用户名: 密码: 验证码:
海南岛农用地重金属污染现状调查与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是人类赖以生存的自然环境和农业生产的重要资源,世界面临的粮食、资源和环境问题与土壤密切相关,目前重金属污染成为危害土壤的主要因素。本文以土壤-植物为系统,采用生态学、地理科学、植物生态等多学科协同及野外调查-实验测试-栽培试验-综合研究等方法。开展了海南岛农用地重金属污染现状评价,重点对三亚市的重金属污染现状进行调查与评价,并对热带地区水稻的Cd胁迫耐性生理进行了初步研究,以期为海南岛农用地利用和优化开发以及污染防治提供科学依据。主要结论如下:
     1海南省农用地重金属污染现状及其评价
     本文利用地统计学方法及地理信息系统(GIS),分析海南岛农用地中的Hg, Cd, Cr,Pb和As等5种重金属的污染状况及空间变异性分析。结果表明Hg, Cd, Cr, Pb和As等5种重金属的平均含量均为超过国家环境质量二级标准(GB15618-1995);但研究区土壤中Hg、Cd、Cr三种重金属元素含量的最大值均超过了国家土壤环境质量的二级标准,并分别达到了1.63 mg·kg-1、0.64mg·kg-1、586.70 mg·kg-1; Hg、Cd、Cr和Pb4种重金属含量的变异函数理论模型符合指数模型,元素As含量的变异函数理论模型符合高斯模型;相关性表明Hg和Pb空间相关程度弱,显示出其含量受成土因素的影响较大;Cd、Cr和As空间相关程度中等,显示出其含量受外源污染的影响较大;通过Kriging插值方法得出了海南岛上该五种土壤重金属的插值梯度分布图,显示出在海南岛上外源性重金属污染在工业区为最严重。土壤有机质含量、pH值和土壤中重金属含量相关关系结果表明:海南省农用地土壤有机质含量总体上处于中下水平,全省有机质平均含量为22.99%,各地区之间含量差异较大,土壤pH平均值为5.20;土壤重金属含量与土壤理化性质间的关系复杂:有机质含量与Hg、Cd、Cr含量呈极显著正相关,与Pb、As含量呈显著相关,而pH与Hg、Cr呈负相关,与Cd、Pb、As呈显著正相关。
     2三亚市果蔬地及果蔬重金属污染现状及其评价
     通过野外调查采样,采用标准对比法和地质累积指数法,评价了三亚市果蔬地表层土壤重金属的污染状况。结果表明:土壤中Hg、Cd、Cr、Pb和As5种重金属的积累不显著,其平均值均未超过国家环境质量二级标准(GB15618-1995);但Hg、Pb和Cd的平均值高于海南岛农用地的自然背景值,表明存在区域轻度污染;Cr、Hg、Pb和As4种重金属元素的变异系数均>1,表明土壤中Cr、Hg、Pb和As的分布极不均匀。同时利用地理信息系统(GIS) Krging插值方法得到了5种重金属的空间分布图,显示出不同重金属元素的空间分异特征,为三亚市果蔬地的可持续开发利用提供指导。
     瓜菜重金属含量检测,采用国家蔬菜卫生质量标准计算单项因子污染指数和综合污染指数,通过内梅罗污染指数标准进行评价,同时对污染源进行分析。结果表明,三亚果蔬整体上为清洁无污染水平,四种重金属(Zn、Cu、Pb、Cd)在果蔬中的综合污染指数为0.60,根据内梅洛污染指数评价属安全无污染水平,不同种类的瓜菜对重金属的富集含量差异较大,各类果蔬的综合污染指数从大到小为:叶菜类>豆类>瓜类>根茎类>茄类>水果类,叶菜类较其他瓜菜容易富集叶菜类达到轻度污染,综合污染指数达1.19,豆类和瓜类的为尚清洁接近污染水平,综合污染指数分为0.85和0.79,其它果蔬为清洁水平。
     3不同水稻品种对镉胁迫的响应差异
     以热带地区主栽品种博优225和矮糯为材料,采用盆栽试验的方法研究了水稻土中重金属镉(Cd)的浓度对水稻生长及镉富集的影响以及镉在水稻植株的分布情况及不同水稻品种对土壤外源重金属Cd胁迫的耐性机理。研究结果表明:在各个浓度镉胁迫下,根、茎叶、稻壳、糙米相比,2个品种水稻都是根累积的镉含量要高于茎叶和稻壳、糙米,即根>茎叶>稻壳>糙米;在水稻的茎叶细胞中,镉主要分布在细胞壁,细胞可溶性成分,细胞器镉的分布量较少,即F1(细胞壁)>F3(可溶性部分)>F2(细胞器及膜部分);随Cd浓度增加,茎叶中的Cd积累量极显著增加,各细胞组分中的Cd含量均显著增加;博优225与矮糯水稻在低浓度处理下所积累的Cd以氯化钠提取态、盐酸提取态,醋酸提取态为主,三者占总量的80%以上。随着Cd处理浓度的增加,矮糯与博优225氯化钠提取态相对含量降低,其绝对含量接近饱和,而醋酸提取态Cd的相对含量增加。博优225水稻与矮糯水稻相比,80%酒精提取态与残渣态Cd占总量的比例皆无明显变化。随着镉胁迫浓度的增加细胞膜受损的伤害程度越大,矮糯质膜透性略高于博优225;随着Cd浓度的升高水稻叶片丙二醛(MDA)、脯氨酸含量逐渐增加,且博优225的增加幅度明显大于矮糯随着镉浓度的提高;超氧化物歧化酶(SOD)和过氧化物酶(POD)活性均表现为上升趋势,且博优225明显高于矮糯;过氧化氢酶(CAT)活性呈下降趋势。表明同样条件下博优225受Cd毒害更严重。
Soil is the indispensable environment for human survival and important resource for agriculture development. Food and environment problems facing the world are all closely related to soil and nowadays it is threatened by many factors, among which heavy metal pollution are the most serious one. In this study, soil-plant as an associated system. An integrated study method was accepted in this study, it includes ecological, geographical science, plant ecology, and also includes the experimental analysis, planting test and simulating test. The pollution of heavy metals on agricultural land in HaiNan. The research results provide scientific basis for optimization of development, farmland-use and pollution control of HaiNan. This study includes the following three correlative parts and summarizes the following results and conclusions.
     1 Pollution Status and contamination evaluation of heavy metals on farm land in Hainan Island
     Geographical information system (GIS) combined with Geostatistics was applied to reveal the features of the spatial distribution of concentrations of heavy metal Hg, Cd, Pb, As and Cr on farm land in Hainan island. The results show that the average concentrations of the five metals are below the GradeⅡstandard of National environmental quality standard for soil (GB15618-1995), but the max contents of Hg、Cd、Cr were higher than the soil environmental quality standard, the concentrations of Hg、Cd、Cr were 1.63,0.64, and 586.70mg·kg-1.The theoretical semivariogram models of soil Hg, Cd, Cr and Pb fit for the Exponential model well. The spatial correlation of Hg and that of Pb are both weak, indicating that their concentrations are affected deeply by soil formation facts. The theoretical semivariogram model of soil As fits the Gaussian model well. The distribution spatial correlation of Cd, Cr and As is moderate respectly, indicting their concentrations are affected by the inputs from outside. The contour distrubition maps of the 5 heavy metals on farm land in Hainan island are obtained based on Kriging algorithm, showing that the heavy metal polutions caused by the inputs from outsides in industrial zones are most serious in Hainan island. Soil organic matter contents、pH and heavy metal contents of agriculture soils in Hainan were studied for relationships between soil organic matter content、pH and contents of soil heavy metals. Results showed that almost all the soil samples collected from Hainan Area organic matter contents were at middle or low levels with an average content of organic matter being 22.99%, but three parameters did vary much from site to site; an average pH value being 5.20. The results of correlation analysis showed that relationships between soil heavy metals and soil organic matter contents and pH were complicated.
     2 Pollution Status and contamination evaluation of heavy metals in orchards and vegetable gardens soil of Sanya City
     Vegetable security is important to our life, and it is absolutely necessary to set up city outskirt biogeocenose system. With industry and agriculture development, atmosphere, water and soil are getting more polluted. So vegetable is polluted in some degree. We measured and analyzed contents of heavy metals in vegetables and fruits and soils in Sanya of Hainan province. Heavy metal contamination condition of surface soil in orchards and vegetable gardens of Sanya City was evaluated by filed survey and sampling and by using standard comparison and Geoaccumulation index method. Result showed that the average values of the five heavy metals i.e., Hg, Cd, Cr, Pb and As, were all below GradeⅡof National environment quality standard (GB15618-1995). The variation coefficient of Cr、Hg、Pb and As were all> 1, which showed the distribution of four heavy metals were extremely uneven. However, the average values of Hg, Cd and Pb are higher than the background values of farm land in Hainan Island, showing slight pollution in certain areas. The spatial distribution of the five heavy metals were also obtained using Kriging algorithm approach, the spatial variation of soil pollution was obvious. The study provided guidance for sustainable development and utilization of orchards and vegetable gardens in Sanya city. Different evaluation methods and assessment standards of heavy metals were also used for comparison. Single factor pollution and comprehensive pollution index by national vegetable environmental quality standards and then evaluated by Nemero index, then analyzed the pollution source. The results showed that: mean concentrations of heavy metals in vegetables and fruits were not exceeded their corresponding natural-background values, no significant heavy metal pollution occurred in the study area as a whole. The enrichment of heavy metals in vegetables and fruits differed with their different physiological characteristics, growth time and sensitive degree to contamination, which comprehensive pollution index is green-leaves>Beans>melons> Rhizomas>Eggplants>fruits. Green-leaves were found slightly polluted, comprehensive pollution index is 1.19. Others comprehensive pollution index were less than 1.
     3 The response differences of different rice varieties in response to cadmium stress
     Cadmium(Cd)is important contaminants in agricultural soil and threatening agriculture and human health. With the development of industry and agriculture, the soil heavy metal cadmium pollution becomes more and more serious. In this study, two high-yielding rice cultivars currently used in the local production, Boyou 225, Short glutinous, A pot experiment with two Oryza sativa varieties in a paddy soil treated with five levels of cadmium was conducted to studied. Results showed that cadmium was not distributed uniformly in each part of rice plants. most of the absorbed Cd assembled in the root, the upper, the less, i.e. the law of distribution of Cd in different organs of rice should be:root> stem> rice husk> kernels. In rice roots and stems and leaves, cadmium is mainly distributed in the cell wall. Soluble components of cells, cell distribution of low cadmium. That is, F1 (Cell wall)> F3 (soluble part)> F2 (cell organelles and membrane part). Boyou 225 and short glutinous rice at low concentration under the deal with the accumulation of extractable Cd to sodium chloride, hydrochloric acid extractable, acid extractable mainly the three accounted for more than 80% of the total. With the increased concentration of Cd treatment, with short glutinous rice Boyou 225 extractable relative content of sodium chloride to reduce its absolute concentration close to saturation, and acetic acid extractable Cd increased relative content. Boyou 225 and short glutinous rice as compared to 80% alcohol extractable Cd and the residual proportion of the total are no significant changes.A pot experiment with two Oryza sativa Linnaeus varieties in a paddy soil treated with three levels of cadmium was conducted to study the physiological and biochemical and antioxidant enzyme system of the leaves. The results showed that with the increasing Cd concentration in soil increased the contents of malondialdehyde (MDA) and proline, which would be more pronounced in the Boyou225 than Short glutinous. The activities of SOD and POD were increased with the increased concentration of Cd, while the activities of catalase (CAT) were decreased. The activities of SOD and POD in the Boyou225 were significantly higher than those in the Short glutinous under relative higher Cd treatment. Our results indicated that with the Cd concentration increased caused the cell membrane. The rice varieties exhibited the genetic character on the Cadmium accumulation. The Cadmium contents of the grains increased with the increasing Cd concentration in soil. According to the state limit of cadmium in rice, the standard (GB 2762-2005), Content≤0.2 mg·kg-1. In this study, tropical paddy soil total Cd threshold were Boyou225 (Cd total)= 2.0 mg·kg-1; Short glutinous (Cd total)= 3.1 mg·kg-1. Therefore, for reducing the risk of the humanity to heavy metal, the rice varieties with the low capability of accumulating heavy metal in grains could be planted in a polluted soil.
引文
[1]'Nriagu J 0. Global metal pollution:Poisoning the biosphere. Environment,1990,32(7):7-33.
    [2]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1 196-1203.
    [3]彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展[J].水土保持学报,2005,19(5):195-199.
    [4]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.265-298.
    [5]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    [6]ETCS (European Topic Centre Soil). Topic Report-Contaminated Sites[R]. European Envir-onment Agency.1998.142.
    [7]周启星,林海芳.污染土壤及地下水修复的PRB技术及展望[J].环境污染治理技术与设备,2001,2(5):48-53.
    [8]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学,2003,22(2):248-251.
    [9]徐应明,李军幸.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
    [10]王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178.
    [11]王慎强,陈怀满,司友斌.我国土壤环境保护的回顾与展望[J].土壤,1999,5:255-260.
    [12]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [13]张坚.化肥使用和土壤环境污染[J].土壤农化通报,1998,13(4):13·15.
    [14]赵其国.土壤与环境问题国际研究概况及其发展趋向[J].土壤,1998,6:281-310.
    [15]高拯民.土壤-植物系统污染生态研究[M].北京:中国科学技术出版社,1986.
    [16]傅克文.农业环境的化学污染[M].北京:科学出版社,1985.
    [17]Griffith J J.1919. Influence of mines upon land and livestock in Cardiganshire. J. Agrie. Sci. (Cambridge)9:366-395.
    [18]Warren H V and Delavault R E.1960. Observations on the biogeochemistry of lead in Canada, Trans. R. Soc. Can.54: 11-20.
    [19]Cannon H L and Bowles J M.1962. Contamination of vegetation by tetraethyl lead. Science 137:765-766.
    [20]Marten G C and Hammond P B.1966. Lead uptake by bromegrass from contaminated soils Agronomy J.58:553-554.
    [21]MacLean A J, Halstead R L and Finn B J.1969. Extractability of added lead in soils and its concentration in Plants. Can. J. Soil Sci.49:327-334
    [22]Motto H L, Daines R H, Chilko D M and Motto C K.1970. Lead in soils and plants:Its relationship to traffic volume and proximity to highways. Environ. Sci. Tech.4:231-238.
    [23]Page A L, Ganje T J and Joshi M S.1971. Lead quantities in Plants, soil and air near some major Highways in Southern California., Hilgardia41:1-31.
    [24]Lagerwerff J V, Armiger W H and Specht A W.1973. Uptake of lead by alfalfa and corn from soil and air. Soil Sci.115: 455-460.
    [25]Shacklette H T.1972. Cadmium in plants. Geological Survey Bulletin 1314-G,.:US Government Printing Office, Washington, D. C.
    [26]Sterckeman T, Douay F,Proix N,Fourrier H.2000.Vertical distribution of Cd,Pb,and Zn in soils near smelters in the North of France. Environ Pollu,107:377-389.
    [27]郑喜坤,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11:79-84.
    [28]Nilgun G, Omar A, Gurdal T.2003. Investigation of soil multi-element composition in Antalya, Turkey Environ International,1055:1-10.
    [29]Athu rE, Crews H,Morgan C.2000. Optimizing Plant genetic strategies for minimizing environmental contamination in the food chain. Inter J Phytoremed,2:1-21.
    [30]Zhi YL 1998. The source and fate of Pb in centeaal Sweden. Sci Total Environ,209:47-58.
    [31]Wong CS, Lia XD, Zhang QQi SH, Peng XZ.2003. Atmospheric deposition of heavy metals the Pearl River Delta,China Atmosph Environ,37:767-776.
    [32]Jensen D L, Holm R E, Christensen TH.2000. Soil and groundwatere contamination with heavy metals at two scrap iron and metal recycling facilities. Waste Manage Res,18:52-63.
    [33]Kondo K 1996. Incidence of minamata disease in communities along the Agano river, Niigata, Japan-Patem of the exposure and of icial diagnosis of patients. Nippon Eisegaku Zasshi,51,599-611.
    [34]Nan ZR, Zhao CY, Li JJ, Chen FH, Sun Wu.2002. Relations between soil properties and selected heavy metal concentrations in spring wheat(Trifcum aestivwn L.) grown in contaminated soils. Water Air Soil Polluttion, 133:205-213.
    [35]Adrie V, Bert H.2002. Sources of Cd, Cu, Pb and Zn in biowaste. Sci Total Environ,300:87-98.
    [36]Anthony C.1997. Methyl mercury contamination and emission of the atmosphere from soil amended with municipal sewage sludge. J Environ Qual,26:1650-1655.
    [37]Illeraa V, Walterb IU, Souzac P, Calaa V.2000. Short-term effects of biosolid and municipal solid waste applications an heavy metals distribution in a degraded soil under a semi-arid environment. Sci Total Environ,255:29-44.
    [38]Bloemen ML, Markert B, Lieth H.1995.The distribution of Cd, Cu,Pb and Zn in top soils of Osnabruck in relation to land use. Sci Total Environ,166:137-148.
    [39]Mclaughlin MJ,Williams GMJ, Mckay A, Kirkham R, Gunton J, Jackson KJ, Thompson R,Dowling B, Partington D, Smart MK.Tiller KG. 1994. Effect of cultivar on uptake of cadmium by potato tubers. Aust J Agri Res,45:1483-1495.
    [40]Chen G, Asada K.1992. Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol, 33:117-123.
    [41]Jung MC.2001. Heavy metal contamination of soil sand waters in and around the Imcheon Au-Agmine. Korea Applied Geochem,16:1369-1375.
    [42]刘延良.国内外土壤环境监测标准现状[J].中国环境监测,1996,12(5):41-43.
    [43]刘红侠,韩宝平.徐州市北郊土壤重金属污染演化特征研究[J].农业环境科学学报,2004,23(6):1177-1181.
    [44]刘红樱,谢志仁,陈德友,等.成都地区土壤环境质量初步评价[J],环境科学学报,2004,24(2):297-303.
    [45]张书贵.土壤重金属污染评价与研究[J].安微技术师范学院学报,2001,15(4):23-24.
    [46]李其林,黄的,骆东奇.重庆市蔬菜基地土壤中重金属含量及污染特征[J].土壤与环境,2000a,9(4):270-273.
    [47]吴新民,李恋卿,潘根兴,等.南京市不同功能城区土壤中重金属Cu、Zn、Pn、Cd的污染特征[J].环境科学,2003,24(3):105-111.
    [48]Chou H, Than JS,Jung MC. Seaasonal variations and chemieal forms of heavy metals in soils and dusts from the satellite cities of Seoul, Koreal [J]. Environ Geoehem Health,1998,20(2):77-86.
    [49]Jung M C. Heavy metal contamination of soils and waters and around the Imcheon Au-Ag Mine, Koeral [J]. Applied Geochmistry 2001,16(11-12):1369-1375.
    [50]周建民,党志,司徒粤,等.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报,2004,(6):1172-1176.
    [5l]林建伟,王里奥,赵建夫,等.三峡库区生活垃圾场的重金属污染程度评价[J].长江流域资源与环境,2005,14(1):104-107.
    [52]吴国旭.环境评价[M].北京:化学工业出版社,2002:77-79
    [53]刘树田,张东丽,张艳秋,等.吉林南部地区生态环境地质调查中土壤环境地球化学研究[J].地质论评,2000.46(6):651-659.
    [54]滕彦国,倪师军,张成江.环境地球化学基线研究简介[J].物探化探计算技术,2001,23(2),135-139.
    [55]Muller G Index of geo-accumulation in sediments of the Rhine River[J]. Geojournal 1969,2:108-118.
    [56]Forstner U, Muller G. Concentration of heavy metals and polycyclic aromatic hycarbornsin river sediments: geochemical background, mans influence and environmental impact[J]. Geojounral.1981,5:417-432.
    [57]Forstner U. Contamiated sediments:Lectures on environmental aspects of particle-associated chemicals in aquatic systems[A], Lecture Notes in Earth Sciences(vol.21)[C]. Berlin:Springer-Verlga.1989.107-109
    [58]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997,17(1):81-86.
    [59]周秀艳,王恩德,刘秀云,等.辽东湾河口底质重金属环境地球化学[J].地球化学,2004,33(3):286-290.
    [60]谭婷,王昌全,李冰,等.成都平原区土壤铅污染及其评价[J].长江流域资源与环境,2005,14(1):72-75.
    [61]Ralph PJ.1998. Photosynthetic response of Halophila ovalis to heavy metal. Envionment Pollution,130:91-101.
    [62]Das P, Samantaray S, Rout GR.1998. Studies on cadmium toxicity in Plants:a review. Environment Pollution,98:29-6.
    [63]Haag-Kerwer A, Schafer HJ,Heiss S.1999. Cadmium exposure in Brassicajuncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot,50:1827-1835.
    [64]宋东杰,施国新,杨顶田.2000.As3+对药菜冬芽的毒害[J].南京师大学报(自然科学版),23:72·73.
    [65]Stadtman ER, Oliver CN.1991. Metal-catalyzed oxidation of proteins. Physiological. consequences. J Biol Chem,266: 2005-2008.
    [66]Hall JL.2002. Cellular mechanisms for heavy metal detoxification and tolerance. J ExP Bot,53:1-11.
    [67]周红卫,施国新,徐勤松.Cr6+和Crs3+对水花生几种生理生化指标的影响比较[J].农村生态环境.2003,18:35-40.
    [68]Teisseire H, Guy V.2000. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed(Lemna minor). Plant Sci,153:65-72.
    [69]Huang J W, Pelet D M, Papernik LA.1996. Aluminum interaction with voltage-dependent calcium transport in plasma membrane vesicles isolated from roots of aluminum sensitive and tolerant wheat cultivars. Plant Physiol,110:561-569.
    [70]段昌群,王焕校.重金属对蚕豆根尖的核酸含量及核酸酶活性影响的研究[J].环境科学.1992,13:31-35.
    [71]杨居荣,贺建群,张国祥,毛显强.农作物对镉毒害的耐性机理探讨[J].应用生态学报,1999,6:87-91.
    [72]Burzynski M, Klobus G 2004. Changes of Photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetiea,42:505-510.
    [73]J A Priess, G-H J de K oning, A Veld kam p·Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador [J]. Agriculture, Ecosystens and Environment,2001,85:269-279.
    [74]N Tonmanee, N Kanchanakool. Agricultural diffuse Pollution in Thailand [J]. Wai·Sci-Tech,1999,39(3):61-66.
    [75]黄胜利.农业资源综合开发生态环境评价[J].环境科学研究,2000,13(3):37-40.
    [76]杨一鹏,蒋卫国,何福红.基于PSR模型的松嫩平原西部湿地生态环境评价[J].生态环境,2004,13(4):597-600.
    [77]李志祥,田明中,武法东,等.河北坝上地区生态环境评价[J].地理与地理信息科学,2005,21(2):91-93.
    [78]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(4):711-717.
    [79]Hu K L, Zhang F R, Li H, et al. Spatial patterns of soil heavy metals in urban-rural transition zone of Beijing[J]. Pedosphere,2006,16(6):690-698.
    [80]ZhaoY F, ShiX Z, Huang B, etal. Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi China[J]. Pedosphere,2007,17(1):44-51.
    [81]Romic M, Romic D. Heavy metals distribution in agricultural top soils in urban area[J]. Environmental Geology,2003, 43:795-805.
    [82]Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution,2001,114:313-324.
    [83]刘付程,史学正,王洪杰,等.苏南典型地区土壤锌的空间分布特征及其与土壤颗粒组成的关系[J].土壤,2003,35(4):330-333.
    [84]郑海龙,陈杰,邓文靖,等.南京城市边缘带化工园区土壤重金属污染评价[J].环境科学学报,2005,25(9):1182-1188.
    [85]Burt R., Wilson M., Mays M. D., et al. Major and trace elements of selected pedons in the USA[J]. Journal of Environmental Quality,2003,32:2109-2121.
    [86]Wong C. S. C., Wu S. C., Duzgoren-Aydin N. S., et al.Trace metal contamination of sediments in an e-waste processing village in China[J]. Environmental Pollution,2007,145 (2):434-442.
    [87]夏增禄.中国主要类型土壤若干重金属临界含量和环境容量区域分异的影响[J].土壤学报,1994,31(2):161-169.
    [88]魏秀国,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.
    [89]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999:101-104.
    [90]胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468.
    [91]陶澍,曹军,李本纲,等.深圳市土壤微量元素含量成因分析[J].土壤学报,2001,38(2):248-255.
    [92]孔德工,唐其展,田忠孝,等.南宁市蔬菜基地土壤重金属含量及评价[J].土壤,2004,36(1):21-24.
    [93J王祖伟,徐利淼,张文具.土壤微量元素与人类活动强度的对应关系[J].土壤通报,2002,23(4):303-305.
    [94]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,2000:1-10,297-301.
    [95]滕彦国,庹先国,倪师军,等.应用地质累积指数评价攀枝花地区土壤重金属污染[J].重庆环境科学,2002,24(4):24-27,31.
    [96]ForstnerU, AhlfW, CalmanoW, et al. Sediment criteria development-contribution from environmental geochemistry to water quality management. In:H eling D, R othe P, ForstnerU, et al. Sedements and Environmental Geochemistry: Selected Aspects and Case Histories. Berlin Heidelberg:Springer-Verlag,1990.311-338.
    [97]Johnston K.,.ver Hoef J. M., Krivoruchko K., et al. Using ArcGIS Geostatistical Analyst[M]. ESRI Press, Redlands, C.A.,2001.
    [98]Cambardella C. A., Moorman T. B., Novak JM,Parkin TB, et al. Field-Scale variability of Soil properties in central Iowa Soils[J]. Soil Sci. Soc. Am. J.,1994,58:1501-1511.
    [99]吴燕玉,周启星.制定我国土壤环境标准(汞、镉、铅和砷)的探讨[J].应用生态学报,1991,2(4):344-349.
    [100]海南省农业厅土肥站.海南土壤.海南:海南出版社,1993:191.
    [101]漆智平.热带土壤学.北京:中国农业出版社,2007.
    [102]Loska L, Wiechula D. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J]. Chemosphere,2003,51:723-733.
    [103]Martin J A R, Arias M L, Corbi J M G Heavy metals contents in agricultural top soils in the Ebro basin(Spain) [J].Environmental Pollution,2006,144(3):1001-1021.
    [104]Boruvka L, Vacek O, Jehlicka J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma,2005,128:289-300.
    [105]Garcia R, Maiz I, Millan E. Heavy metal contamination analysis of road soils and grasses from Gipuzkoa(Spain) [J].Environmental Technology,1996,17(7):763-770.
    [106]Gray C W, McLaren R G, Roberts A H C. The effect of long-term phosphatic fertiliser applications on the amounts and forms of cadmium in soils under pasture in New Zealand[J]. Nutrient Cycling in Agroeco systems,1999.54:267-277.
    [107]Filzek P D B, Spurgeon D J, Broll G et al. Pedological characterization of sites along a transect from a primary cadmium/lead/zinc smelting works[J]. Ecotoxicology,2004,13:725-737.
    [108]陈同斌,曾希柏,胡清秀.中国化肥利用率的区域分异[J].地理学报,2002,57(5):531-538.
    [109]WHO. Cadmium. Environmental Health Criteria. Geneva,1992:134.
    [110]WHO. Lead. Environmental Health Criteria. Geneva,1995:165.
    [111]Jarup L. Hazards of heavy metal contamination. British Medical Bulletin,2003,68:167-182
    [112]Steenland K, Boffetta P. Lead and cancer in humans:where are we now? [J]. American Journal of Industrial Medicine, 2000,38:295-299.
    [113]IARC. Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans[J]. Lyon, France:International Agency for Research on Cancer,1993,58:444.
    [114]Oskarsson A, Widell A, Olsson I M, Grawe K P. Cadmium in food chain and health effects in sensitive population groups[J]. BioMetals,2004,17:531-534.
    [115]Alexander P D, Alloway B J, Dourado A M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables[J]. Environmental Pollution,2006,144:36-745.
    [116]Chojnacha K, Chojnacki A, Gorecka H, Gorecki H. Bioavailability of heavy metals from polluted soils to plants[J]. Science of the Total Environment.2005,337(1-3):175-182.
    [117]Khairiah T, Zalifah M K, Yin Y H, Aminah, A. The uptake of heavy metals by fruit type vegetables grown in selected agricultural areas[J]. Pakistan Journal of Biological Sciences.2004,7(8):1438-1442.
    [118]Culbard E B, Thornton I, Watt J, Wheatley M, et al. Metal contamination in British suburban usts and soils[J]. Journal of Environmental Quality,1988,17:226-234.
    [119]Mapanda F, Mangwayana E N, Nyamangara J, Giller K E. The effect of long-term irrigation using wastewater on heavy metal contents of soils under vegetables in Harare, Zimbabwe[J]. Agriculture, Ecosystems and Environment,2005,107: 151-165.
    [120]George K A, Singh B. Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia[J]. Water, Air and Soil Pollution,2006,169:101-123.
    [121]Nabulo G, Oryem O H, Diamond M. Assessment of lead, cadmium, and zinc contamination of soils, surface films, and vegetables in Kampala City, Uganda[J]. Environmental Research,2006,101:42-52.
    [122]中国农业年鉴编辑委员会.中国农业年鉴1979-2005[M].北京:中国年鉴出版社,2005:177.
    [123]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(2):248-251.
    [124]徐应明,李军幸,孙国红,戴晓华,张泽.新型功能膜材料对污染土壤铅汞镉钝化作用研究[J].农业环境科学学报,2003,22(1):86-89.
    [125]林玉锁,李波,张孝飞.我国土壤环境安全面临的突出问题[J].环境保护,2004,10:39-42.
    [126]海南省统计局主编.海南统计年鉴[M].北京:中国统计出版社,2005:502.
    [127]三亚市统计局主编.三亚市统计年鉴[M].三亚:三亚市统计局,2003:93-98.
    [128]黄国锋,吴启堂,容天雨等.无公害蔬菜生产基地环境质量评价[J].环境科学研究,1999,12(4):53-56.
    [129]赖燕平,李明顺,杨胜香等.广西锰矿恢复区食用农作物重金属污染评价[J].应用生态学报,2007,18(8):1801-1806
    [130]方海兰,郝冠军,彭红玲等.2008.上海世博会规划区不同土地利用方式下附属绿地的重金属分布[J].生态学杂志.27(3):439-446.
    [131]王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究[J].农业环境保护,1994,13(2):84-88.
    [132]JinadAsa k B P N, Milham P J, Hawkins C A, et al. Heavy metals in the environment-survey of cadmium levels in vegetables and soils of Greater Sydney,Australia[J]. J Environ Qual,1997,26:924-933
    [133]祖艳群,李元,陈海燕,等.蔬菜中铅镉铜锌的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.
    [134]Muchuweti M, Birkett J W, Chinyanga E, et al. Heavy metal content in vegetables irrigated with mixtures of waste water and sewage sludge in Zimbabwe:Implications for human health[J]. Agriculture, Ecosystem andEnvironment,2006,112:41-48.
    [135]陈怀满,林玉锁,韩凤祥等.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    [136]李其林,刘光德,黄昀,等.大田蔬菜铅、镉污染途径的研究[J],2004,12(4):149-152.
    [137]Foy C D, Chaney R L, White M C. The physiology of metal toxicity in plants [J]. Annual Review of Plant Physiology, 1978,29:511-566.
    [138]Lindstrom M. Urbanl and use influences on heavy metal fluxes and sur-face sediment concentrations of small lakes [J]. Water, Air and Soil Pollution,2001,126:363-383.
    [139]Lin Y P, Teng T P, Chang T K. Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan [J]. Landscape and Urban Planning,2002,62:19-35.
    [140]Nicholson F A, Smith S R, Alloway B J, et al. An inventory of heavy metals inputs to agricultural soils in Englandand Wales [J]. The Science of Total Environmental,2003,311:205-219.
    [141]段敏,马往校,李岚.17种蔬菜中铅镉铬元素含量分析研究[J].干旱区资源与环境,1999,13(4):74-80.
    [142]杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.
    [143]Shkolnik M Y A.1984. Trace Elements in Plants[J]. The Netherlands:Elsevier Science Publishers B. V.:140-172
    [144]陈同斌,宋波,郑袁明,黄泽春,雷梅,廖晓勇.北京市菜地土壤和蔬菜铅含量及其健康风险评估[J].中国农业科学,2006,39(8):1589-1597.
    [145]Liu W H, Zhao J Z, Ouyang Z Y, Soderlund L, Liu G H. Impacts of sewage irrigation on heavy metal distribution a ultura Sinica,2006,39(8):1589-1597.
    [146]He Z L, Yang X E, Stoffella P J. Trace elements in agroecosystems and impacts on the environment[J]. Journal of Trace Elements in Medicine and Biology,2005,19:125-140.
    [147]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998:129-130.
    [148]林忠辉,陈同斌.磷肥杂质对土壤生态环境的影响[J].生态农业研究,2000,8(2):47-50.
    [149]高志岭,刘建玲,廖文华.磷肥施用与镉污染的研究现状及防治对策[J].河北农业大学学报,2001,24(3):90-94.
    [150]张树清,张夫道,刘秀梅,王玉军,张建峰.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    [151]刘荣乐,李书田,王秀斌,王敏.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24:392-397.
    [152]卢东,宗良纲,肖兴基,杨永岗,周泽江,席运官.华东典型地区有机与常规农业土壤重金属含量的比较研究[J].
    农业环境科学学报,2005,24:143-147.
    [153]Zheng G Z, Yue L P, Li Z P, et al. Assessment on heavy metals pollution of agricultural soil in Guanzhong District[J]. Journal of Geographical Sciences,2006,16 (1):105-113.
    [154]高阳俊,张乃明.施用磷肥对环境影响的探讨[J].中国农学通报,2003,19(6):162-165.
    [155]郭义龙,林壹兵,胡少宜.漳州市农业土壤重金属现状、分析及防治[J].土壤,2003,(2):131-135.
    [156]宋玉芳,许华夏,任丽萍,等.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001.20(3):4-8.
    [157]邬飞波,张国平.不同Cd水平下大麦幼苗生长和Cd及养分吸收的品种间差异[J].应用生态学报,2002.13(12):1595-1599.
    [158]刘建新.Cd胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005.24(3):265-268.
    [159]张利红,李培军,李雪梅,等.Cd胁迫对小麦幼苗生长及生理特性的影响[J].生态学杂志,2005.24(4):458-460.
    [160]Degraeve N. Carcinogenic, teratogenic and mutagenic effects of cadmium.Mutation Research,1981.86:115-135.
    [161]Jarvis MD, Leung DWM.2001. Chelated lead transport in Chamaecytisus proliferu (L1) link ssp. Proliferus var palmensis (H.Christ):an ultrastrutural study. Plant Sci,161:433-441.
    [162]杨居荣,贺建群,张国祥,毛显强.1999.农作物对福毒害的耐性机理探讨.应用生态学报,6:87-91.
    [163]Gallego S M, Benavides M P, Tomaro M L. Effects of heavy metal ion excess on sunflower leaves:evidence for involvement of oxidative stress[J].Plant cience,1996,121:151-159.
    [164]Cho U H, Park J O. Mercury-induced oxidative stress in tomato seedlings[J]. Plant Science,2000,156:1-9.
    [165]Shah K, Kumar R Q Verma A, et al. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Science,2001,161:1135-1144.
    [166]龚子同,张甘霖,漆智平.海南岛土系概论[M].科学出版社,2004:118-120.
    [167]海南省农业厅土肥站.海南土种志[M].海南出版社,1994:18-19.
    [168]郝再彬.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004.
    [169]Gellego S M, Benavides M P, Tomaro M L. Effects of heavy metal ion excess for involvement of oxidative stress[J]. Plant Science,1996,121:151-159.
    [170]Mccord J M, Fridovich J.1969. Superoxide dismutase:An enzymic function for erythrocup rein(Hemocap rem) [J]. Journal of Biological Chemistry,224:6049-6055.
    [171]Cakmak I and Horst W J. Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activites in root tip of soybean[J]. Physiol Plantarum,1991,83:463-468.
    [172]Cao X, Ma L Q and Tu C. Antioxidative responses to arsenic in the arsenichyperaccu-Mulator Chinese brake fern(Pteris vittata L.) [J]. Environmenta Pollution,2004,128:317-325.
    [173]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:24-28.
    [174]Mehta SK, Gaur JP.1999. Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytologist,143:253-259.
    [175]周启星,孔繁翔,朱琳.2004.生态毒理学[M].北京:科学出版社.
    [176]牛明功,王贤,陈龙,等.2003.干早、渍涝和低温胁迫对小麦生理生化特性的影响[J].种子,(4):19-21.
    [177]李合生.2001.现代植物生理学[M].北京:高等教育出版社.
    [178]汤章城.1984.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,(1):15-21.
    [179]覃光球,严重玲,韦莉莉.2006.秋茄幼苗叶片单宁、可溶性糖和脯氨酸含量对Cd胁迫的响应[J].生态学报,26(10):3366-3371.
    [180]杨金凤,卜玉山,邓红艳.2009.镉、铅及其复合污染对油菜部分生理指标的影响[J].生态学杂志,28(7):1284-1287.
    [181]陶毅明,陈燕珍,梁士楚,等.2008.镉胁迫下红树植物木榄幼苗的生理生化特性[J].生态学杂志,27(5):762-766.
    [182]何俊瑜,任艳芳,朱诚,等.2008.镉胁迫对镉敏感水稻突变体活性氧代谢及抗氧化酶活性的影响[J].生态环境,17(3):1004·1008.
    [183]Iannelli MA, Pietrini F, Fiore L, et al.2002. Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology and Biochemistry,40:977-982.
    [184]周晓红,王国祥,冯冰冰.2008.光照对菹草(Potamogeton cripus)幼苗生长发育和光合荧光特性的影响[J].生态环境,17(4):1342-1347.
    [185]于方明,’仇荣亮,汤叶涛,等.2008.Cd对小白菜生长及氮素代谢的影响研究[J].环境科学,29(2):506-511.
    [186]李坤权,刘建国,陆小龙,等.2003.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报,22(5):529-532.
    [187]康立娟,赵明宪,庄国臣.2003.铜的单元及复合污染中水稻对Cu吸收累积规律的研究[J].农业环境科学学报22(4):503-504.
    [188]王焕校.污染生态学[M].北京:高等教育出版社,2002.
    [189]Nishizono H.1987.The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J]. Plant Soil,101:15-20.
    [190]李德明,朱祝军,钱琼秋.白菜锡积累基因型差异研究[J].园艺学报,2004:31(3):97-98.
    [191]Zenk M H. Heavy metal detoxifieation in high Plants[J]. Gene,1996:179:21-30.
    [192]Hall J L. Cellular mechanisms for heavy metal detoxifieation and tolerance[J]. Exp Bot,2002:53(366)1-11.
    [193]Lieta L, Nobili M De, Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean[J].plant Nutr.1996:19(3,4):527-533.
    [194]Carrier P, Baryla A, Havaux M. Cadmium distribution and mieroloealization in oilseed rape(Brassica napus)after long-term growth on cadmium-contaminated soil. Planta,2003:216:939-950.
    [195]Salt DE, Prince RC, Pieking IJ.1995. Meehanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol,109:1427-1433.
    [196]Kurz H, Sehulz R, Romheld V. Phytoremediation of thallium and cadmium from Contaminated soils:possibilities and limitations. Council for Promotion of Utilization of Organic Materials. Tokyo, Japan, Sept.1997:120-132.
    [197]Morghan J T. Accumulation of cadmium and selected elements in flax seed grown on calcareous soil. Plant and Soil.1993:150:61-68.
    [198]许嘉琳,鲍子平,杨居荣,刘虹.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991:2(3):244-248.
    [199]杨居荣,鲍子平,张素芹.锡、铅在植物细胞内的分布及其可溶性结合形态[J].中国环境科学,1993:13(4):263-268.
    [200]Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E.1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean(Phaseolus vulgaris L). PlantSci,127:139-147.
    [201]Somashekaraiah BV, Padmaja K. Prasad ARK.1992. Phytotoxicity of cadmium I ons on germinating Seedlings of mung bean(Phaseolus vulgaris):involvement of lipid peroxides in chlorophyll degradation. Physiol Plant,85:85-89.
    [202]严重玲,付舜珍,方重华,陈蓉蓉,吴善绮,沈芹.Hg、Cd及其共同作用对烟草叶绿素含量及抗氧化酶系统的影响[J].植物生态学报,1997,21(5):468-473.
    [203]罗立新,孙铁珩,靳月华.1998.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,18(5):495-499.
    [204]Kranner I, Birtic S.2005. A modulating role for antioxidants in desiccation tolerance[J]. Integrative and Cpmparative Biology,45(5):734-740.
    [205]Siripornadulsil S, Rubinelli P, Gao-Rubinelli F, et al. Cadmium and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii:evidence for H43 protein function in iron assimilation[J]. Planta,2002,215(1):1-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700