用户名: 密码: 验证码:
IGFBP5在骨肉瘤生长与转移作用机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分荧光素酶标记骨肉瘤细胞MG63及转移亚型细胞株的建立
     目的:荧光素酶标记肿瘤细胞株MG63,通过肺转移灶原代培养的方法建立MG63细胞株转移亚型细胞株MG63-1和MG63-2。
     方法:体外培养肿瘤细胞株MG63细胞株,荧光素酶标记细胞,通过膝关节注射肿瘤细胞建立肿瘤模型,5周左右,当荧光成像仪扫描发现肺脏广泛转移时,取肺脏转移肿瘤,原代培养得细胞株MG63-1,重复上述操作得细胞株MG63-2。
     结果:(1)利用BSD筛选方法成功筛选到含荧光素酶的细胞株MG63-luc(2)成功将筛选到的细胞株MG63-luc注射到4周龄裸鼠成瘤,并得到肿瘤转移细胞亚型MG63-1和MG63-2。
     结论:成功得到含有荧光素酶标记的细胞株MG63-luc及其转移亚型MG63-1和MG63-2,为进一步研究骨肉瘤转移打下了良好的基础。
     第二部分MG63转移亚型细胞株体外实验的研究
     目的:通过一系列的肿瘤细胞经典转移能力方法,体外体内实验比较MG63和MG63-2细胞株之间肿瘤转移能力,证实MG62-2较MG63的转移能力强。
     方法:绘制细胞生长曲线,划痕实验,细胞吸附实验,细胞Matrigel迁移实验,与转移相关的主要5个基因MMP2、MMP9、TIMP1、TIMP2和Ezrin的RT-PCR及western-blotting。
     结果:(1)MG63-2的生长较MG63生长缓慢,细胞的周期长。(2)MG63-2划痕实验细胞的融合较MG63慢,所需时间长。(3)细胞吸附实验证实MG63-2的细胞吸附能力较MG63强。(4)Matrigel迁移实验证实MG63-2的迁移能力较MG63强(。5)RT-PCR以及western-blotting均证实MMP2和MMP9表达降低,TIMP2和Ezrin表达增高。
     结论:通过绘制细胞生长曲线,划痕实验,细胞吸附实验、Matrigel迁移实验,与转移相关的主要七个基因MMP2、MMP9、TIMP1、TIMP2和Ezrin的RT-PCR及其western-blotting,有差异表达,证实MG63-2较MG63在体外有着较强的转移能力,为下一步研究打下坚实之基础。
     第三部分MG63转移亚型细胞株体内实验的研究
     目的:本研究旨在通过膝关节注射动物肿瘤模型观察MG63和MG63-2之间肿瘤生长及转移能力的区别。
     方法:将MG63细胞和MG63-2细胞株的PBS细胞悬液注射入裸鼠膝关节内。荧光素酶成像仪器观察裸鼠原位肿瘤生长情况和肺转移情况。石蜡组织切片证实MG63-2在肺部有广泛的转移灶。
     结果:(1)采用膝关节注射法成原位肿瘤法稳定可靠;(2)原位肿瘤的生长曲线证实MG63肿瘤组成瘤性较MG63-2生长慢。(3)荧光素酶成像仪观察结果显示MG63-2的成瘤性较强,且其肺脏内转移多而广泛,有明显的统计学意义。(4)组织学HE染色,光镜下计数肿瘤转移数量,MG63-2有较强的转移能力。
     结论:体内实验证实MG63-2较MG63细胞株有较强的细胞成瘤性和转移能力。
     第四部分IGFBP5对肿瘤生长和转移影响的体内外实验的研究
     目的:通过构建IGFBP5基因高表达和IGFBP5 RNA干扰腺病毒,重点研究IGFBP5在肿瘤生长其转移的作用。
     方法:构建IGFBP5的腺病毒载体和IGFBP5的干扰病毒,分别感染Mefs、C3H10和C2C12三类细胞株,观测ALP读数,分析研究IGFBP5对其分化的影响。病毒感染143B、MG63-P、MG63-1、MG63-2细胞株绘制生长曲线,采用matrigel迁移实验分析IGFBP5对骨肉瘤细胞株的迁移能力的影响。游标卡尺及Xenogen image成像技术分析IGFBP5高表达和低表达后,肿瘤在动物体内生长与转移情况,分析其对肿瘤生长与转移的影响,石蜡组织切片,光镜下看转移灶的情况,研究IGFBP5对肿瘤转移的影响。
     结果:(1)ALP读数证实IGFBP5能促进C3H10、mefs、C2C12的分化,但是抑制其增长。而对SiIGFBP5则促进增长影响分化。(2)IGFBP5能抑制骨肉瘤143B-luc、MG63、MG63-1、Mg63-2的增长,SiIGFBP5则促进其增长。(3)划痕实验、matrigel肿瘤迁移实验,证实IGFBP5抑制肿瘤的迁移能力。(4)体内肿瘤生长的测量及其成像均证实IGFBP5有促进肿瘤分化,抑制增长,抑制转移的特性。
     结论:IGFBP5能够一定程度的抑制骨肉瘤细胞的增长,促进其分化。其在骨肉瘤的生长和转移中有重要的抑制作用。
PART ONE LUCIFERASE TAGGED MG63 CELL LINE AND ESTABLISHMENT OF SUBTYPE OF THE CELL LINE
     Objective: using the luciferase to tag the MG63 cell line by retro-virus, culture the cells which got from the lung metastasis sites, then got the cell lines of MG63.1 and MG63.2.
     Methods: culture the MG63 cell lines in vivo, using the cells which was tagged by luciferase, the cells were injected in the intra-tibia, about 5weeks, when we found the signal from the lungs if we made the image by Xengon machine, the lung tumors which were metastasized from the legs were taken and cultured in the incubator, this is the cell line which we definite as MG63.1, repeated the procedure and then we got the cell line MG63.2.
     Results: (1)Using the classifying method by antibiotic BSD, we successfully got the cell line MG63-luc. (2)Successfully established the cell lines MG63.1 and MG63.2 by injecting the cell line MG63-luc to the intra-tibia of the 4 weeks old nude mice.
     Conclusion: Successfully established the cell line MG63-luc which tagged luciferase and the subtype cell lines MG63.1 and MG63.2, and this made us easier further research on the metastasis of the osteosarcoma.
     PART TWO THE IN VITRO STUDY OF THE SUBTYPE CELL LINE OF MG63
     Objective: through series methods of studying the metastasis ability, compare the metastasis ability between MG63 and MG63.2 and prove the MG63.2 has a stronger ability to metastasis than MG63.
     Methods: Draw the proliferation curve of MG63 and MG63.2, wound healing test, cell adhesion test, matrigel invasive test, cell migration test, and the seven genes MMP2,MMP9,TIMP1,TIMP2 and Ezrin which had relationship with metastasis run the RT-PCR and western-blotting to test the expression of RNA and protein.
     Results: (1) Comparing with the MG63, MG63.2 grew slower and the cell cycle was a little longer. (2)Cell adhesion test showed MG63.2 had a stronger ability than MG63. (3)Matrigel migration test showed MG63.2 had a stronger ability than MG63. (4) Both the RT-PCR and western-blotting test showed that the expression of MMP2 and MMP9 decreased while the TIMP2 and ezrin increased in these two cell lines.
     Conclusions: Through the test of cell proliferation curve, wound healing test, cell adhesion test, matrigel invasive test and RT-PCR and western-blotting of 5 genes MMP2, MMP9, TIMP1, TIMP2, ezrin showed that MG63.2 definitely had the ability to metastasis than MG63 in vitro.
     PART THREE THE IN VIVO STUDY ON THE SUBTYPE CELL LINE OF MG63
     Objective: To study the tumor growth and the ability to metastasis by the animal model which were established by injecting the cells to the intratibia between the MG63 and MG63.2.
     Methods:Inject the suspended cells MG63 and MG63.2 diluted by PBS to the intra-tibia of the nude mice. Observe the tumor grow and lung metastasis. HE staining proved that the MG63.2 cans metastasis to the lungs.
     Results:(1) The model which can be formed by injecting the cells to the intra-tibia was stable and reliable. (2) The tumor growth in the primary site showed the MG63.2 grew a little faster than MG63. (3)Xengon image showed MG63.2 had the stronger ability to form the tumor metastasis. And there was significant difference between these two groups. (4)HE staining of the histology showed the quantity of the tumor metastasis was more in the MG63.2.
     Conclusions: MG63.2 had the stronger ability of tumor forming and metastasis than MG63.
     PART FOUR THE RESEARCH ON THE EFFECT OF TUMOR GROWTH AND METASTASIS IN VITRO AND IN VIVO STUDY FOR THE GENE IGFBP5
     Objective: To construct the ad-easy virus of IGFBP5 and RNA interference virus, do the research on effect of the tumor growth and metastasis for the gene IGFBP5.
     Methods:Construct the ad-virus of IGFBP5 and its RNA interference virus, infected the mefs,C3H10 and C2C12 three cell lines, read the ALP reading, analysis the effect on the differentiation of IGFBP5. Draw the proliferation curve for the 143B,MG63-P,MG63.1 and MG63.2 after the IGFBP5 virus infecting. Study the matrigel migration ability for the IGFBP5 virus infected cell lines. Measured the tumour growth and Xengon image analysis the signal express in vivo. Counted the quantity of the metastasis in the lungs and study the effect of IGFBP5 in the metastasis.
     Results:(1)ALP reading proved that IGFBP5 can promote C3H10, mefs and C2C12 differentiation and inhibit the proliferation. For the SiIGFBP5, it is opposite. (2) IGFBP5 can inhibit the osteosarcoma cell lines 143B-luc, MG63, MG63.1and MG63.2 growth while the SiIGFBP5 was the opposite. (3)Wound healing test, matrigel invasive test proved that IGFBP5 can inhibit the tumour invasive while the SiIGFBP5 was the opposite. (4)Tumour measurement and Xengon image showed that IGFBP5 can inhibit the tumour growth, while the SiIGFBP5 is the opposite.
     Conclusions: IGFBP5 can inhibit the tumour growth, promote the tumour differentiation. It played an important role in the tumour growth and metastasis.
引文
1. Longhi, A., et al., Primary bone osteosarcoma in the paediatric age: state of the art. Cancer Treat Rev, 2006. 32(6): p. 423-36.
    2. Unni, K.K. and D.C. Dahlin, Osteosarcoma: pathology and classification. Semin Roentgenol, 1989. 24(3): p. 143-52.
    3. Huvos, A.G., Osteosarcoma in adolescents and young adults: new developments and controversies. Commentary on pathology. Cancer Treat Res, 1993. 62: p. 375-7.
    4. Munajat, I., et al., Tumour volume and lung metastasis in patients with osteosarcoma. J Orthop Surg (Hong Kong), 2008. 16(2): p. 182-5.
    5. Yamada, K., Y. Yatabe, and H. Sugiura, Osteosarcoma with skeletal muscle metastasis. Arch Orthop Trauma Surg, 2008. 128(7): p. 695-9.
    6. Yoshikawa, H., et al., A dog with osteosarcoma which metastasized to the eye months before metastasis to other organs. J Vet Med Sci, 2008. 70(8): p. 825-8.
    7. Attili, S.V., et al., Orbital metastasis: a rare presentation of osteosarcoma. Int Ophthalmol, 2008. 28(6): p. 433-6.
    8. Luo, X., et al., S100A6 expression and function in human osteosarcoma. Clin Orthop Relat Res, 2008. 466(9): p. 2060-70.
    9. Meng, Y.H., J.Y. Yu, and Y.L. Lu, [Thrombin and tumor metastasis - review]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2007. 15(3): p. 671-4.
    10. Alacacioglu, A., et al., Metastasis of giant cell tumor to the breast: case report and review of the literature. Tumori, 2006. 92(4): p. 351-3.
    11. Ma, O., et al., MMP13, Birc2 (cIAP1), and Birc3 (cIAP2), amplified on chromosome 9, collaborate with p53 deficiency in mouse osteosarcoma progression. Cancer Res, 2009. 69(6): p. 2559-67.
    12. Berman, S.D., et al., Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. Proc Natl Acad Sci U S A, 2008. 105(33): p. 11851-6.
    13. Walkley, C.R., et al., Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev, 2008. 22(12): p. 1662-76.
    14. Hoang, B.H., et al., Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res, 2004. 64(8): p. 2734-9.
    15. Haydon, R.C., et al., Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer, 2002. 102(4): p. 338-42.
    16. Guo, Y., et al., Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res, 2008. 466(9): p. 2039-45.
    17. Guo, Y., et al., Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res, 2007. 25(7): p. 964-71.
    18. Hoang, B.H., et al., Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer, 2004. 109(1): p. 106-11.
    19. Li, S., et al., MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology, 2009. 49(4): p. 1194-202.
    20. Arvanitis, C., et al., (18)F and (18)FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation. Cancer Biol Ther, 2008. 7(12): p. 1947-51.
    21. Scionti, I., et al., Clinical impact of the methotrexate resistance-associated genes C-MYC and dihydrofolate reductase (DHFR) in high-grade osteosarcoma. Ann Oncol, 2008. 19(8): p. 1500-8.
    22. Lu, J.Y., et al., [Therapeutic effects of small interfering RNA targeting MDM2 onhuman osteosarcoma cells]. Zhonghua Zhong Liu Za Zhi, 2008. 30(7): p. 502-5.
    23. He, T.C., Adenoviral vectors. Curr Protoc Hum Genet, 2004. Chapter 12: p. Unit 12 4.
    24. Luo, Q., et al., Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing. Gene, 2007. 395(1-2): p. 160-9.
    25. Unterreiner, V., et al., Comparison of variability and sensitivity between nuclear translocation and luciferase reporter gene assays. J Biomol Screen, 2009. 14(1): p. 59-65.
    26. Lucignani, G., Hi-tech systems for in-vivo image-guided preclinical radiobiology. Eur J Nucl Med Mol Imaging, 2008. 35(12): p. 2334-8.
    27. Gerger, A., et al., Diagnostic image analysis of malignant melanoma in in vivo confocal laser-scanning microscopy: a preliminary study. Skin Res Technol, 2008. 14(3): p. 359-63.
    28. Guse, K., et al., Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Ther, 2007. 14(11): p. 902-11.
    29. Chandran, S.S., S.A. Williams, and S.R. Denmeade, Extended-release PEG-luciferin allows for long-term imaging of firefly luciferase activity in vivo. Luminescence, 2009. 24(1): p. 35-8.
    30. Brutkiewicz, S., et al., The expression level of luciferase within tumour cells can alter tumour growth upon in vivo bioluminescence imaging. Luminescence, 2007. 22(3): p. 221-8.
    31. Miretti, S., et al., A mouse model of pulmonary metastasis from spontaneous osteosarcoma monitored in vivo by Luciferase imaging. PLoS ONE, 2008. 3(3): p. e1828.
    32. Maeda, R., et al., Appearance of lung metastasis from osteosarcoma 21 years after initial treatment. Gen Thorac Cardiovasc Surg, 2008. 56(12): p. 613-5.
    33. Zhang, P., et al., Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res, 2008. 14(10): p. 2962-9.
    34. Luo, X., et al., Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab Invest, 2008. 88(12): p. 1264-77.
    35. Fokas, E., et al., Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev, 2007. 26(3-4): p. 705-15.
    36. Fidler, I.J., Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res, 1978. 38(9): p. 2651-60.
    37. Zhang, H., et al., [Screening the tumor associated gene in human hepatocellular carcinoma by gene chip.]. Zhonghua Gan Zang Bing Za Zhi, 2009. 17(2): p. 139-140.
    38. Krop, I., et al., A putative role for psoriasin in breast tumor progression. Cancer Res, 2005. 65(24): p. 11326-34.
    39. Saito, N., et al., A double three-step theory of brain metastasis in mice: the role of the pia mater and matrix metalloproteinases. Neuropathol Appl Neurobiol, 2007. 33(3): p. 288-98.
    40. Pawelek, J.M. and A.K. Chakraborty, The cancer cell--leukocyte fusion theory of metastasis. Adv Cancer Res, 2008. 101: p. 397-444.
    41. Deng, Z.L., et al., Regulation of osteogenic differentiation during skeletal development. Front Biosci, 2008. 13: p. 2001-21.
    42. Lee, W.J., et al., Cutaneous metastasis of extraskeletal osteosarcoma arising in the mediastinum. Am J Dermatopathol, 2008. 30(6): p. 629-31.
    43. Li, X.M., et al., Conversion of a metastable superhydrophobic surface to an ultraphobic surface. Langmuir, 2008. 24(15): p. 8008-12.
    44. He, T., et al., The role of colonic metabolism in lactose intolerance. Eur J Clin Invest, 2008. 38(8): p. 541-7.
    45. Gentner, B., et al., Differences in the gene expression profile of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in primary colorectal tumors and their synchronous liver metastases. Anticancer Res, 2009. 29(1): p. 67-74.
    46. Figueira, R.C., et al., Correlation between MMPs and their inhibitors in breast cancer tumor tissue specimens and in cell lines with different metastatic potential. BMC Cancer, 2009. 9: p. 20.
    47. Yodkeeree, S., et al., Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem, 2009. 20(2): p. 87-95.
    48. Wurtz, S.O., et al., TIMP-1 as a tumor marker in breast cancer--an update. Acta Oncol, 2008. 47(4): p. 580-90.
    49. Kang, J.H., et al., Soybean saponin inhibits tumor cell metastasis by modulating expressions of MMP-2, MMP-9 and TIMP- 2. Cancer Lett, 2008. 261(1): p. 84-92.
    50. Seo, Y.S., et al., Usefulness of MMP-9/TIMP-1 in predicting tumor recurrence in patients undergoing curative surgical resection for gastric carcinoma. Dig Dis Sci, 2007. 52(3): p. 753-9.
    51. English, W.R., et al., Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J Biol Chem, 2000. 275(19): p. 14046-55.
    52. Lockwood, C.J., et al., Matrix metalloproteinase 9 (MMP9) expression in preeclamptic decidua and MMP9 induction by tumor necrosis factor alpha and interleukin 1 beta in human first trimester decidual cells. Biol Reprod, 2008. 78(6): p. 1064-72.
    53. Jee, B.K., et al., KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line. Biochem Biophys Res Commun, 2006. 342(2): p. 655-61.
    54. Mira, E., et al., Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci, 2004. 117(Pt 9): p. 1847-57.
    55. L'Allemain, G., [An original mechanism of action for TIMP2, a tissue-inhibitor of matrix metalloproteinases]. Bull Cancer, 2003. 90(11): p. 935.
    56. Ten Heuvel, S.E., et al., The Classic Prognostic Factors Tumor Stage, Tumor Size, and Tumor Grade are the Strongest Predictors of Outcome in Synovial Sarcoma: No Role for SSX Fusion Type or Ezrin Expression. Appl Immunohistochem Mol Morphol, 2008.
    57. Hunter, K.W., Ezrin, a key component in tumor metastasis. Trends Mol Med, 2004. 10(5): p. 201-4.
    58. Makitie, T., et al., Ezrin as a prognostic indicator and its relationship to tumor characteristics in uveal malignant melanoma. Invest Ophthalmol Vis Sci, 2001. 42(11): p. 2442-9.
    59. Bal, N., et al., Association of ezrin expression in intestinal and diffuse gastric carcinoma with clinicopathological parameters and tumor type. World J Gastroenterol, 2007. 13(27): p. 3726-9.
    60. Meng, J.J., et al., Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggests modulation of ERM proteins by merlin. J Neurosci Res, 2000. 62(4): p. 491-502.
    61. Mendes, O., et al., MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin Exp Metastasis, 2007. 24(5): p. 341-51.
    62. Kawamata, H., et al., Over-expression of tissue inhibitor of matrix metalloproteinases (TIMP1 and TIMP2) suppresses extravasation of pulmonary metastasis of a rat bladder carcinoma. Int J Cancer, 1995. 63(5): p. 680-7.
    63. Bhuvarahamurthy, V., et al., In situ gene expression and localization of metalloproteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma. Oncol Rep, 2006. 15(5): p. 1379-84.
    64. Mysliwiec, M., [Thrombotic theory of growth and metastasis of malignant neoplasms]. Pol Arch Med Wewn, 1967. 39(1): p. 85-9.
    65. Blakely, T., Iconography and Commission on the Social Determinants of Health (and health inequity). J Epidemiol Community Health, 2008. 62(12): p. 1018-20.
    66. Hsu, C.Y. and R. Dillon, A 3D Motile Rod-Shaped Monotrichous Bacterial Model.Bull Math Biol, 2009.
    67. Gilchrist, D.A., D.C. Fargo, and K. Adelman, Using ChIP-chip and ChIP-seq to study the regulation of gene expression: Genome-wide localization studies reveal widespread regulation of transcription elongation. Methods, 2009.
    68. Xiong, H., et al., Inhibition of STAT5 induces G1 cell cycle arrest and reduces tumor cell invasion in human colorectal cancer cells. Lab Invest, 2009.
    69. Que, H.F., et al., Effect of runing II on the growth and metastasis of transplanted tumor in mammary cancer-bearing mice and its mechanism. J Tradit Chin Med, 2008. 28(4): p. 293-8.
    70. Palumbo, J.S., et al., Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost, 2008. 6(5): p. 812-9.
    71. Sun, Y., Z. Shen, and X. Ji, [Study on the relationship between CD44v6, p53 gene mutation and ovarian carcinoma metastasis]. Zhonghua Fu Chan Ke Za Zhi, 2000. 35(4): p. 225-8.
    72. Chu, S.H., et al., c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro. J Neurooncol, 2009.
    73. Philippar, U., et al., A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev Cell, 2008. 15(6): p. 813-28.
    74. Huang, H.P., et al., Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway. J Agric Food Chem, 2008. 56(19): p. 9286-93.
    75. Sawai, H., et al., Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival. BMC Gastroenterol, 2008. 8: p. 56.
    76. Hunter, K.W. and J. Alsarraj, Gene expression profiles and breast cancer metastasis: a genetic perspective. Clin Exp Metastasis, 2009.
    77. Thomassen, M., Q. Tan, and T.A. Kruse, Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis.Breast Cancer Res Treat, 2009. 113(2): p. 239-49.
    78. Landemaine, T., et al., A six-gene signature predicting breast cancer lung metastasis. Cancer Res, 2008. 68(15): p. 6092-9.
    79. Chanda, D., et al., Systemic osteoprotegerin gene therapy restores tumor-induced bone loss in a therapeutic model of breast cancer bone metastasis. Mol Ther, 2008. 16(5): p. 871-8.
    80. Fujii, T., et al., Preclinical and clinical studies of novel breast cancer drugs targeting molecules involved in protein kinase C signaling, the putative metastasis-suppressor gene Cap43 and the Y-box binding protein-1. Curr Med Chem, 2008. 15(6): p. 528-37.
    81. Ren, L., et al., The actin-cytoskeleton linker protein ezrin is regulated during osteosarcoma metastasis by PKC. Oncogene, 2009. 28(6): p. 792-802.
    82. Guruvayoorappan, C. and G. Kuttan, Biophytum sensitivum (L.) DC inhibits tumor cell invasion and metastasis through a mechanism involving regulation of MMPs, prolyl hydroxylase, lysyl oxidase, nm23, ERK-1, ERK-2, STAT-1, and proinflammatory cytokine gene expression in metastatic lung tissue. Integr Cancer Ther, 2008. 7(1): p. 42-50.
    83. Takami, Y., et al., The activity of RhoA is correlated with lymph node metastasis in human colorectal cancer. Dig Dis Sci, 2008. 53(2): p. 467-73.
    84. McIntyre, G.I., Increased cell hydration promotes both tumor growth and metastasis: a biochemical mechanism consistent with genetic signatures. Med Hypotheses, 2007. 69(5): p. 1127-30.
    85. Havens, A.M., et al., An in vivo mouse model for human prostate cancer metastasis. Neoplasia, 2008. 10(4): p. 371-80.
    86. Chen, X., et al., Identification of a novel human lactate dehydrogenase gene LDHAL6A, which activates transcriptional activities of AP1(PMA). Mol Biol Rep, 2009. 36(4): p. 669-76.
    87. Yang, J., S.A. Mani, and R.A. Weinberg, Exploring a new twist on tumormetastasis. Cancer Res, 2006. 66(9): p. 4549-52.
    88. Yu, Y., et al., Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med, 2004. 10(2): p. 175-81.
    89. Samant, R.S., et al., Suppression of murine mammary carcinoma metastasis by the murine ortholog of breast cancer metastasis suppressor 1 (Brms1). Cancer Lett, 2006. 235(2): p. 260-5.
    90. Lu, J., et al., EGF-IL-18 fusion protein as a potential anti-tumor reagent by induction of immune response and apoptosis in cancer cells. Cancer Lett, 2008. 260(1-2): p. 187-97.
    91. Zhou, W., et al., Down-regulation of CXCL12 mRNA expression by promoter hypermethylation and its association with metastatic progression in human breast carcinomas. J Cancer Res Clin Oncol, 2009. 135(1): p. 91-102.
    92. Lopez, D., et al., Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys, 2009. 482(1-2): p. 77-82.
    93. Yu, Y. and G. Merlino, Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res, 2002. 62(10): p. 2951-6.
    94. Bai, W., et al., Expression profiling of supraglottic carcinoma: PTEN and thrombospondin 2 are associated with inhibition of lymphatic metastasis. Acta Otolaryngol, 2008: p. 1-6.
    95. Wu, M.H., et al., Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res, 2009. 7(3): p. 311-8.
    96. Dewever, J., et al., Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol, 2007. 171(5): p. 1619-28.
    97. Schmid, C., C. Ghirlanda-Keller, and J. Zapf, Effects of IGF-I and -II, IGF binding protein-3 (IGFBP-3), and transforming growth factor-beta (TGF-beta) on growth and apoptosis of human osteosarcoma Saos-2/B-10 cells: lack of IGF-independent IGFBP-3 effects. Eur J Endocrinol, 2001. 145(2): p. 213-21.
    98. Campbell, P.G. and J.F. Novak, Insulin-like growth factor binding protein (IGFBP) inhibits IGF action on human osteosarcoma cells. J Cell Physiol, 1991. 149(2): p. 293-300.
    99. Rosato, R., et al., The IGFBP-3 mRNA and protein levels are IGF-I-dependent and GH-independent in MG-63 human osteosarcoma cells. Mol Cell Endocrinol, 2001. 175(1-2): p. 15-27.
    100. Bostedt, K.T., et al., Insulin-like growth factor (IGF) I down-regulates type 1 IGF receptor (IGF 1R) and reduces the IGF I response in A549 non-small-cell lung cancer and Saos-2/B-10 osteoblastic osteosarcoma cells. Exp Cell Res, 2001. 271(2): p. 368-77.
    101. Ohlsson, C., et al., p53 regulates insulin-like growth factor-I (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosarcoma cell line: interaction between p53 and Sp1. Endocrinology, 1998. 139(3): p. 1101-7.
    102. Rodriguez-Galindo, C., et al., Circulating concentrations of IGF-I and IGFBP-3 are not predictive of incidence or clinical behavior of pediatric osteosarcoma. Med Pediatr Oncol, 2001. 36(6): p. 605-11.
    103. Herzlieb, N., et al., Insulin-like growth factor-I inhibits the progression of human U-2 OS osteosarcoma cells towards programmed cell death through interaction with the IGF-I receptor. Cell Mol Biol (Noisy-le-grand), 2000. 46(1): p. 71-7.
    104. Tripathi, G., et al., IGF-independent effects of insulin-like growth factor binding protein-5 (Igfbp5) in vivo. FASEB J, 2009.
    105. Wang, H., et al., IGFBP2 and IGFBP5 overexpression correlates with the lymph node metastasis in T1 breast carcinomas. Breast J, 2008. 14(3): p. 261-7.
    106. Bobola, N. and B. Engist, IGFBP5 is a potential regulator of craniofacialskeletogenesis. Genesis, 2008. 46(1): p. 52-9.
    107. Walker, G., et al., Insulin-like growth factor binding proteins IGFBP3, IGFBP4, and IGFBP5 predict endocrine responsiveness in patients with ovarian cancer. Clin Cancer Res, 2007. 13(5): p. 1438-44.
    108. Amaar, Y.G., et al., Identification and characterization of novel IGFBP5 interacting protein: evidence IGFBP5-IP is a potential regulator of osteoblast cell proliferation. Am J Physiol Cell Physiol, 2006. 290(3): p. C900-6.
    109. Salih, D.A., et al., Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci U S A, 2004. 101(12): p. 4314-9.
    110. McQueeney, K. and C.N. Dealy, Roles of insulin-like growth factor-I (IGF-I) and IGF-I binding protein-2 (IGFBP2) and -5 (IGFBP5) in developing chick limbs. Growth Horm IGF Res, 2001. 11(6): p. 346-63.
    111. Bruserud, O., K.J. Tronstad, and R. Berge, In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum. J Cancer Res Clin Oncol, 2005. 131(6):
    1 Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006;66:1883–90.
    2 Cohnheim, V. Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Arch.Pathol. Anat. Physiol. Klin. Med. 65, 64–69 (1875).
    3 Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).
    4 Al-Hajj, M, Wicha, M. S, Benito-Hernandez, A, Morrison, S. J.& Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).
    5 Singh, S. K. et al. Identification of a cancer stem cell in human brain tumours. Cancer Res. 63, 5821–5828(2003).
    6 Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).
    7 Passegue, E, Jamieson, C.H, Ailles, L.E. & Weissman, I.L. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc. Natl. Acad. Sci. USA 100 Suppl 1, 11842–11849 (2003).
    8 Fuchs, E, Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells andtheir niche. Cell 116, 769–778 (2004).
    9 Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363(2004).
    10 Spradling, A, Drummond-Barbosa, D. & Kai, T. Stem cells find their niche. Nature 414,98–104 (2001).
    11 Lininger, R.A, Fujii, H, Man, Y.G, Gabrielson, E. & Tavassoli, F.A. Comparison of l oss heterozygosity in primary and recurrent ductal carcinoma in situ of the breast. Mod. Pathol. 11, 1151–1159 (1998).
    12 Bates, R.C. & Mercurio, A.M. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol. Ther. 4, 365–370 (2005).
    13 Kai, T. & Spradling, A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428, 564–569 (2004).
    14 Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).
    15 Brabletz, T, Jung, A, Spaderna, S, Hlubek, F. & Kirchner, T. Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5,744–749 (2005).
    16 Pardal, R, Clarke, M.F. & Morrison, S.J. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902 (2003).
    17 Sherr, C.J. The ink4a/arf network in tumour suppression. Nat. Rev. Mol. Cell Biol. 2,731–737 (2001).
    18 Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850(2005).
    19 Harley, C.B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp.Quant. Biol. 59, 307–315 (1994).
    20 Hahn, W.C. Role of telomeres and telomerase in the pathogenesis of human cancer. J. Clin. Oncol. 21, 2034–2043 (2003).
    21 Morrison, S.J, Prowse, K.R, Ho, P. & Weissman, I.L. Telomerase activity inhematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216 (1996).
    22 Molofsky, A.V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).
    23 Johnstone, R. W, Cretney, E. & Smyth, M. J. P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93, 1075–1085(1999).
    24 Pallis, M. & Russell, N. P-glycoprotein plays a drug-effluxindependent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood 95,2897–2904 (2000).
    25 Brenton, J.D, Carey, L.A, Ahmed, A.A. & Caldas, C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J. Clin. Oncol.23, 7350-7360 (2005).
    26 Al-Hajj, M, Becker, M.W, Wicha, M, Weissman, I. & Clarke, M.F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004).
    27 Dean, M, Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer5, 275–284 (2005).
    28 Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003).
    29 Smalley, M. & Ashworth, A. Stem cells and breast cancer: a field in transit. Nat. Rev.Cancer 3, 832–844 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700