activators in abscisic acid signaling [J]. Plant Cell,2003,15(1):63-78
    13. Abebe T, Guenzi AC, Martin B, et al. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity [J]. Plant Physiol,2003,131:1748-1755
    14. Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis:an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell,1997,9:841-857
    15. Aida M, Vernoux T, Furutani M, et al. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo [J]. Development,2002,129:3965-3974
    16. Anderson JP, Badruzsaufari E, Schenk PM, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis [J]. Plant Cell,2004,16:3460-3479
    17. Andorfer CA, Duman JG Isolation and characterization of cDNA clones encoding antifreeze protein of the pyrochroid beetle Dendroides Canadensis [J]. J Insect Physiol,2000,46:365-372.
    18. Ashraf M. Breeding for salinity tolerance in plants [J]. Crit Rev Plant Sci,1994,13:17-42
    19. Atchley WR, Fitch WM. A natural classification of the basic helix-loop-helix class of transcription
    factors [J]. Proc Natl Acad Sci USA,1997,94(10):5172-5176
    20. Bailey D, O'Hare P. Transmembrane bZIP transcription factors in ER stress signaling and the un-folded protein response [J]. Antioxid Redox Signal,2007,9(12):2305-2322
    21. Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigcne family in Arabidopsis [J]. J Exp Bot,2004,55:397-409
    22. Becraft PW. Receptor kinase signaling in plant development [J]. Annu Rev Cell Dev Biol,2002, 18:163-192
    23. Biedenkapp H, Borgmeyer U, Sippel AE, et al. Viral myb oncogene encodes a sequence speoific DNAbinding activity [J]. Nature,1988,335:835-837
    24. Boter M, Ruiz-Rivero O, Abdeen A, et al. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis[J]. Genes Dev,2004,18:1577-1591
    25. Boudjelal M, Taneja R, Matsubara S, et al. Overexpression of Stra13, a novel retinoicacid-inducible gene of the basic helix-loop-helix family, inhibits mesodermal and promotes neuronal differentiation of P1 9 cells[J]. Genes Dev,1997,11:2052-2065
    26. Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors [J]. J Cell Biochem,1994,55:32-58
    27. Boyer JS. Plant productivity and environment [J]. Science,1982,218:443-448
    28. Bray EA. Plant responses to water deficit [J]. Trends plant SCI,1997,2(1):48-54
    29. Broun P, Poindexter P, Osborne E, et al. WIN1, a transcriptional activator of epidermal wax accu-mulation in Arabidopsis [J]. Proc Natl Acad Sci USA,2004,101:4706-4711
    30. Buck MJ, Atchley WR. Phylogenetic analysis of plant basic helix-loop-helix proteins [J]. J Mol Evol,2003,56(6):742-750
    31. Casaretto J, Ho TH. The transcription factors HvAB15 and HvVPl are require for the abscisic acid induction of gene expression in Barley Aleurone cells [J]. Plant Cell,2003,15:271-284
    32. Chen JD, Li H. Coactivation and corepression in transcriptional regulation by steroid/nuclear hormone receptors [J]. Crit Rev Eukaryot Gene Express,1998,8:169-190
    33. Chen C, Chen Z. Isolation and characterization of two pathogen-and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco [J]. Plant Mol Biol,2000,42 (2):387-396
    34. Chen W, Provart NJ, Glazebrook J, et al. Expression profile matrix of Arabidopsis transcripttion factor genes suggests their putative functions in response to environmental stresses [J]. Plant Cell, 2002,14:559-574
    35. Cheng YL, Chen XM. Posttranscriptional control ofplant development [J]. Curr Opinion Plant Biol, 2004,7:20-25
    36. Cheong YH, Chang HS, Gupta R, et al. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis [J]. Plant Physiol,2002, 125,661-677
    37. Chini A, Grant JJ, Seki M, et al. Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABU [J]. Plant J,2004,38:810-822
    38. Chinnusamy V, Ohta M, Kanrar S, et al. ICE1:a regulator of cold-induced transcriptome and free-zing tolerance in Arabidopsis [J]. Genes Dev,2003,17(8):1043-1054
    39. Choi H, Hong JH, Ha JO, et al. ABFs, a Family of ABA-responsive Element Binding Factors [J]. J Bio Chem,2000,275(3):1723-1730
    40. Choi DW, Rodriguez EM, Close TJ. Barley Cbf3 gene identification, expression pattern, and map location [J]. Plant Physiol,2002,129(4):1781-1787
    41. Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M. The CLAVATA and SHOOT MERISTE-MLESS loci competitively regulate meristem activity in Arabidopsis [J]. Development,1996,122: 1567-1575
    42. Coff SA, Cone KC, Chandler VL. Functional analysis of the transcription activator encoded by the maize B gene:evidence for a direct functional interaction between two classes of regulator proteins [J]. Genes Dev,1992,6(5):864-875
    43. Cohen S X, Moulin M, Hashemolhosseini S, et al. Structure of the GCM domain-DNA complex:a DNA-binding domain with a novel fold and mode of target site recognition [J]. EMBD J,2003,22: 1835-1845
    44. Collinge CB, Kragh KM, Mikkelsen JD, et al. Plant chitinases [J]. Plant J,1993,3:31-440
    45. Collinge M, Boller T, Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding [J]. Plant Mol Biol,2001,46,521-529
    46. Colegrove-Otero LJ, Minshall N, Standart N, RNA-binding proteins in early development [J]. Crit Rcv Biochem Mol Biol,2005,40:21-73
    47. Cong B, Liu J, Tanksley SD. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations [J]. Proc Natl Acad Sci USA,2002,99:13606-13611
    48. Crozatier M, Valle D, Dubois L, et al. Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain [J]. Curr Biol,1996,6:707-718
    49. Cubas P, Lauter N, Doebley J, et al. The TCP domain:a motif found in proteins regulating plant growth and development [J]. Plant J,1999,18:215-222
    50. Daimon Y, Takabe K, Tasaka M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli [J]. Plant Cell Physiol,2003,44:113-121
    51. Dang CV, Dolde C, Gillison M L, et al. Discrimination between related DNA sites be a single amino acid residue of Myc-related basic-helix-loop-helix proteins[J]. Proc Natl Acad Sci USA, 1992,89:599-602
    52. Dehesh K, Smith LG, Tepperman JM. Twin autonomous bipartite nuclear localization signals direct nuclear import of GT-2 [J]. Plant J,1995,8:25-36
    53. Delessert C, Kazan K, Wilsom LW, et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis [J]. The Plant Journal,2005,43 (5):745-757
    54. Denekamp M, Smeekens SC. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene [J]. Plant Physiol,2003,132(3):1415-1423
    55. Desikan R, Cheung MK, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells [J]. J Exp Bot,2004,55:205-212
    56. Dievart A, Clark SE. Using mutant alleles to determine the structure and function of leucine-rich repeat receptor-like kinases [J]. Curr Opin Plant Biol,2003,6:507-516
    57. Dubouzet JG, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcripttion activators that function in drought-, high-salt-and cold-responsive gene expression [J]. The Plant Journal,2003,33:751-763
    58. Duek PD, Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signaling [J]. Trends Plant Sci,2005,10:51-54
    59. Duval M, Hsieh TF, Kim SY, Thomas T L. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily [J]. Plant Mol Biol,2002,50:237-248
    60. Ernst HA, Olsen AN, Skriver K, et al. Structure of the conserved domain ofANAC, a member of the NAC family of transcription factors [J]. EMBO J,2004,5:297-303
    61. Facchini LM, Penn LZ. The molecular role of Myc in growth and transformation recent discoveries lead to new insights [J]. Faseb J,1998,12:633-651
    62. Fang J, Gao X, Yang YW, et al. Molecular cloning and characterization of a NAC-like gene in "Navel" orange fruit response to postharvest stresses [J]. Plant Mol Biol Rep,2007,25145-153
    63. Fisher A, Caudy M. The function of hairy-related bHLH repressor proteins in cell fate decisions [J]. Bioessays,1998,20:298-306
    64. Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway [J]. Plant Cell,2002,14:1675-1690
    65. Frankel AD, Berg JM, Pabo CO. Metal-dependent folding of a single zinc finger from transcripttion factor IIIA [J]. Proc Natl Acad Sci SUA,1987,84(14):4841-4845
    66. Fujimoto SY, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC Box-mediated gene expression [J]. Plant Cell,2000, 12:393-404
    67. Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway [J]. Plant J,2004,39:863-876
    68. Furutani M, Vernoux T, Traas J, et al. PIN-FORMEDI and PINOID regulate boundary formation and embryogenesis cotyledon development in Arabidopsis [J]. Development,2004,131:5021-5030
    69. Goding CR. Mitf from neural crest to melanoma:signal transduction and transcription in the melano-cete lineage [J]. Genes Dev,2000,14:1712-1728
    70. Guo WZ, Cai CP, Wang CB, et al. A microsateilite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics,2007,176:527-541
    71. Guo HW, Ecker J. The ethylene signaling pathway:new insights [J]. Curr Opinion Plant Biol, 2004a,7:40-49
    72. Guo ZJ, Kan YC, Chen XJ, et al. Characterization a rice WRKY gene whose expression is induced upon pathogen attack and mechanical wounding [J]. Acta Bot Sin,2004b,46:955-964
    73. Guiltinan MJ, Marcotte WR, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic and response element [J]. Science,1990,250:267-270
    74. Haake V, Cook D, Riechmann JL, et al. Transcription Factor CBF4 Is a Regulator of Drought Adaptation in Arabidopsis [J]. Plant Physiol,2002,130:639-648
    75. Haffani YZ, Silva NF, Goring DR. Receptor kinase signalling in plants [J]. Can J Bot,2004, 82:1-15
    76. Hahlbrock K, Bednarek P, Ciolkowski I, et al. Non-self recognition, transcriptional reprogram-ming, a secondary metabolite accumulation during plant/pathogen interactions [J]. Proc Natl Aead Sci USA,2003,100(supp.2):14569-14576
    77. Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant [J]. J Bio Chem,1998, 273:26857-26861
    78. He XJ, Mu RL, Cao WH, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development [J]. Plant J, 2005,44:903-916
    79. Hegedus D, Yu M, Baldwin D, et al. Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress [J]. Plant Mol Biol,2003, 53:383-397
    80. Heim MA, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity [J]. Mol Biol Evol,2003, 20(5):735-747
    81. Henriksson M, Luscher B. Proteins of the Mec network:essential regulators of cell growth and Differentiation [J].Adv Cancer Res,1996,68:109-182
    82. Hibara K, Takada S, Tasaka M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation [J]. Plant J,2003,36:687-696
    83. Hoovers JMN, Mannens M, John R, et al. High-resolution localization of 69 potential human zinc finger protein genes:a number are clustered [J]. Genomics,1992,12:254-263
    84. Hu HH, Dai MQ, Yao JL, et al. resistance and salt tolerance in rice Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought [J]. PNAS,2006,103:12987-12992
    85. Huang T, Duman JG. Cloning and characterization of a thermal hysteresis (antifreeze) protein wiih DNA-binding activity from winter bittersweet nightshade, Solanmum dulcamara [J]. Plant Mol Biol, 2002,48:339-350
    86. Huang Z, Zhang Z, Zhang X, et al. Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes [J]. FEBS Lett,2004b, 573(1-3):110-116
    87. Huang J, Wang JF, Wang QH, et al. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid [J]. DNA Seq,2005,16 (2): 130-136
    88. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403
    89. Ishida T, Aida M, Takada S, et al. Involvement of CUP-SHAPED COTYLEDON genes in gynoe-cium and ovule development in Arabidopsis thaliana [J]. Plant Cell Physiol,2000,41:60-67
    90. Iuchi S. Three classes of C2H2 zinc finger proteins [J]. Cell Mol Life Sci,2001,58:625-635
    91. Jack K, OkamurO, CASTER B, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding protein in Arabidopsis [J]. PNAS,1997,94(6):7076-7081
    92. Jakoby M, Weisshaar B, Droge-Laser W, et al. bZIP transcription factors in Arabidopsis [J]. Trends Plant Sci,2002,7(3):106-111
    93. Jin H, Cominelli E, Bailey P, et al. Transcription repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO J,2000,19(22):6150-6161
    94. Jofuku KD, denBoer BG, Van MM, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell,1994,6:1211-1225
    95. Johnson C, Boden E, Desai M, et al. In vivo target promote-binding activities of a xenobiotic stress-activated TGA faetor [J]. Plant J,2001,28:237-243
    96. Johnson PF, Sterneck E, Williams SC. Activation domains of transcriptional regulatory proteins [J]. J Nutr Biochem,1993,4:386-398
    97. Katagiri F, Seipel K, Chua NH. Identification of a novel dimer stabilization region in a plant bZIP transcription activator [J]. Mol Cell Biol,1992,12(11):4809-4816
    98. Kalde M, Barth M, Somssich IE, et al. Members of the transcription factors are part of different plant defense signaling Arabidopsis WRKY group III pathways [J]. Mol Plant Microbe Interact, 2003,16(4):295-305
    99. Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degenetation of tapetum and pollen abortion in petunia [J]. Plant Cell,2002, 14:2353-2367
    100. Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor [J]. Nat Biotechnol,1998,17:287-291
    101. Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice [J]. Plant Cell,2001,13:889-906
    102. Kim SH, Hong JK, Lee SC, et al. CAZFPI, Cyst/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene in Capsicum annuum [J]. Plant Mol Biol,2004, 55:883-904
    103. Kim S, Kang JY, Cho DI, et al. ABF2, an ABRE2 binding bZIP factor, is an essential component of glucose signaling and it s overexpression affects multiple stress tolerance [J]. Plant J,2004b, 40(1):75-87
    104. Kizis D, Pages M. Maize DRE-binding proteins DBFI and DBF2 are involved in rabl7 regulation through the drought-responsive element in an ABA-dependent pathway [J]. Plant J,2002, 30(6):679-689
    105. Klug A, Schwabe JW. Protein motifs 5:Zinc fingers [J]. FASEB J,1995,9(8):597-604
    106. Kovtun Y, Chiu WL, Tena G, et al. Functional analysis of oxidative stress-activated mitogcn-activated protein kinase cascade in plants [J]. Proc Natl Acad Sci USA,2000,97:2940-2945
    107. Kragh KM, Hendriks T, de Jong AJ, et al. Characterization of chitinases able to rescue somatic embryos of the temperature sensitive carrot variant ts11 [J]. Plant Mol Biol,1996,31:631-645
    108. Kreps JA, Wu Y, Chang HS, et al. Transcriptome Changes for Arabidopsis in Response to Salt, Osmotic, and Cold Stress [J]. Plant Physiol,2002,130:2129-2141
    109. Krihna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers:survey and summary
    [J]. Nucleic Acids Res,2003,31(2):532-550
    110. Laherty CD, Yang WM, Sun JM, et al. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression [J]. Cell,1997,89:349-356
    111.Ledent V, Vervoort M. The basic helix-loop-helix protein family:comparative genomics and phylogenetic analysis [J]. Genome Res,2001,11(5):754-770
    112. Lee JH, Hong JP, Oh SK, et al. The ethylene-responsive factor like protein 1 (CaERFLPl) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities:possible biological roles of CaERFLPl in response to pathogen infection and high salinity conditions in transgenic tobacco plants [J]. Plant Mol Biol.2004, 55(1):61-81
    113. Lee SC, Choi HW, Hwang IS, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIPl, in enhanced resistance to pathogen infection and environmental stresses [J]. Planta,2006,224 (5):1209-1225
    114. Li T, Brouwer M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: molecular characterization and response to hypoxia [J]. Comp Biochem Physiol B Biochem Mol Biol,2007,147(1):11-19
    115. Li HM, Sun JQ, Xu YX, et al. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis [J]. Plant Mol Biol,2007b,65:655-665
    116. Li X, Duan X, Jiang H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis [J]. Plant Physiol,2006,141(4):1167-1184
    117. Lin R, Zhao W, Meng X, et al. Rice gene OsNAC19 encodes a novel NAC-domain transcripttion factor and responds to infection by Magnaporthe grisea [J]. Plant Science,2007,172:120-130
    118. Lippuner V, Cyert MS, Gasser CS. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast [J]. J Biol Chem,1996, 271:12859-12866
    119. Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell,1998, 10:1391-1406
    120. Liu L, White MJ, MacRde TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation [J]. Eue J Biochem,1999,262(2):247-257
    121. Liu Q, Zhang GY, Chen SY. Structure and regulatory function of plant transcription factors [J]. Chinese Science Bulletion,2001,46(4):271-278
    122. Livak KJ, Schmittgen TD, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method [J]. Methods,2001,25:402-408
    123. Long JA, Moan El, Medford JI, et al. Amember of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis [J]. Nature,1996,379:66-69
    124. Lorenzo O, Chico JM, Sanchez-Serrano JJ, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate regulated defense respon-ses in Arabidopsis [J]. Plant Cell,2004,16:1938-1950
    125. Luan S. Tyrosine phosphorylation in plant cell signaling [J]. Proc Natl Acad Sci USA,2002,99: 11567-11569
    126. Ludwig AA, Romeis T, Jones JD. CDPK-mediated signalling pathways:specificity and cross-talk [J].JExp Bot,2004,55:181-188
    127. Lu PL, Chen NZ, An R, et al. A novel drought2inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis [J]. Plant Molecular Biology,2007,63 (2):289-305
    128. Ma PC, Rould MA, Weintraub H, et al. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation [J]. Cell,1994, 77(3):451-459
    129. Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview [J]. Arch Biochem Biophys, 2005,444(2):139-158
    130. Mahalingam K, Comez-Buitrago A, Eckardt N, et al. Characterizing the stress/defense transcript-tome of Arabidopsis [J]. Genome Biol,2003,4:20
    131. Malamy JE, Benfey PN. Down and out in Arabidopsis:the formation of lateral roots [J]. Trends Plant Sci,1997,2:390-396
    132. Marcotte Jr WR, Russell SH, Quatrano R.S. Abscisic acid responsive sequences from the Em gene of wheat [J]. Plant Cell,1989,1:969-976
    133. Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley [J]. Plant Mol Biol,2004,55(3):399-416
    134. Maruyama K, Sakuma Y, Kasuga M, et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems [J]. Plant J,2004, 38(6):982-993
    135. Mayrose M, Bonshtien A, Sessa G. LeMPK3 is a mitogen-activated protein kinase with dual specificity induced during tomato defense and wounding responses [J]. J Biol Chem,2004, 279:14819-14827
    136. Mazel A, Leshem Y, Tiwari BS, et al. Induction of salt and osmotic stress tolerance by overexpres-sion of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e) [J]. Plant Physiol,2004,134: 118-128
    137. Meijer AH, kam RJ, d'Erfurth I, et al. HD-Zip proteins of families I and II from rice:interaction and functional properties [J]. Mol Gen Genet,2000,263(1):12-21
    138. Michael FT, Plant cold acclimation:Freezing tolerance genes and regulatory mechanisms [J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:571-599
    139. Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcripttion factor IIIA from Xenopus oocytes [J]. EMBO J,1985,4:1609-1614
    140. Mita S, Nagai Y, Asai T. Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals [J]. Physiol Plantarum,2006,128:531-545
    141. Moore AW, Barbel S, Jan LY, et al. A genomewide survey of basic helix-loop-helix factors in Drosophila [J]. Proc Natl Acad Sci USA,2000,97(19):10436-10441
    142. Mouille G, Robin S, Lecomte M, et al. Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy [J]. Plant J,2003,35:393-404
    143. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerizing motif in Immunoglobulin enhancer binding, Daugtherless, MyoD, and Myc proteins [J]. Cell,1989,56(5):777-783
    144. Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis [J]. J Exp Bot,2003,54(391):2231-2237
    145. Nakashima K, Shinwari ZK, Sakuma Y, et al.Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration-and high-salinity-responsive gene expression [J]. Plant Mol Biol,2000,42(4):657-665
    146. Nakayama A, Morita K, Ozawa Y, et al. Process for preparing a polymer using lithium initiator prepared by in situ preparation [P]. EP:0594107,1994
    147. Narusaka Y, Nakashima K, Shinwari ZK, et al. Interaction between two cis-acting elements, AREB and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses [J]. Plant J,2003,34(2):137-148
    148. Neuteboom LW, Veth-Tello LM, Clijdesdale OR. A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence [J]. DNARes,1999,6:13-19
    149. Niggeweg R, Thurow C, Weigel R, et al. Tobacco TGA factors differ with respect to interaction withNPR1, activation potential and DNA-binding properties [J]. Plant Mol Biol,2000,42:775-778
    150. Nogueira FTS, Schlogla PS, Camargo SR, et al. SsNAC23, a member of the NAC domain protein family, is associated with cold, herbivory and water stress in sugarcane [J]. Plant Science,2005, 169:93-106
    151. Novillo F, Alonso J, Ecker JR, et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREBIA expression and plays a central role in stress tolerance in Arabidopsis [J]. Proc Natl Acad Sci USA,2004,101(11):3985-3990
    152. Oh SK, Lee S,Yu SH, et al. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated wit h incompatible interactions between chili pepper and pathogens [J]. Planta,2005,222(5):876-887
    153. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element [J]. Plant Cell,1995,7:173-182
    154. Ohnishi T, Sugahara S, Yamada T, et al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice, Genes Genet [J]. Syst,2005,80:135-139
    155. Ohno R, Takumi S, Nakamura C. Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature [J]. Plant Physiol,2003, 160:193-200
    156. Olsen AN, Ernst HA, Leggio LLo, et al. Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family [J]. Acta Crystallogr D Biol Crystallogr,2004,60:112-115
    157. Olsen AN, Ernst HA, Lo Leggio L, et al. NAC transcription factors:structurally distinct, functionally diverse [J]. Trends in Plant Sci,2005,10:79-87
    158. On N, Eshed Y, Chuck q, et al. Mechanisms that control KNOX gene expression in the Arabidopsis shoot [J]. Development,2000,127:5523-5532
    159. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. [J]. DNA Res,2003,10:239-247
    160. Parenicova L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world [J]. Plant Cell,2003,15(7):1538-1551
    161. Paterson AH, Lander ES, Hewitt JD, A rapid method for extraction of cotton(Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep,1993,11:122-127
    162. Park JM, Park CJ, Lee SB, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco [J]. Plant Cell,2001,13(5):1035-1046
    163. Pnueli L, Hallak-Herr E, Rozenberg M, et al. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam [J]. Plant J,2002, 31(3):319-330
    164. Provart NJ, Gil P, Chen WQ, et al. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures [J]. Plant Physiol,2003,132:893-906
    165. Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. [J]. Plant Cell Physiol,2004, 45(8):1042-1052
    166. Riechmann JL, Meyerowitz EM. MADA domain proteins in plant development [J]. Biol Chem, 1997,378:1079-1101
    167. Riechmann JL, Heard J, Martin GS, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes [J]. Science,2000a,290(5499):2105-2110
    168. Riechmann JL, Ratcliffe OJ. A genomic perspective on plant transcription factors [J]. Curr Opin Plant Biol,2000b,3(5):423-434
    169. Sablowski RWM, Meyerowitz EM. Ahomolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell,1999,92:93-103
    170. Sainz MB, Grotewold E, Chandler VL, Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins [J]. Plant Cell,1997,9(4):611-625
    171. Sakamoto A, Minami M, Huh GH, et al. The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes [J]. Eur J Biochem,1993,217:1049-1056
    172. Sakamoto A, Alia M, Murata N. Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold [J]. Plant Mol Boil,1998,38:1011-1019
    173. Sakamoto H, Araki T, Meshi T, et al. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress [J]. Gene,2000,248:23-32
    174. Sakamoto H, Maruyama k, Sakuma Y, et al. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions [J]. Plant Physiology,2004,136(1):2734-2746
    175. Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression [J]. Biochem Biophys Res Commun,2002,290:998-1009
    176. Satoh R, Fujita Y, Nakashima k, et al. A novel subgroup of bZIP proteins functions as transcriptional activators in hypoosmolarity-responsive expression of the proDH gene in
    Arabidopsis [J]. Plant Cell Physiol,2004,45(3):309-317
    177. Schiefelbein J. Cell-fate specification in the epidermis:a common patterning mechanism in the root and shoot [J]. Curr Opin Plant Biol,2003,6:74-78
    178. Schwechheimer C, Bevan M. The regulation of transcription factor activity in plants [J]. Trend in Plant Science,1998,3 (10):278-283
    179. Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray [J]. Plant J, 2002,31(3):279-292
    180. Shen YG, Zhang WK, He SJ, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress [J]. Theor Appl Genet,2003a,106(5):923-930
    181. Shen YG, Zhang WK, Yan DQ, et al. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis [J]. Theor Appl Genet,2003b,107(1):155-161
    182. Shinozaki K, Dennis E. Cell signaling and gene regulation global analyses of signal transduction and gene expression profiles [J]. Curr Opinion Plant Biol,2003,6:405-409
    183. Shinozaki K, Yamaguchi-Shinozalci K. Gene expression and signal transduction in water-stress response [J]. Plant Physio,1997,125:327-334
    184. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways [J]. Curr Opinion Plant Biol,2000, 3:217-223
    185. Shinozaki K, Yamaguchi-shinozaki K. Gene networks involved in drought stress response and tolerance [J]. J Exp Bot,2007,58(2):221-227
    186. Shinozaki K, Yamaguchi-Shinozaki K, Seki M, Regulatory network of gene expression in the drought and cold stress responses [J]. Curr Opinion Plant Biol,2003,6:410-417
    187. Siberl Y, Doireau P, Gantet P. Plant bZIP G-box binding factors in plant defense and stress responses [J]. Curr Opin Biol,2002,5(5):430-436
    188. Simionato E, Ledent V, Richards G, et al. Origin and diversification of the basic helix-loop-helix gene family in metazoans:insights from comparative genomics [J]. BMC Evol Biol,2007,7:33
    189. Seki M, Narusaka M, Abe H, et al. Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray [J]. Plant Cell,2001, 13:61-72
    190. Sonnenfeld MJ, Delvecchio C, Sun X. Analysis of the transcriptional activation domain of the Drosophila tango bHLH-PAS transcription factor [J]. Dev Genes Evol,2005,215(5):221-299
    191. Souer E, von Houwelingen A, Kloos D, et al. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries [J]. Cell,1996,85:159-170
    192. Steidl C, Leimeister C, Klamt B, et al. Characterization of the human and mouse HEY1, HEY2 and HEYL genes:cloning, mapping, and mutation screening of a new bHLH gene family [J]. Genomics, 2000,66:195-203
    193. Streelman JT, Kocher TD. From phenotype to genotype [J]. Evol Dev,2000,2:166-173
    194. Sun XH, Copeland NG, Jenkins NA, et al. Id proteins Idl and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins [J]. Mol Cell Biol,1991,11:5603-5611
    195. Sun H, Taneja R. Stral3 expression is associated with growth arrest and represses trans-cription through histone deacetylase (HDAC)-dependent and HDAC-independent mechanisms [J]. Proc Natl Acad Sci USA,2000,97:4058-4063
    196. Sun C, Plamqvist S, Olsson H, et al. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter [J]. Plant Cell,2003,15(9):2076-2092
    197. Suzuki N, koizumi N, Sano H. Screening of cadmium-responsive genes in Arabidopsis thaliana [J]. Plant Cell Environm,2001,24:1177-1188
    198. Tahhan TJ and Randy DA. Isolation of a novel cDNA encoding an auxin-induced basic helix-loop-helix transcription factor (accession no. AF165924) from cotton (Gossypium hirsutum L.) [J]. Plant Physiol,1999,121:685
    199. Takada S, Hibara K, Ishida T, et al. The CUP-SHAPED COTYLEDONI gene of Arabidopsis regulates shoot apical meristem formation [J]. Development,2001,128:1127-1135
    200. Takatsuji H. Zinc-finger transcription factors in plants [J]. Cell Mol Life Sci,1998,54:582-596
    201.Tamai H, Iwabuchi M, Meshi T. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors [J]. Plant Cell Physiol,2002, 43:99-107
    202. Tang M. Lu S, Jing Y, et al. Isolation and identification of a cold-induciblc gene encoding a putative DRE-binding transcription factor from Festuca arundinacea [J]. Plant Physiol Biochem,2005, 43:233-239
    203. Tepperman JM, Zhu T, Chang HS, et al. Multiple transcription factor genes are early targets of phytochrome A signaling [J]. Proc Natl Acad Sci USA,2001,98:9437-9442
    204. Tesfaye M, Xi C, John S, et al. The BOTRYTIS SUSCEPTIBLE 1 gene encodes an R2R3 MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis [J]. Plant Cell,2003,15:2551-2565
    205. Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell,2003,15(8):1749-1770
    206. Torii KU. Receptor kinase activation and signal transduction in plants:An emerging picture [J]. Curr Opin Plant Biol,2000,3:361-367
    207. Tran LSP, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a droughtresponsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter [J]. Plant Cell,2004,16: 2481-2498
    208. Tu LL, Zhang XL, Liang SG, et al. Genes expression analyses of sea-island cotton(Gossypium barbadense L.) during fiber development [J]. Plant Cell Rep,2007,26:1309-1320
    209. Uauv C, Distelfeld A, Fahima T, et al. ANAC gene regulating senescence improves grain protein, zinc, and iron content in wheat [J]. Science,2006,314 (1298):1298-1301
    210. Ulker B, Somssich IE. WRKY transcription factors:from DNA binding towards biological function [J]. Curr Opin Plant Biol,2004,7(5):491-498
    211.Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements [J]. Science,1997,276(5320):1865-1868
    212. Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci USA,2000,97(21):11632-11637
    213.Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence [J]. Plant Cell 1993,5(11):1529-1539
    214. Varagona MJ, Schxnidt RJ, Railchel NV. Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2 [J]. Plant Cell,1992,4:1213-1227
    215. Van Ooijen JW, Vorrips RE. JoinMap(?) Version 3.0, Software for the calculation of genetic linkage map [M]. Plant Research International, Wageningen, The Netherlands,2001
    216. Vannini C, Locatelli F, Bracale M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants [J]. Plant J,2004,37:115-127
    217. Villalobos MA, Bartels D, Iturriaga G. Stress tolerance and glucose insensitive phenotypes in Arabidopsis overexpressing the CpMYB10 transcription factor gene [J]. Plant Physiol,2004, 135(1):309-324
    218. Vroemen CW, Mordhorst AP, Albrecht C. The CUP-SHAPED COTYLEDON3 gene is required for
    boundary and shoots meristem formation in Arabidopsis [J]. Plant Cell,2003,15:1563-1577
    219. Wang RL, Stec A, Hey J, et al. The limits of selection during maize domestication [J]. Nature,1999, 398:236-239
    220. Wang YJ, Zhang Zq He XJ, et al. A rice transcription factor OsbHLH1 is involved in cold stress response [J]. Theor Appl Genet,2003,107(8):1402-1409
    221. Washburn KB, Davis EA, Ackerman S. Coactivators and TAFs of transcription activation in wheat [J]. Plant Mol Biol,1997,35:1037-1043
    222. Weir I, Lu J, Cook H, et al. CUPULIFORMIS establishes lateral boundaries in Antirrhinum [J]. Development,2004,131:915-922
    223. Wu KL, Guo Zj, Wang HH, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNARes,2005,12(1):9-26
    224. Xie Q, Frugis q, Colgan D, et al. Arabidopsis NAC1 transduces auxm signal downstream of TIR1 lateral to promote root development [J]. Genes Dev,2000,14:3024-3036
    225. Xie Q, Guo HS, Dallman Q, et al. SINATS promote subiquitin-related degradation of NAC1 to attenuate auxin signals [J]. Nature,2002,419:167-170
    226. Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress [J]. Plant Cell, 2002, S165-S183
    227. Xiong LM, Zhu JK. Regulation of Abscisic Acid Biosynthesis [J]. Plant Physiol,2003,133:29-36
    228. Xue GP. An AP2 domain transcription factor HvCBF1 activates expression of cold-responsive genes in barley through interaction with a (G/a)(C/t)CGAC motif [J]. Biochimica Biophysica Acta,2002, 1577:63-72
    229. Yadav V, Mallappa C, Gangappa SN, et al. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth [J]. Plant Cell,2005,17:1953-1966
    230. Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants [J]. Mol Gen Genet,1993,236:331-340
    231. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses [J]. Annu Rev Plant Biol,2006,57:781-803
    232. Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression [J]. Plant Cell,1998,10:75-90
    233. Yang M, Mayws, Ito T. JAZ requires the double stranded RNA-binding zinc finger motifs for nuclear localization [J]. J Biol Chem,1999,274:27399-27406
    234. Yoshida S, Parniske M. Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation [J]. J Biol Chem,2005,280:9203-9209
    235. Zhang X, Fowler SG, Cheng H, et al. Freezing-sensitive tomato has a fimctional CBF cold response pathway, but a CBF regulon differs from that of freezing-tolerant Arabidopsis [J]. Plant J,2004b, 39(6):905-919
    236. Zhou JM, Trifa Y, Silva H, et al. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid [J]. Mol Plant Microbe Interact,2000,13:191-202
    237. Zhu JK, Liu J, Xiong L. Genetic analysis of salt tolerance in Arabidopsis thaliana:Evidence of a critical role for potassium nutrition [J]. Plant Cell,1998,10:1181-1192
    238. Zhu T. Global analysis of gene expression using GeneChip microarrays [J]. Curr Opin Plant Biol, 2003,6:418-425
    239. Zou X, Seemann JR, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway [J]. J Biol Chem,2004,279(53):55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700