用户名: 密码: 验证码:
功能化纳米石墨烯在生物医学领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在最近几年,功能化纳米石墨烯由于具有独特物理化学性质在包括生物医学在内的很多领域都引起了广泛的关注。在本博士论文中,我们系统地研究了功能化纳米石墨烯在生物医学尤其是肿瘤诊疗方面的潜在应用,并对这类材料的生物学效应和毒性学行为进行了探讨。我们通过聚乙二醇修饰得到具有优良的水溶性和生物相容性的纳米石墨烯用于肿瘤成像及光热治疗;我们进一步研究不同表面修饰和不同尺寸的纳米石墨烯在生物体内的行为,并利用优化的纳米石墨烯实现了动物体内的超低光功率肿瘤光热治疗;同时我们还以纳米石墨烯为基底,构建基于纳米石墨烯的功能复合物用于肿瘤多模式成像及成像指导下的肿瘤光热治疗;考虑到纳米材料的生物学效应和毒理学是重要的基础科学问题,我们还对纳米石墨烯在生物体内的分布、代谢、以及潜在毒性进行了系统的研究。主要的研究结果概括如下:
     第一章:简要概述了功能化纳米石墨烯的制备、在生物医学方面的应用以及潜在毒性问题,并着重阐述了本论文的选题依据和研究重点。
     第二章:我们使用聚乙二醇(PEG)修饰氧化石墨烯(GO),从而制备具有良好生物相容性的nGO-PEG,然后使用荧光标记nGO-PEG进行活体肿瘤模型的荧光成像。小动物活体成像显示nGO-PEG在多种肿瘤模型中都有很高的富集,且具有较低的网状内皮系统吞噬。我们然后利用nGO-PEG在近红外的强吸收进行活体肿瘤的光热治疗,达到100%的肿瘤杀灭能力。
     第三章:我们使用水合肼分别还原GO和nGO-PEG得到不同尺寸的还原石墨烯(RGO)和超小尺寸的还原石墨烯(nRGO),然后使用支链状PEG(C18PMH-PEG)非共价修饰RGO和nRGO,从而制备出具有生物相容性的RGO-PEG和nRGO-PEG。我们然后研究了不同尺寸和不同表面修饰的纳米石墨烯在生物体内的行为,并实现了超低功率的肿瘤光热治疗。
     第四章:我们使用高温水热法制备还原石墨烯-四氧化三铁功能复合物(RGO-IONP),然后使用C18PMH-PEG非共价修饰得到RGO-IONP-PEG功能复合物。利用其固有的近红外强吸收、强磁性以及额外的荧光标记,我们实现了基于RGO-IONP-PEG功能复合物的肿瘤多模态成像(光声、磁共振和荧光成像),并首次实现了基于RGO-IONP-PEG功能复合物成像指导下的肿瘤光热治疗。
     第五章:我们首次采用核素125I标记的方法来研究纳米石墨烯(nGO-PEG)在生物体内的长期分布以及潜在的长期毒性。通过尾静脉将125I标记的nGO-PEG注射入小鼠体内,我们发现nGO-PEG主要聚集在网状内皮系统包括肝和脾,但是可以通过尿液和粪便排出体外。我们还对实验小鼠的组织学和血液学进行分析,发现在我们使用的剂量(20mg/kg)下并没有对实验小鼠造成明显的毒性。
     第六章:我们系统研究了GO及其衍生物分别经口服和腹腔给药后在体内的行为以及潜在的毒性。我们发现通过口服给药的nGO-PEG很少被器官,而经腹腔给药,除了GO,功能化的纳米石墨烯包括nGO-PEG,RGO-PEG和nRGO-PEG主要被肝脾吸收。虽然GO及其衍生物在小鼠体内停留很长时间,但是我们通过对组织学和血液学分析并没有实验小鼠造成明显的毒性。
     总而言之,本论文对功能化纳米石墨烯以及功能复合物在生物医学上的应用,尤其在生物成像和肿瘤光热治疗等方面展开了较为系统的研究,并对纳米石墨烯的生物学效应和潜在毒性进行了较为深入的评价。我们的研究成果有力地推进基于纳米石墨烯这一新型二维纳米材料在生物医学上的应用,也为发展探索基于纳米材料的新型肿瘤治疗方法提出了新的思路。
In recent years, owing to their unique physical and chemical properties,nano-graphene has attracted tremendous interest in many different fields includingbiomedicine. In this dissertation, we have systematically studied the biomedicalapplications of functionalized nano-graphene, particularly for cancer diagnosis andtreatment, and explored the biological effect and potential toxicity of nano-graphene inanimals. PEGylated nano-graphene with excellent water-soluble and biocompatibility issynthesized and used for tumor imaging and photothermal therapy. How sizes andsurface chemistry affect the in vivo behaviors and photothermal therapeutic efficacy ofnano-graphene is then carefully investigated, realizing highly efficient in vivo tumorablation under an ultra-low laser power density using our optimized nano-grapheneformulation. Graphene-based magnetic nanocomposite is further developed and appliedfor tumor multimodal imaging and imaging guided cancer therapy. Moreover, the invivo biodistribution, excretion and the potential toxicity of nano-graphene with differentsizes and surface coatings are systematically investigated, suggesting thatnano-graphene with small sizes and well-designed surface coatings is not noticeablytoxic in vivo to animals. The main results of this dissertation are summarized asfollowing:
     Chapter1: This chapter is an introductive overview that summarizes thefunctionalization, biomedical applications, and toxicology of nano-graphene.
     Chapter2: We studied the in vivo behaviors of polyethylene glycol (PEG)functionalized nano-graphene oxide (nGO-PEG) by a near-infrared (NIR) fluorescentdye. In vivo fluorescence imaging revealed high tumor uptake of nGO-PEG in severalxenograft tumor mouse models and relatively low retention in reticuloendothelialsystems (RES). We then utilized the strong optical absorbance of nGO-PEG in the NIRregion for in vivo photothermal therapy, achieving100%tumor ablation in a mousetumor model.
     Chapter3: We synthesized a number of graphene oxide (GO) derivatives with different sizes and surface coatings, and then studied how sizes and surface chemistrywould affect the in vivo behaviors of nano-graphene. It was found that ultra-small nanoreduced GO (nRGO) with covalent PEG coating showed greatly enhanced NIRabsorbance, prolonged blood circulation half-life, as well as increased tumor uptake.Using this optimized nGO-PEG, we realized highly efficient in vivo tumor ablation byusing an ultra-low laser power density in our mouse experiments.
     Chapter4: We prepared reduced graphene oxide (RGO)-iron oxide (IONP)nanocomposite, which was noncovalently functionalized with PEG to render highstability in physiological solutions. Utilizing the intrinsic high NIR optical absorbanceand strong magnetic property of the obtained RGO–IONP–PEG, as well as externallabels, we realized in vivo multimodal photoacoustic tomography (PAT), magneticresonance (MR) and fluorescence imaging, based on which photothermal therapy wasdesigned and carried out. This work demonstrated the great promise of usinggraphene-based multifunctional nano-composites for cancer theranostic applications.
     Chapter5: We for the first time studied the long-term biodistribution and potentialtoxicity of PEGylated nano-GO (nGO-PEG) labeled with125I. It was found thatnGO-PEG mainly accumulated in the reticuloendothelial system (RES) including liverand spleen after intravenous administration and could be gradually cleared out, likely byboth renal and fecal excretion. Moreover, nGO-PEG did not cause appreciable toxicityat our tested dose (20mg/kg) to the treated mice by hematology analysis andhistological examinations.
     Chapter6: We systematically investigated the in vivo biodistribution and potentialtoxicity of nano-graphene and its derivatives via oral and intraperitoneal (i.p.)administration. We found that nGO-PEG labeled with125I showed no obvious tissueuptake via oral administration. In contrast, high accumulation of nGO-PEG,RGO-PEGand nRGO-PEG, but not as-made GO, in the reticuloendothelial (RES) system includingliver and spleen was observed after i.p. injection. Although GO and PEGylated GOderivatives would retain in the mouse body over a long period of time after i.p. injection,their toxicity to the treated animals was insignificant.
     In summary, this dissertation, we have systematically studied the biomedicalapplications of nano-graphene, particularly for imaging and photothermal therapy ofcancer, and carefully investigated the toxicology of functionalized nano-graphene in vivo to animals. Our results greatly promote graphene-based biomedical research, andprovide helpful guidelines for the future explorations of other functional nanomaterialsin cancer theranostics.
引文
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science2004,306,(5696),666-669.
    2. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M., Graphene oxide as a chemically tunable platformfor optical applications. Nat. Chem.2010,2,(12),1015-1024.
    3. Geim, A. K. N., K. S., The rise of graphene. Nat. Mater.2007,6,183-191.
    4. Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H., Advancedasymmetrical supercapacitors based on graphene hybrid materials. Nano Res.2011,4,(8),729-736.
    5. Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chem. Soc. Rev.2012,41,(2),666-686.
    6. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature2006,442,(7100),282-286.
    7. Feng, L. Z.; Liu, Z. A., Graphene in biomedicine: opportunities and challenges. Nanomedicine2011,6,(2),317-324.
    8. Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z., The influence of surface chemistryand particle size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laserpower. Biomatreials2012,33,2206-2214.
    9. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Graphene in Mice: Ultra-high invivo Tumor Uptake and Photothermal Therapy. Nano lett.2010,10,(9),3318-3323.
    10. Zhang, S. A.; Yang, K.; Feng, L. Z.; Liu, Z., In vitro and in vivo behaviors of dextranfunctionalized graphene. Carbon2011,49,(12),4040-4049.
    11. Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z., Photothermally Enhanced PhotodynamicTherapy Delivered by Nano-Graphene Oxide. ACS Nano2011,5,(9),7000-7009.
    12. Shen, H.; Zhang, L.; Liu, M.; Zhang, Z., Biomedical Applications of Graphene. Theranostics2012,2,(3),283-294.
    13. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide for delivery ofwater-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,(33),10876-10877.
    14. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-grapheneoxide for cellular imaging and drug delivery. Nano Res.2008,1,(3),203-212.
    15. Feng, L.; Zhang, S.; Liu, Z., Graphene based gene transfection. Nanoscale2011,3,(3),1252-1257.
    16. He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C., AGraphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv.Funct.Mater.2010,20,(3),453-459.
    17. Tang, L. A. L.; Wang, J.; Loh, K. P., Graphene-Based SELDI Probe with Ultrahigh Extractionand Sensitivity for DNA Oligomer. J. Am. Chem. Soc.2010,132,(32),10976-10977.
    18. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as a Nanocarrierfor Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small2010,6,(4),537-544.
    19. Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z., Enhanced Chemotherapy Efficacyby Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide. Small2011,7,(4),460-464.
    20. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z., Multimodal ImagingGuided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with MagneticNanoparticles. Adv. Mater.2012,24,(14),1868-1872.
    21. Yang, K.; Wan, J. M.; Zhang, S. A.; Zhang, Y. J.; Lee, S. T.; Liu, Z. A., In VivoPharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. ACSNano2011,5,(1),516-522.
    22. Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R.-S.; Chang, Y.-Z.; Chen, C., Thetriggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signalingpathways. Biomaterials2012,33,(2),402-411.
    23. Chang, Y.; Yang, S.-T.; Liu, J.-H.; Dong, E.; Wang, Y.; Cao, A.; Liu, Y.; Wang, H., In vitrotoxicity evaluation of graphene oxide on A549cells. Toxicol. Lett.2011,200,(3),201-210.
    24. Yang, K.; Li, Y.; Tan, X.; Peng, R.; Liu, Z., Behavior and Toxicity of Graphene and ItsFunctionalized Derivatives in Biological Systems. Small2013, DOI:10.1002/smll.201201417.
    25. Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z., In vivo biodistribution and toxicologyof functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials2013,34,(11),2787-95.
    26. Yang, K.; Feng, L.; Shi, X.; Liu, Z., Nano-graphene in biomedicine: theranostic applications.Chem. Soc. Rev.2013,42,(2),530-547.
    27. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat. Nanotech.2009,4,(4),217-224.
    28. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem.Soc. Rev.2010,39,(1),228-240.
    29. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. J. Mater. Chem.2010,20,(12),2277-2289.
    30. Hummers, W. S.; Offeman, R. E., Preparation Of Graphitic Oxide. J. Am. Chem. Soc.1958,80,(6),1339-1339.
    31. Park, S.; Mohanty, N.; Suk, J. W.; Nagaraja, A.; An, J.; Piner, R. D.; Cai, W.; Dreyer, D. R.;Berry, V.; Ruoff, R. S., Biocompatible, Robust Free-Standing Paper Composed of a TWEEN/GrapheneComposite. Adv. Mater.2010,22,(15),1736-+.
    32. Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q., ProteinCorona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano2011,5,(5),3693-3700.
    33. Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai,H. J., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for PhotothermalTherapy. J. Am. Chem. Soc.2011,133,(17),6825-6831.
    34. Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.;Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M., Minimizing Oxidationand Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Lett.2011,11,(12),5201-5207.
    35. Hu, H.; Yu, J.; Li, Y.; Zhao, J.; Dong, H., Engineering of a novel pluronic F127/graphenenanohybrid for pH responsive drug delivery. J.Biomed. Mater. Res. Part A2011,100A,(1),141-148.
    36. Liu, J.; Li, Y.; Li, Y.; Li, J.; Deng, Z., Noncovalent DNA decorations of graphene oxide andreduced graphene oxide toward water-soluble metal-carbon hybrid nanostructures via self-assembly (vol20, pg900,2010). J. Mater. Chem.2010,20,(48),10944-10945.
    37. Liu, K.; Zhang, J.-J.; Cheng, F.-F.; Zheng, T.-T.; Wang, C.; Zhu, J.-J., Green and facilesynthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drugdelivery. J.Mater. Chem.2011,21,(32),12034-12040.
    38. Liu, J.; Yang, W.; Tao, L.; Li, D.; Boyer, C.; Davis, T. P., Thermosensitive GrapheneNanocomposites Formed Using Pyrene-Terminal Polymers Made by RAFT Polymerization. J.PolymerScience Part A-Polymer Chem.2010,48,(2),425-433.
    39. Liao, K.-H.; Lin, Y.-S.; Macosko, C. W.; Haynes, C. L., Cytotoxicity of Graphene Oxide andGraphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl.Mater. Interfaces2011,3,(7),2607-2615.
    40. Fan, H.; Wang, L.; Zhao, K.; Li, N.; Shi, Z.; Ge, Z.; Jin, Z., Fabrication, Mechanical Properties,and Biocompatibility of Graphene-Reinforced Chitosan Composites. Biomacromolecules2010,11,(9),2345-2351.
    41. Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H.,Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small2011,7,(11),1569-1578.
    42. Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H., Synergistic effect ofchemo-photothermal therapy using PEGylated graphene oxide. Biomaterials2011,32,(33),8555-8561.
    43. Wen, H.; Dong, C.; Dong, H.; Shen, A.; Xia, W.; Cai, X.; Song, Y.; Li, X.; Li, Y.; Shi, D.,Engineered Redox-Responsive PEG Detachment Mechanism in PEGylated Nano-Graphene Oxide forIntracellular Drug Delivery. Small2012,8,(5),760-769.
    44. Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q., Intracellular Imaging with a Graphene-BasedFluorescent Probe. Small2010,6,(15),1686-1692.
    45. Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.-T.; Liu, Z.; Peng, R., FunctionalizedGraphene Oxide in Enzyme Engineering: A Selective Modulator for Enzyme Activity and Thermostability.ACS Nano2012,6,(6),4864-4875.
    46. Gollavelli, G.; Ling, Y.-C., Multi-functional graphene as an in vitro and in vivo imaging probe.Biomaterials2012,33,(8),2532-2545.
    47. Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Water-Soluble GrapheneCovalently Functionalized by Biocompatible Poly-L-lysine. Langmuir2009,25,(20),12030-12033.
    48. Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M.,Functionalization of Graphene via1,3-Dipolar Cycloaddition. ACS Nano2010,4,(6),3527-3533.
    49. Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X.-M., Gold Nanoclusters andGraphene Nanocomposites for Drug Delivery and Imaging of Cancer Cells. Angew. Chem. Int. Ed.2011,50,(49),11644-11648.
    50. Shan, C.; Yang, H.; Han, D.; Zhang, Q.; Ivaska, A.; Niu, L., Graphene/AuNPs/chitosannanocomposites film for glucose biosensing. Biosensors&Bioelectronics2010,25,(5),1070-1074.
    51. Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S., A Graphene Oxide BasedImmuno-biosensor for Pathogen Detection. Angew. Chem. Int. Ed.2010,49,(33),5708-5711.
    52. Shen, J.; Shi, M.; Li, N.; Yan, B.; Ma, H.; Hu, Y.; Ye, M., Facile Synthesis and Application ofAg-Chemically Converted Graphene Nanocomposite. Nano Res.2010,3,(5),339-349.
    53. Ma, X.; Tao, H.; Yang, K.; Feng, L.; Cheng, L.; Shi, X.; Li, Y.; Guo, L.; Liu, Z., Afunctionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery,photothermal therapy, and magnetic resonance imaging. Nano Res.2012,5,(3),199-212.
    54. Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y.,Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function andpH-sensitivity. J. Mater. Chem.2011,21,(10),3448-3454.
    55. Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y., Superparamagnetic grapheneoxide-Fe(3)O(4) nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.2009,19,(18),2710-2714.
    56. Hu, S.-H.; Chen, Y.-W.; Hung, W.-T.; Chen, I. W.; Chen, S.-Y., Quantum-Dot-Tagged ReducedGraphene Oxide Nanocomposites for Bright Fluorescence Bioimaging and Photothermal TherapyMonitored In Situ. Adv. Mater.2012,24,(13),1748-1754.
    57. Hu, Z.; Huang, Y.; Sun, S.; Guan, W.; Yao, Y.; Tang, P.; Li, C., Visible light drivenphotodynamic anticancer activity of graphene oxide/TiO2hybrid. Carbon2012,50,(3),994-1004.
    58. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H., Carbon Nanotubes in Biology and Medicine: Invitro and in vivo Detection, Imaging and Drug Delivery. Nano Res.2009,2,(2),85-120.
    59. Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J., Invivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech.2007,2,(1),47-52.
    60. Singh, S. K.; Singh, M. K.; Kulkarni, P. P.; Sonkar, V. K.; Gracio, J. J. A.; Dash, D.,Amine-Modified Graphene. Thrombo-Protective Safer Alternative to Graphene Oxide for BiomedicalApplications. ACS Nano2012,6,(3),2731-2740.
    61. Dong, H.; Ding, L.; Yan, F.; Ji, H.; Ju, H., The use of polyethylenimine-grafted graphenenanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition ofmicroRNA. Biomaterials2011,32,(15),3875-3882.
    62. Depan, D.; Shah, J.; Misra, R. D. K., Controlled release of drug from folate-decorated andgraphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater.Science&Engineering C-Mater..Biological Applications2011,31,(7),1305-1312.
    63. Dubuisson, E.; Yang, Z.; Loh, K. P., Optimizing Label-Free DNA Electrical Detection onGraphene Platform. Anal.Chem.2011,83,(7),2452-2460.
    64. Yin, Z.; He, Q.; Huang, X.; Zhang, J.; Wu, S.; Chen, P.; Lu, G.; Chen, P.; Zhang, Q.; Yan, Q.;Zhang, H., Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effecttransistors. Nanoscale2012,4,(1),293-297.
    65. He, Q.; Sudibya, H. G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H.,Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication andSensing Applications. ACS Nano2010,4,(6),3201-3208.
    66. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H.,Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small2011,7,(14),1876-1902.
    67. Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H., TiO2Nanocrystals Grown onGraphene as Advanced Photocatalytic Hybrid Materials. Nano Res.2010,3,(10),701-705.
    68. Sun, H.; Cao, L.; Lu, L., Magnetite/reduced graphene oxide nanocomposites: One stepsolvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res.2011,4,(6),550-562.
    69. Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z., Composites ofAminodextran-Coated Fe3O4Nanoparticles and Graphene Oxide for Cellular Magnetic ResonanceImaging. ACS Appl. Mater. Interfaces2011,3,4085-4091.
    70. Liu, Z.; Fan, A.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D.; Dai,H., Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy. Angew.Chem. Int. Ed.2009,48,7668–7672.
    71. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine.Acc. Chem. Res.2008,41,(12),1578-1586.
    72. Farokhzad, O. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. ACS Nano2009,3,(1),16-20.
    73. Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading andControlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Physi. Chem. C2008,112,(45),17554-17558.
    74. Yang, Y.; Zhang, Y.-M.; Chen, Y.; Zhao, D.; Chen, J.-T.; Liu, Y., Construction of a GrapheneOxide Based Noncovalent Multiple Nanosupramolecular Assembly as a Scaffold for Drug Delivery.Chem.-A Europ. J.2012,18,(14),4208-4215.
    75. Ma, D.; Lin, J.; Chen, Y.; Xue, W.; Zhang, L.-M., In situ gelation and sustained release of anantitumor drug by graphene oxide nanosheets. Carbon2012,50,(8),3001-3007.
    76. Hu, H.; Yu, J.; Li, Y.; Zhao, J.; Dong, H., Engineering of a novel pluronic F127/graphenenanohybrid for pH responsive drug delivery. J.Biomed. Mater. Res. Part A2012,100A,(1),141-148.
    77. Bao, H. Q.; Pan, Y. Z.; Ping, Y.; Sahoo, N. G.; Wu, T. F.; Li, L.; Li, J.; Gan, L. H.,Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small2011,7,(11),1569-1578.
    78. Pan, Y.; Bao, H.; Sahoo, N. G.; Wu, T.; Li, L., Water-SolublePoly(N-isopropylacrylamide)-Graphene Sheets Synthesized via Click Chemistry for Drug Delivery. Adv.Funct. Mater.2011,21,(14),2754-2763.
    79. Sahoo, N. G.; Bao, H.; Pan, Y.; Pal, M.; Kakran, M.; Cheng, H. K. F.; Li, L.; Tan, L. P.,Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-solubleanticancer drug: a comparative study. Chem. Commun.2011,47,(18),5235-5237.
    80. Kakran, M.; Sahoo, N. G.; Bao, H.; Pan, Y.; Li, L., Functionalized Graphene Oxide asNanocarrier for Loading and Delivery of Ellagic Acid. Curr. Med. Chem.2011,18,(29),4503-4512.
    81. Zheng, X. T.; Li, C. M., Restoring Basal Planes of Graphene Oxides for Highly EfficientLoading and Delivery of beta-Lapachone. Mol. Pharm.2012,9,(3),615-621.
    82. Lu, Y.-J.; Yang, H.-W.; Hung, S.-C.; Huang, C.-Y.; Li, S.-M.; Ma, C.-C. M.; Chen, P.-Y.; Tsai,H.-C.; Wei, K.-C.; Chen, J.-P., Improving thermal stability and efficacy of BCNU in treating glioma cellsusing PAA-functionalized graphene oxide. Intern.Nanomedicine2012,7,1737-1747.
    83. Whitehead, K. A.; Langer, R.; Anderson, D. G., Knocking down barriers: advances in siRNAdelivery. Nat. Rev. Drug Discovery2009,8,(2),129-138.
    84. Whitehead, K. A.; Langer, R.; Anderson, D. G., Knocking down barriers: advances in siRNAdelivery (vol8, pg129,2009). Nat. Rev. Drug Discovery2010,9,(5),412-412.
    85. Chen, B.; Liu, M.; Zhang, L.; Huang, J.; Yao, J.; Zhang, Z., Polyethylenimine-functionalizedgraphene oxide as an efficient gene delivery vector. J.Mater. Chem.2011,21,(21),7736-7741.
    86. Kim, H.; Namgung, R.; Singha, K.; Oh, I.-K.; Kim, W. J., Graphene Oxide-PolyethylenimineNanoconstruct as a Gene Delivery Vector and Bioimaging Tool. Bioconjugate Chem.2011,22,(12),2558-2567.
    87. Yang, X.; Niu, G.; Cao, X.; Wen, Y.; Xiang, R.; Duan, H.; Chen, Y., The preparation offunctionalized graphene oxide for targeted intracellular delivery of siRNA. J. Mater. Chem.2012,22,(14),6649-6654.
    88. Lu, C.-H.; Zhu, C.-L.; Li, J.; Liu, J.-J.; Chen, X.; Yang, H.-H., Using graphene to protect DNAfrom cleavage during cellular delivery. Chem. Commun.2010,46,(18),3116-3118.
    89. Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y., Aptamer/Graphene Oxide Nanocomplex forin Situ Molecular Probing in Living Cells. J. Am. Chem. Soc.2010,132,(27),9274-9276.
    90. da Silva Meirelles, L.; Chagastelles, P. C.; Nardi, N. B., Mesenchymal stem cells reside invirtually all post-natal organs and tissues. J.cell science2006,119,(Pt11),2204-2213.
    91. Engler, A. J.; Sen, S.; Sweeney, H. L.; Discher, D. E., Matrix elasticity directs stem cell lineagespecification. Cell2006,126,(4),677-689.
    92. Dalby, M. J.; Gadegaard, N.; Tare, R.; Andar, A.; Riehle, M. O.; Herzyk, P.; Wilkinson, C. D.W.; Oreffo, R. O. C., The control of human mesenchymal cell differentiation using nanoscale symmetryand disorder. Nat. Mater.2007,6,(12),997-1003.
    93. Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.;Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R., Multilineage potential of adult humanmesenchymal stem cells. Science1999,284,(5411),143-147.
    94. Lee, W. C.; Lim, C. H. Y. X.; Shi, H.; Tang, L. A. L.; Wang, Y.; Lim, C. T.; Loh, K. P., Originof Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano2011,5,(9),7334-7341.
    95. Nayak, T. R.; Andersen, H.; Makam, V. S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.-L. R.; Ahn, J.-H.;Hong, B. H.; Pastorin, G.; Oezyilmaz, B., Graphene for Controlled and Accelerated OsteogenicDifferentiation of Human Mesenchymal Stem Cells. ACS Nano2011,5,(6),4670-4678.
    96. Haynesworth, S. E.; Goshima, J.; Goldberg, V. M.; Caplan, A. I., Characterization Of CellsWith Osteogenic Potential From Human Marrow. Bone1992,13,(1),81-88.
    97. Shi, X.; Chang, H.; Chen, S.; Lai, C.; Khademhosseini, A.; Wu, H., Regulating CellularBehavior on Few-Layer Reduced Graphene Oxide Films with Well-Controlled Reduction States. Adv.Funct. Mater.2012,22,(4),751-759.
    98. Chen, G. Y.; Pang, D. W. P.; Hwang, S. M.; Tuan, H. Y.; Hu, Y. C., A graphene-based platformfor induced pluripotent stem cells culture and differentiation. Biomaterials2012,33,(2),418-427.
    99. Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S., EnhancedDifferentiation of Human Neural Stem Cells into Neurons on Graphene. Adv. Mater.2011,23,(36),H263-H267.
    100. Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G.,The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphenesubstrates. Biomaterials2011,32,(35),9374-9382.
    101. Heo, C.; Yoo, J.; Lee, S.; Jo, A.; Jung, S.; Yoo, H.; Lee, Y. H.; Suh, M., The control of neuralcell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes.Biomaterials2011,32,(1),19-27.
    102. Maltzahn1, G. v.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S.N., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold NanorodAntennas. Cancer Res.2009,69,(9),3892-3900.
    103. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai, H.,High Performance In Vivo Near-IR (>1mu m) Imaging and Photothermal Cancer Therapy with CarbonNanotubes. Nano Res.2010,3,(11),779-793.
    104. Liu, X.; Tao, H.; Yang, K.; Zhang, S.; Lee, S.-T.; Liu, Z., Optimization of surface chemistry onsingle-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials2011,32,(1),144-51.
    105. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.;Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y., Gold nanocages covered by smart polymers forcontrolled release with near-infrared light. Nat. Mater.2009,8,(12),935-939.
    106. Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N.,Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotech.2010,6,(1),28-32.
    107. Cheng, L.; Yang, K.; Chen, Q.; Liu, Z., Organic Stealth Nanoparticles for Highly Effective inVivo Near-Infrared Photothermal Therapy of Cancer. ACS Nano2012,6,(6),5605-5613.
    108. Markovic, Z. M.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Arsikin,K. M.; Jovanovic, S. P.; Pantovic, A. C.; Dramicanin, M. D.; Trajkovic, V. S., In vitro comparison of thephotothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials2011,32,(4),1121-9.
    109. von Maltzahn, G.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S.N., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold NanorodAntennas. Cancer Res.2009,69,(9),3892-3900.
    110. Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q., MultifunctionalGold Nanoshells on Silica Nanorattles: A Platform for the Combination of Photothermal Therapy andChemotherapy with Low Systemic Toxicity. Angew. Chem. Int. Ed.2011,50,(4),891-895.
    111. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K., Photodynamic therapy for cancer. Nat. Rev.Cancer2003,3,(5),380-387.
    112. Dong, H.; Zhao, Z.; Wen, H.; Li, Y.; Guo, F.; Shen, A.; Frank, P.; Lin, C.; Shi, D.,Poly(ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci. China-Chem.2010,53,(11),2265-2271.
    113. Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D., FolicAcid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy.Theranostics2011,1,240-250.
    114. Zhou, L.; Wang, W.; Tang, J.; Zhou, J.-H.; Jiang, H.-J.; Shen, J., Graphene Oxide NoncovalentPhotosensitizer and Its Anticancer Activity In Vitro. Chem.-A Eur. J.2011,17,(43),12084-12091.
    115. Scheinberg, D. A.; Villa, C. H.; Escorcia, F. E.; McDevitt, M. R., Conscripts of the infinitearmada: systemic cancer therapy using nanomaterials. Nat. Rev. Clinical Oncology2010,7,(5),266-276.
    116. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I.-H.; Yoo, K.-H., Multifunctional Nanoparticles forCombined Doxorubicin and Photothermal Treatments. ACS Nano2009,3,(10),2919-2926.
    117. Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M., Targetingmultidrug resistance in cancer. Nat. Rev. Drug Discovery2006,5,(3),219-234.
    118. Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H., A routeto brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotech.2009,4,773-780.
    119. Hong, H.; Yang, K.; Zhang, Y.; Engle, J. W.; Feng, L.; Yang, Y.; Nayak, T. R.; Goel, S.; Bean, J.;Theuer, C. P.; Barnhart, T. E.; Liu, Z.; Cai, W., In Vivo Targeting and Imaging of Tumor Vasculature withRadiolabeled, Antibody-Conjugated Nanographene. ACS Nano2012,6,(3),2361-2370.
    120. Hong, H.; Zhang, Y.; Engle, J. W.; Nayak, T. R.; Theuer, C. P.; Nickles, R. J.; Barnhart, T. E.;Cai, W., In vivo targeting and positron emission tomography imaging of tumor vasculature withGa-66-labeled nano-graphene. Biomaterials2012,33,(16),4147-4156.
    121. Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.;Wei, H.; Zhang, H.; Sun, H.; Yang, B., Strongly green-photoluminescent graphene quantum dots forbioimaging applications. Chem. Commun.2011,47,(24),6858-6860.
    122. Zhang, L.; Xing, Y.; He, N.; Zhang, Y.; Lu, Z.; Zhang, J.; Zhang, Z., Preparation of GrapheneQuantum Dots for Bioimaging Application. J. Nanoscience.Nanotech.2012,12,(3),2924-2928.
    123. Narayanan, T. N.; Gupta, B. K.; Vithayathil, S. A.; Aburto, R. R.; Mani, S. A.; Taha-Tijerina, J.;Xie, B.; Kaipparettu, B. A.; Torti, S. V.; Ajayan, P. M., Hybrid2D Nanomaterials as Dual-Mode ContrastAgents in Cellular Imaging. Adv. Mater.2012,24,(22),2992-2998.
    124. Zhang, Y.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A. S., Cytotoxicity Effectsof Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12Cells.ACS Nano2010,4,(6),3181-3186.
    125. Zhang, X.; Hu, W.; Li, J.; Tao, L.; Wei, Y., A comparative study of cellular uptake andcytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res.2012,1,(62-68).
    126. Stone, V.; Donaldson, K., Nanotoxicology: Signs of stress. Nat. Nanotech.2006,1,23.
    127. Apel, K.; Hirt, H., Reactive oxygen species: Metabolism, oxidative stress, and signaltransduction. Annual Rev. Plant Biology2004,55,373-399.
    128. Guillemin, G. J.; Brew, B. J., Microglia, macrophages, perivascular macrophages, and pericytes:a review of function and identification. J.Leukocyte Biology2004,75,(3),388-397.
    129. Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C., Factors affecting the clearance andbiodistribution of polymeric nanoparticles. Mol. Pharm.2008,5,(4),505-515.
    130. Longmire, M.; Choyke, P. L.; Kobayashi, H., Clearance properties of nano-sized particles andmolecules as imaging agents: considerations and caveats. Nanomedicine2008,3,(5),703-717.
    131. Sasidharan, A.; Panchakarla, L. S.; Sadanandan, A. R.; Ashokan, A.; Chandran, P.; Girish, C.M.; Menon, D.; Nair, S. V.; Rao, C. N. R.; Koyakutty, M., Hemocompatibility and Macrophage Responseof Pristine and Functionalized Graphene. Small2012,8,(8),1251-1263.
    132. Davis, R. J., Signal transduction by the JNK group of MAP kinases. Cell2000,103,(2),239-252.
    133. Ding, L. H.; Stilwell, J.; Zhang, T. T.; Elboudwarej, O.; Jiang, H. J.; Selegue, J. P.; Cooke, P. A.;Gray, J. W.; Chen, F. Q. F., Molecular characterization of the cytotoxic mechanism of multiwall carbonnanotubes and nano-onions on human skin fibroblast. Nano Lett.2005,5,(12),2448-2464.
    134. Cui, D. X.; Tian, F. R.; Ozkan, C. S.; Wang, M.; Gao, H. J., Effect of single wall carbonnanotubes on human HEK293cells. Toxicol. Lett.2005,155,(1),73-85.
    135. Ravichandran, P.; Baluchamy, S.; Sadanandan, B.; Gopikrishnan, R.; Biradar, S.; Ramesh, V.;Hall, J. C.; Ramesh, G. T., Multiwalled carbon nanotubes activate NF-kappa B and AP-1signalingpathways to induce apoptosis in rat lung epithelial cells. Apoptosis2010,15,(12),1507-1516.
    136. Paul, W.; Sharma*, C. P., Blood Compatibility and Biomedical Applications of Graphene.Trends Biomater. Artif. Organs2011,25,(3),91-94.
    137. Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Gracio, J. J. A.; Dash,D., Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets. ACS Nano2011,5,(6),4987-4996.
    138. Guo, C. X.; Zheng, X. T.; Lu, Z. S.; Lou, X. W.; Li, C. M., Biointerface by Cell Growth onLayered Graphene-Artificial Peroxidase-Protein Nanostructure for In Situ Quantitative MolecularDetection. Adv. Mater.2010,22,(45),5164-5167
    139. Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller,B.; Forro, L., Cellular toxicity of carbon-based nanomaterials. Nano Lett.2006,6,(6),1121-1125.
    140. Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L., Pulmonary toxicity of single-wallcarbon nanotubes in mice7and90days after intratracheal instillation. Toxicol. Lett.2004,77,(1),126-134.
    141. Warheit, D. B.; Laurence, B. R.; Reed, K. L.; Roach, D. H.; Reynolds, G. A. M.; Webb, T. R.,Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Lett.2004,77,(1),117-125.
    142. Crouzier, D.; Follot, S.; Gentilhomme, E.; Flahaut, E.; Arnaud, R.; Dabouis, V.; Castellarin, C.;Debouzy, J. C., Carbon nanotubes induce inflammation but decrease the production of reactive oxygenspecies in lung. Toxicol.2010,272,(1-3),39-45.
    143. Shvedova, A. A.; Kisin, E. R.; Mercer, R.; Murray, A. R.; Johnson, V. J.; Potapovich, A. I.;Tyurina, Y. Y.; Gorelik, O.; Arepalli, S.; Schwegler-Berry, D.; Hubbs, A. F.; Antonini, J.; Evans, D. E.; Ku,B. K.; Ramsey, D.; Maynard, A.; Kagan, V. E.; Castranova, V.; Baron, P., Unusual inflammatory andfibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Phys. Lung Cell. Mol.Physiol.2005,289,(5), L698-L708.
    144. Mutlu, G. M.; Budinger, G. R. S.; Green, A. A.; Urich, D.; Soberanes, S.; Chiarella, S. E.;Alheid, G. F.; McCrimmon, D. R.; Szleifer, I.; Hersam, M. C., Biocompatible Nanoscale Dispersion ofSingle-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity. Nano Lett.2010,10,(5),1664-1670.
    1. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H., Carbon Nanotubes in Biology andMedicine: In vitro and in vivo Detection, Imaging and Drug Delivery. Nano Res.2009,2,(2),85-120.
    2. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H.,Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008,1,(3),203-212.
    3. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,(33),10876-10877.
    4. Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K., Carbon nanotubes asnanomedicines: From toxicology to pharmacology. Adv. Drug Delivery Rev.2006,58,(14),1460-1470.
    5. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu,Z.; Sun, X.; Dai, H.; Gambhir, S. S., A pilot toxicology study of single-walled carbon nanotubesin a small sample of mice. Nat. Nanotech.2008,3,(4),216-221.
    6. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H., Circulation and long-term fateof functionalized, biocompatible single-walled carbon nanotubes in mice probed by Ramanspectroscopy. Proc. Natl. Acad. Sci. U. S. A.2008,105,(5),1410-1415.
    7. Yang, S. T.; Wang, X.; Jia, G.; Gu, Y.; Wang, T.; Nie, H.; Ge, C.; Wang, H.; Liu, Y.,Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenouslyexposed mice. Toxicol. Lett.2008,181,(3),182-9.
    8. Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.P.; Prato, M.; Muller, S.; Bianco, A., Functionalized carbon nanotubes are non-cytotoxic andpreserve the functionality of primary immune cells. Nano Lett.2006,6,(12),3003-3003.
    9. Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J., siRNA delivery into human T cells andprimary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed.2007,46,(12),2023-2027.
    10. Liu, Z.; Sun, X.; Nakayama, N.; Dai, H., Supramolecular Chemistry on Water-SolubleCarbon Nanotubes for Drug Loading and Delivery. ACS Nano2007,1,(1),50-56.
    11. Bianco, A.; Kostarelos, K.; Partidos, C. D.; Prato, M., Biomedical applications offunctionalised carbon nanotubes. Chem. Commun.2005,(5),571-577.
    12. Liu, Y.; Wu, D. C.; Zhang, W. D.; Jiang, X.; He, C. B.; Chung, T. S.; Goh, S. H.;Leong, K. W., Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalentimmobilization and efficient delivery of DNA. Angew. Chem. Int. Ed.2005,44,(30),4782-4785.
    13. Liu, Z.; Fan, A.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher,D.; Dai, H., Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo CancerTherapy. Angew. Chem. Int. Ed.2009,48,7668–7672.
    14. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H., Drug deliverywith carbon nanotubes for in vivo cancer treatment. Cancer Res.2008,68,6652-6660.
    15. Welsher, K.; Liu, Z.; D, D.; Dai, H., Selective Probing and Imaging of Cells withSingle Walled Carbon Nanotubes as Near-Infrared Fluorescent Molecules. Nano Lett.2008,8,(2),586-590.
    16. Liu, Z.; Li, X.; Tabakman, S. M.; Jiang, K.; Fan, S.; Dai, H., Multiplexed multi-colorRaman imaging of live cells with isotopically modified single walled carbon nanotubes. J. Am.Chem. Soc.2008,130,13540–13541.
    17. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H., Carbon nanotubes asmultifunctional biological transporters and near-infrared agents for selective cancer celldestruction. Proc. Natl. Acad. Sci. USA2005,102,(33),11600-11605.
    18. Moon, H. K.; Lee, S. H.; Choi, H. C., In Vivo Near-Infrared Mediated TumorDestruction by Photothermal Effect of Carbon Nanotubes. ACS Nano2009,3,(11),3707–3713.
    19. Geim, A. K. N., K. S., The rise of graphene. Nat.Mater.2007,6,183-191.
    20. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H., Narrow graphene nanoribbonsfrom carbon nanotubes. Nature2009,458,877-880.
    21. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically Derived, UltrasmoothGraphene Nanoribbon Semiconductors. Science2008,319,1229-1232.
    22. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H., Highly conductinggraphene sheets and Langmuir–Blodgett films. Nat. Nanotech.2008,3,538-542.
    23. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.;Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchabletransparent electrodes. Nature2009,457,706-710.
    24. Stankovich, S. D., D. A.; Dommett, G. H. B.; Kohlhaas, K. M. Z., E. J.; Stach, E. A.;Piner, R. D.; Nguyen, S. T. R., R. S, Graphene-based composite materials. Nature2006,(442),282-286.
    25. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as aNanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small2010,6,(4),537-544.
    26. Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai,H. J., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice.Nat. Nanotech.2007,2,(1),47-52.
    27. Chakravarty, P.; Marches, R.; Zimmerman, N. S.; Swafford, A. D. E.; Bajaj, P.;Musselman, I. H.; Pantano, P.; Draper, R. K.; Vitetta, E. S., Thermal ablation of tumor cells withanti body-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A.2008,105,(25),8697-8702.
    28. Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D'Agostino, R.; Olson, J.; Guthold, M.;Gmeiner, W. H., Increased Heating Efficiency and Selective Thermal Ablation of MalignantTissue with DNA-Encased Multiwalled Carbon Nanotubes. ACS Nano2009,3,(9),2667-2673.
    29. Maltzahn1, G. v.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.;Bhatia, S. N., Computationally Guided Photothermal Tumor Therapy Using Long-CirculatingGold Nanorod Antennas. Cancer Res.2009,69,(9),3892-3900.
    30. Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Plasmonic photothermaltherapy (PPTT) using gold nanoparticles. Lasers Med. Sci.2008,23,(3),217-228.
    1. von Maltzahn G, Park J-H, Agrawal A, Bandaru NK, Das SK, Sailor MJ, et al.Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.Cancer Res.2009;69:3892-3900.
    2. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al.Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl. Acad. Sci. U S A2003;100:13549-13554.
    3. Tang FQ, Liu HY, Chen D, Li LL, Liu TL, Tan LF, et al. Multifunctional gold nanoshellson silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy withlow systemic toxicity. Angew. Chem. Int. Edit.2011;50:891-895.
    4. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, et al. Immuno gold nanocages withtailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett.2007;7:1318-1322.
    5. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocagescovered by smart polymers for controlled release with near-infrared light. Nat. Mater.2009;8:935-939.
    6. Moon HK, Lee SH, Choi HC. In Vivo Near-infrared mediated tumor destruction byphotothermal effect of carbon nanotubes. ACS Nano2009;3:3707-3713.
    7. Ghosh S, Dutta S, Gomes E, Carroll D, D'Agostino R, Olson J, et al. Increased heatingefficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbonnanotubes. ACS Nano2009;3:2667-2673.
    8. Liu X, Tao H, Yang K, Zhang S, Lee S-T, Liu Z. Optimization of surface chemistry onsingle-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials2011;32:144-151.
    9. Robinson JT, Welsher K, Tabakman SM, Sherlock SP, Wang HL, Luong R, et al. Highperformance in vivo near-IR (>1mu m) imaging and photothermal cancer therapy with carbonnanotubes. Nano Res.2010;3:779-793.
    10. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation inmice using near infrared-absorbing nanoparticles. Cancer Lett.2004;209:171-176.
    11. Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, et al. Goldnanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinomain mice. Cancer Lett.2008;269:57-66.
    12. Tong L, Wei Q, Wei A, Cheng J-X. Gold nanorods as contrast agents for biologicalimaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol.2009;85:21-32.
    13. Huang XH, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT)using gold nanoparticles. Lasers Med. Sci.2008;23:217-228.
    14. Feng LZ, Liu ZA. Graphene in biomedicine: opportunities and challenges. Nanomedicine2011;6:317-324.
    15. Feng L, Zhang S, Liu Z. Graphene based gene transfection. Nanoscale2011;3:1252-1257.
    16. Liu Z, Robinson JT, Sun XM, Dai HJ. PEGylated nanographene oxide for delivery ofwater-insoluble cancer drugs. J. Am. Chem. Soc.2008;130:10876-10877.
    17. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxidefor cellular imaging and drug delivery. Nano Res.2008;1:203-212.
    18. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z. Graphene in mice: ultra-high in vivotumor uptake and photothermal therapy. Nano Lett.2010;10:3318-3323.
    19. Chen GY, Pang DW, Hwang SM, Tuan HY, Hu YC. A graphene-based platform forinduced pluripotent stem cells culture and differentiation. Biomaterials2012;33:418-427.
    20. He S, Song B, Li D, Zhu C, Qi W, Wen Y, et al. A Graphene Nanoprobe for rapid, sensitive,and multicolor fluorescent DNA analysis. Adv. Funct. Mater2010;20:453-459.
    21. Tang LAL, Wang J, Loh KP. Graphene-based SELDI probe with ultrahigh extraction andsensitivity for DNA oligomer. J. Am. Chem. Soc.2010;132:10976-10977.
    22. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS. A graphene oxide based immuno-biosensorfor pathogen detection. Angew. Chem. Int. Edit.2010;49:5708-5711.
    23. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang S-Y, et al. Solution chemistry ofself-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano2010;4:2910-2918.
    24. He Q, Sudibya HG, Yin Z, Wu S, Li H, Boey F, et al. Centimeter-long and large-scalemicropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano2010;4:3201-3208.
    25. Wang Y, Shao Y, Matson DW, Li J, Lin Y. Nitrogen-doped graphene and its application inelectrochemical biosensing. ACS Nano2010;4:1790-1798.
    26. Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platformfor optical applications. Nat. Chem.2010;2:1015-1024.
    27. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier forcontrolled loading and targeted delivery of mixed anticancer drugs. Small2010;6:537-544.
    28. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z. Enhanced chemotherapy efficacy bysequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small2011;7:460-464.
    29. Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, et al. Protein corona-mediated mitigation ofcytotoxicity of graphene oxide. ACS Nano2011;5:3693-3700.
    30. Chang Y, Yang S-T, Liu J-H, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation ofgraphene oxide on A549cells. Toxicol. Lett.2011;200:201-210.
    31. Yang K, Wan JM, Zhang SA, Zhang YJ, Lee ST, Liu ZA. In vivo pharmacokinetics,long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano2011;5:516-522.
    32. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery&cancer therapy. Mater. Today2011;14:316-323.
    33. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM,Jovanovic SP, et al. In vitro comparison of the photothermal anticancer activity of graphenenanoparticles and carbon nanotubes. Biomaterials2011;32:1121-1129.
    34. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H. Synergistic effect ofchemo-photothermal therapy using PEGylated graphene oxide. Biomaterials2011;32:8555-8561.
    35. Tian B, Wang C, Zhang S, Feng L, Liu Z. Photothermally enhanced photodynamic therapydelivered by nano-graphene oxide. ACS Nano2011; Article ASAP.
    36. Robinson JT, Tabakman SM, Liang YY, Wang HL, Casalongue HS, Vinh D, et al.Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J.Am. Chem. Soc.2011;133:6825-6831.
    37. Sun X, Zaric S, Daranciang D, Welsher K, Lu Y, Li X, et al. Optical properties ofultrashort semiconducting single-walled carbon nanotube capsules down to sub-10nm. J. Am. Chem.Soc.2008;130:6551-6555.38Prencipe G, Tabakman SM, Welsher K, Liu Z, Goodwin AP, Zhang L, et al. PEG branchedpolymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc.2009;131:4783-4787.
    39. Zhang S, Yang K, Feng L, Liu Z. In vitro and in vivo behaviors of dextran functionalizedgraphene. Carbon2011;49:4040-4049.
    40. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesisof graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon2007;45:1558-1565.
    41. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL. Near-infrared resonantnanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett.2007;7:1929-1934.
    42. Sailor MJ, Park JH, von Maltzahn G, Xu MJ, Fogal V, Kotamraju VR, et al. Cooperativenanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U S A2010;107:981-986.
    43. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal meltingand fragmentation of gold nanorods: Energy and laser pulse-width dependence. J. Phys. Chem. A1999;103:1165-1170.
    44. Chen JY, Wiley B, Li ZY, Campbell D, Saeki F, Cang H, et al. Gold nanocages: Engineeringtheir structure for biomedical applications. Adv. Mater.2005;17:2255-2261.
    45. Link S, Wang ZL, El-Sayed MA. How does a gold nanorod melt? J. Phys. Chem. B2000;104:7867-7870.
    46. Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates forbiomedical applications. Nat. Protoc.2009;4:1372-1382.
    1. Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim,C.; Song, K. H.; Schwartz, A. G.; Wang, L. V.; Xia, Y., Gold nanocages covered by smart polymersfor controlled release with near-infrared light. Nat. Mater.2009,8,(12),935-939.
    2. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging andphotothermal therapy in the near-infrared region by using gold nanorods. J.Am. Chem. Soc.2006,128,(6),2115-2120.
    3. Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.-Y.; Zhang, H.; Xia, Y.;Li, X., Immuno gold nanocages with tailored optical properties for targeted photothermal destructionof cancer cells. Nano Lett.2007,7,(5),1318-1322.
    4. Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q.,Multifunctional Gold Nanoshells on Silica Nanorattles: A Platform for the Combination ofPhotothermal Therapy and Chemotherapy with Low Systemic Toxicity. Angew. Chem. Int. Ed.2011,50,(4),891-895.
    5. Maltzahn1, G. v.; Park, J.-H.; Agrawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia,S. N., Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold NanorodAntennas. Cancer Res.2009,69,(9),3892-3900.
    6. Moon, H. K.; Lee, S. H.; Choi, H. C., In Vivo Near-Infrared Mediated Tumor Destructionby Photothermal Effect of Carbon Nanotubes. ACS Nano2009,3,(11),3707-3713.
    7. Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai,H., High Performance In Vivo Near-IR (>1mu m) Imaging and Photothermal Cancer Therapy withCarbon Nanotubes. Nano Res.2010,3,(11),779-793.
    8. Liu, X.; Tao, H.; Yang, K.; Zhang, S.; Lee, S.-T.; Liu, Z., Optimization of surfacechemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors.Biomaterials2011,32,(1),144-51.
    9. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Graphene in Mice: Ultra-highin vivo Tumor Uptake and Photothermal Therapy. Nano lett.2010,10,(9),3318-3323.
    10. Markovic, Z. M.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.;Arsikin, K. M.; Jovanovic, S. P.; Pantovic, A. C.; Dramicanin, M. D.; Trajkovic, V. S., In vitrocomparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes.Biomaterials2010,32,(4),1121-1129.
    11. Kumar, M.; Yigit, M.; Dai, G.; Moore, A.; Medarova, Z., Image-Guided Breast TumorTherapy Using a Small Interfering RNA Nanodrug. Cancer Res.2011,70,(19),7553-7561.
    12. Yu, M. K.; Kim, D.; Lee, I.-H.; So, J.-S.; Jeong, Y. Y.; Jon, S., Image-Guided ProstateCancer Therapy Using Aptamer-Functionalized Thermally Cross-Linked Superparamagnetic IronOxide Nanoparticles. Small2011,7,(15),2241-2249.
    13. Peng, C.-L.; Shih, Y.-H.; Lee, P.-C.; Hsieh, T. M.-H.; Luo, T.-Y.; Shieh, M.-J., MultimodalImage-Guided Photothermal Therapy Mediated by (188)Re-Labeled Micelles Containing aCyanine-Type Photosensitizer. ACS Nano2011,5,(7),5594-5607.
    14. Gianella, A.; Jarzyna, P. A.; Mani, V.; Ramachandran, S.; Calcagno, C.; Tang, J.; Kann, B.;Dijk, W. J. R.; Thijssen, V. L.; Griffioen, A. W.; Storm, G.; Fayad, Z. A.; Mulder, W. J. M.,Multifunctional Nanoemulsion Platform for Imaging Guided Therapy Evaluated in ExperimentalCancer. ACS Nano2011,5,(6),4422-4433.
    15. Cheng, L.; Yang, K.; Li, Y.; Zeng, X.; Shao, M.; Lee, S.-T.; Liu, Z., Multifunctionalnanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targetedphotothermal therapy. Biomaterials2012,33,(7),2215-2222.
    16. Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chem. Soc. Rev.2012,41,(2),666-686.
    17. Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H.,Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small2011,7,(14),1876-1902.
    18. Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M., Graphene oxide as a chemically tunableplatform for optical applications. Nat. Chem.2010,2,(12),1015-1024.
    19. He, Q.; Sudibya, H. G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H.,Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication andsensing applications. ACS Nano2010,4,(6),3201-8.
    20. Tang, L. A. L.; Wang, J.; Loh, K. P., Graphene-Based SELDI Probe with UltrahighExtraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc.2010,132,(32),10976-10977.
    21. He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C., AGraphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv.Funct.Mater.2010,20,(3),453-459.
    22. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as aNanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small2010,6,(4),537-544.
    23. Feng, L.; Zhang, S.; Liu, Z., Graphene based gene transfection. Nanoscale2011,3,(3),1252-1257.
    24. Zhang, L.; Lu, Z.; Zhao, Q.; Huang, J.; Shen, H.; Zhang, Z., Enhanced ChemotherapyEfficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide.Small2011,7,(4),460-464.
    25. Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z., The influence of surfacechemistry and particle size of nanoscale graphene oxide on photothermal therapy of cancer usingultra-low laser power. Biomatreials2012,33,2206-2214.
    26. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H.,Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008,1,(3),203-212.
    27. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,(33),10876-10877.
    28. Hu, W.; Peng, C.; Lv, M.; Li, X.; Zhang, Y.; Chen, N.; Fan, C.; Huang, Q., ProteinCorona-Mediated Mitigation of Cytotoxicity of Graphene Oxide. ACS Nano2011,5,(5),3693-3700.
    29. Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.;Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M., MinimizingOxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung.Nano Lett.2011,11,(12),5201-5207.
    30. Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H., Nanocrystal Growth on Graphene withVarious Degrees of Oxidation. J. Am. Chem. Soc.2010,132,(10),3270-.
    31. Zhang, Y.; Li, H.; Pan, L.; Lu, T.; Sun, Z., Capacitive behavior of graphene-ZnOcomposite film for supercapacitors. J. Electroanal. Chem.2009,634,(1),68-71.
    32. Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y., Graphene/TiO2nanocomposites: synthesis,characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater.Chem.2010,20,(14),2801-2806.
    33. Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu,Z., Can Graphene be used as a Substrate for Raman Enhancement? Nano Lett.2010,10,(2),553-561.
    34. Xu, C.; Wang, X., Fabrication of Flexible Metal-Nanoparticte Film Using Graphene OxideSheets as Substrates. Small2009,5,(19),2212-2217.
    35. Chen, W.; Yi, P.; Zhang, Y.; Zhang, L.; Deng, Z.; Zhang, Z., Composites ofAminodextran-Coated Fe3O4Nanoparticles and Graphene Oxide for Cellular Magnetic ResonanceImaging. ACS Appl.Mater. Interfaces2011,3,(10),4085-4091.
    36. Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y.,Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function andpH-sensitivity. J. Mater. Chem.2011,21,(10),3448-3454.
    37. Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y., Superparamagnetic grapheneoxide-Fe(3)O(4) nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.2009,19,(18),2710-2714.
    38. Wang, C.; Tao, H.; Cheng, L.; Liu, Z., Near-infrared light induced in vivo photodynamictherapy of cancer based on upconversion nanoparticles. Biomaterials2011,32,(26),6145-6154.
    39. Yang, K.; Wan, J. M.; Zhang, S. A.; Zhang, Y. J.; Lee, S. T.; Liu, Z. A., In VivoPharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice.ACS Nano2011,5,(1),516-522.
    40. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H., Circulation and long-term fate offunctionalized, biocompatible single-walled carbon nanotubes in mice probed by Ramanspectroscopy. Proc. Natl. Acad. Sci. U. S. A.2008,105,(5),1410-1415.
    41. De La Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.;Smith, B. R.; Ma, T.-J.; Oralkan, O.; Cheng, Z.; Chen, X.; Dai, H.; Khuri-Yakub, B. T.; Gambhir, S.S., Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotech.2008,3,(9),557-562.
    42. Song, K. H.; Kim, C.; Cobley, C. M.; Xia, Y.; Wang, L. V., Near-Infrared Gold Nanocagesas a New Class of Tracers for Photoacoustic Sentinel Lymph Node Mapping on a Rat Model. NanoLett.2009,9,(1),183-188.
    43. Kim, C.; Cho, E. C.; Chen, J.; Song, K. H.; Au, L.; Favazza, C.; Zhang, Q.; Cobley, C. M.;Gao, F.; Xia, Y.; Wang, L. V., In Vivo Molecular Photoacoustic Tomography of Melanomas Targetedby Bioconjugated Gold Nanocages. ACS Nano2010,4,(8),4559-4564.
    1. Cai, W. B.; Chen, X. Y., Nanoplatforms for targeted molecular imaging in living subjects.Small2007,3,(11),1840-1854.
    2. Ferrari, M., Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer2005,5,(3),161-171.
    3. Farokhzad, O. C.; Langer, R., Nanomedicine: Developing smarter therapeutic anddiagnostic modalities. Adv. Drug Delivery Rev.2006,58,(14),1456-1459.
    4. Lacerda, L.; Bianco, A.; Prato, M.; Kostarelos, K., Carbon nanotubes as nanomedicines:From toxicology to pharmacology. Adv. Drug Delivery Rev.2006,58,(14),1460-1470.
    5. Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W., In vivoQuantum-Dot Toxicity Assessment. Small2010,6,(1),138-144.
    6. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.;Sun, X.; Dai, H.; Gambhir, S. S., A pilot toxicology study of single-walled carbon nanotubes in asmall sample of mice. Nat. Nanotech.2008,3,(4),216-221.
    7. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J., Chemically derived, ultrasmoothgraphene nanoribbon semiconductors. Science2008,319,(5867),1229-1232.
    8. Geim, A. K. N., K. S., The rise of graphene. Nat.Mater.2007,6,183-191.
    9. Geim, A. K., GRAPHENE: STATUS AND PROSPECTS. Science2009,324,1530.
    10. Wu, H. C.; Chang, X. L.; Liu, L.; Zhao, F.; Zhao, Y. L., Chemistry of carbon nanotubes inbiomedical applications. J. Mater. Chem.2010,20,(6),1036-1052.
    11. Kostarelos, K.; Bianco, A.; Prato, M., Promises, facts and challenges for carbon nanotubesin imaging and therapeutics. Nat. Nanotech.2009,4,(10),627-633.
    12. Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H., Preparation of Carbon NanotubeBioconjugates for Biomedical Applications. Nat. Protoc.2009,4,1372-1382.
    13. Liu, Z.; Fan, A.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X.; Yang, Q.; Felsher, D.;Dai, H., Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy.Angew. Chem. Int. Ed.2009,48,7668–7672.
    14. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H., Carbon Nanotubes in Biology and Medicine:In vitro and in vivo Detection, Imaging and Drug Delivery. Nano Res.2009,2,(2),85-120.
    15. Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. J., siRNA delivery into human T cells andprimary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed.2007,46,(12),2023-2027.
    16. Liu, Z.; Sun, X.; Nakayama, N.; Dai, H., Supramolecular Chemistry on Water-SolubleCarbon Nanotubes for Drug Loading and Delivery. ACS Nano2007,1,(1),50-56.
    17. He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C.,A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct.Mater,2010,20,453–459.
    18. Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S., A Graphene Oxide BasedImmuno-biosensor for Pathogen Detection. Angew. Chem. Int. Ed.2010,(49),1-5.
    19. Hong, W.; Bai, H.; Xu, Y.; Yao, Z.; Gu, Z.; Shi, G., Preparation of GoldNanoparticle/Graphene Composites with Controlled Weight Contents and Their Application inBiosensors. J. Phys. Chem. C2010,(114),1822–1826.
    20. Lu, C.-H.; Zhu, C.-L.; Li, J.; Liu, J.-J.; Chen, X.; Yang, H.-H., Using graphene to protectDNA from cleavage during cellular delivery. Chem. Commun2010,46,3116–3118.
    21. Tang, L. A. L.; Wang, J.; Loh, K. P., Graphene-Based SELDI Probe with UltrahighExtraction and Sensitivity for DNA Oligomer. J. Am. Chem. Soc.2010, Article ASAP, DOI:
    10.1021/ja104017y.
    22. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H.,Nano-graphene oxide for cellular imaging and drug delivery. Nano Res.2008,1,(3),203-212.
    23. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,(33),10876-10877.
    24. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as aNanocarrier for Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. small2009,6,(4),537-544.
    25. Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading andControlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C2008,(112),17554–17558.
    26. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Graphene in Mice: Ultra-highin vivo Tumor Uptake and Photothermal Therapy. Nano Lett.2010, Article ASAP, DOI:
    10.1021/nl100996u.
    27. Wang, H.; Wang, J.; Deng, X.; Sun, H.; Shi, Z.; Gu, Z.; Liu, Y.; Zhao, Y., Biodistributionof Carbon Single-Wall Carbon Nanotubes in Mice. J. Nanoscience Nanotech.2004,4,1019-1024.
    28. Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H.J., In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat.Nanotech.2007,2,(1),47-52.
    29. Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H., Circulation and long-term fate offunctionalized, biocompatible single-walled carbon nanotubes in mice probed by Ramanspectroscopy. Proc. Natl. Acad. Sci. U. S. A.2008,105,(5),1410-1415.
    30. Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H., Drug delivery withcarbon nanotubes for in vivo cancer treatment. Cancer Res.2008,68,6652-6660.
    31. Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.;Sun, X. M.; Dai, H. J.; Gambhir, S. S., A pilot toxicology study of single-walled carbon nanotubes ina small sample of mice. Nat. Nanotech.2008,3,(4),216-221.
    32. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.;Frangioni, J. V., Renal clearance of quantum dots. Nat. Biotech.y2007,25,(10),1165-1170.
    33. River, C.,http://www.criver.com/EN-US/PRODSERV/BYTYPE/RESMODOVER/RESMOD/Pages/BALBcMouse.aspx.
    1. Yang, K.; Feng, L.; Shi, X.; Liu, Z., Nano-graphene in biomedicine: theranostic applications.Chem. Soc. Rev.2013, DOI:10.1039/c2cs35342c.
    2. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. J. Mater. Chem.2010,20,(12),2277-2289.
    3. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater.2007,6,(3),183-191.
    4. Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H., Nanocrystal Growth on Graphene withVarious Degrees of Oxidation. J. Am. Chem. Soc.2010,132,(10),3270-+.
    5. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem.Soc. Rev.2010,39,(1),228-240.
    6. Huang, X.; Qi, X.; Boey, F.; Zhang, H., Graphene-based composites. Chem. Soc. Rev.2011,41,(2),666-686.
    7. Yan, L.; Zheng, Y. B.; Zhao, F.; Li, S.; Gao, X.; Xu, B.; Weiss, P. S.; Zhao, Y., Chemistry andphysics of a single atomic layer: strategies and challenges for functionalization of graphene andgraphene-based materials. Chem. Soc. Rev.2012,(41),97-114.
    8. Tang, L. A. L.; Wang, J.; Loh, K. P., Graphene-Based SELDI Probe with Ultrahigh Extractionand Sensitivity for DNA Oligomer. J. Am. Chem. Soc.2010,132,(32),10976-10977.
    9. He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C., AGraphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv.Funct.Mater.2010,20,(3),453-459.
    10. Akhavan, O.; Ghaderi, E.; Rahighi, R., Toward Single-DNA Electrochemical Biosensing byGraphene Nanowalls. ACS Nano2012,6,(4),2904-2916.
    11. Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S., A Graphene Oxide BasedImmuno-biosensor for Pathogen Detection. Angew. Chem. Int. Ed.2010,49,(33),5708-5711.
    12. Wen, H.; Dong, C.; Dong, H.; Shen, A.; Xia, W.; Cai, X.; Song, Y.; Li, X.; Li, Y.; Shi, D.,Engineered Redox-Responsive PEG Detachment Mechanism in PEGylated Nano-Graphene Oxide forIntracellular Drug Delivery. Small2012,8,(5),760-769.
    13. Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D., FolicAcid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy.Theranostics2011,1,240-250.
    14. Feng, L. Z.; Liu, Z. A., Graphene in biomedicine: opportunities and challenges. Nanomedicine2011,6,(2),317-324.
    15. Feng, L.; Zhang, S.; Liu, Z., Graphene based gene transfection. Nanoscale2011,3,(3),1252-1257.
    16. Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J., PEGylated nanographene oxide for delivery ofwater-insoluble cancer drugs. J. Am. Chem. Soc.2008,130,(33),10876-10877.
    17. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-grapheneoxide for cellular imaging and drug delivery. Nano Res.2008,1,(3),203-212.
    18. Zhang, L.; Xia, J.; Zhao, Q.; Liu, L.; Zhang, Z., Functional Graphene Oxide as a Nanocarrierfor Controlled Loading and Targeted Delivery of Mixed Anticancer Drugs. Small2010,6,(4),537-544.
    19. Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z., Photothermally Enhanced PhotodynamicTherapy Delivered by Nano-Graphene Oxide. ACS Nano2011,5,(9),7000-7009.
    20. Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y., Superparamagnetic grapheneoxide-Fe(3)O(4) nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem.2009,19,(18),2710-2714.
    21. Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading andControlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Physi. Chem. C2008,112,(45),17554-17558.
    22. Yang, X.; Wang, Y.; Huang, X.; Ma, Y.; Huang, Y.; Yang, R.; Duan, H.; Chen, Y.,Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function andpH-sensitivity. J. Mater. Chem.2011,21,(10),3448-3454.
    23. Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai,H. J., Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for PhotothermalTherapy. J. Am. Chem. Soc.2011,133,(17),6825-6831.
    24. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z., Graphene in Mice: Ultra-high invivo Tumor Uptake and Photothermal Therapy. Nano lett.2010,10,(9),3318-3323.
    25. Yang, K.; Wan, J.; Zhang, S.; Tian, B.; Zhang, Y.; Liu, Z., The influence of surface chemistryand particle size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laserpower. Biomatreials2012,33,2206-2214.
    26. Narayanan, T. N.; Gupta, B. K.; Vithayathil, S. A.; Aburto, R. R.; Mani, S. A.; Taha-Tijerina, J.;Xie, B.; Kaipparettu, B. A.; Torti, S. V.; Ajayan, P. M., Hybrid2D Nanomaterials as Dual-Mode ContrastAgents in Cellular Imaging. Adv. Mater.2012,24,(22),2992-2998.
    27. Peng, C.; Hu, W.; Zhou, Y.; Fan, C.; Huang, Q., Intracellular Imaging with a Graphene-BasedFluorescent Probe. Small2010,6,(15),1686-1692.
    28. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z., Multimodal ImagingGuided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with MagneticNanoparticles. Adv. Mater.2012,24,(14),1868-1872.
    29. Hu, S.-H.; Chen, Y.-W.; Hung, W.-T.; Chen, I. W.; Chen, S.-Y., Quantum-Dot-Tagged ReducedGraphene Oxide Nanocomposites for Bright Fluorescence Bioimaging and Photothermal TherapyMonitored In Situ. Adv. Mater.2012,24,(13),1748-1754.
    30. Hong, H.; Zhang, Y.; Engle, J. W.; Nayak, T. R.; Theuer, C. P.; Nickles, R. J.; Barnhart, T. E.;Cai, W., In vivo targeting and positron emission tomography imaging of tumor vasculature withGa-66-labeled nano-graphene. Biomaterials2012,33,(16),4147-4156.
    31. Zhang, Y.; Nayak, T. R.; Hong, H.; Cai, W., Graphene: a versatile nanoplatform for biomedicalapplications. Nanoscale2012,4,(13),3833-3842.
    32. Chen, G. Y.; Pang, D. W. P.; Hwang, S. M.; Tuan, H. Y.; Hu, Y. C., A graphene-based platformfor induced pluripotent stem cells culture and differentiation. Biomaterials2012,33,(2),418-427.
    33. Nayak, T. R.; Andersen, H.; Makam, V. S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P.-L. R.; Ahn, J.-H.;Hong, B. H.; Pastorin, G.; Oezyilmaz, B., Graphene for Controlled and Accelerated OsteogenicDifferentiation of Human Mesenchymal Stem Cells. ACS Nano2011,5,(6),4670-4678.
    34. Kalbacova, M.; Broz, A.; Kong, J.; Kalbac, M., Graphene substrates promote adherence ofhuman osteoblasts and mesenchymal stromal cells. Carbon2010,48,(15),4323-4329.
    35. Lee, W. C.; Lim, C. H. Y. X.; Shi, H.; Tang, L. A. L.; Wang, Y.; Lim, C. T.; Loh, K. P., Originof Enhanced Stem Cell Growth and Differentiation on Graphene and Graphene Oxide. ACS Nano2011,5,(9),7334-7341.
    36. Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S., EnhancedDifferentiation of Human Neural Stem Cells into Neurons on Graphene. Adv. Mater.2011,23,(36),H263-H267.
    37. Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G.,The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphenesubstrates. Biomaterials2011,32,(35),9374-9382.
    38. Singh, S. K.; Singh, M. K.; Kulkarni, P. P.; Sonkar, V. K.; Gracio, J. J. A.; Dash, D.,Amine-Modified Graphene. Thrombo-Protective Safer Alternative to Graphene Oxide for BiomedicalApplications. ACS Nano2012,6,(3),2731-2740.
    39. Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.;Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M., Minimizing Oxidationand Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung. Nano Lett.2011,11,(12),5201-5207.
    40. Yang, K.; Li, Y.; Tan, X.; Peng, R.; Liu, Z., Behavior and Toxicity of Graphene and ItsFunctionalized Derivatives in Biological Systems. Small2012, DOI:10.1002/smll.201201417.
    41. Sanchez, V. C.; Jachak, A.; Hurt, R. H.; Kane, A. B., Biological Interactions ofGraphene-Family Nanomaterials: An Interdisciplinary Review. Chem. Res. Toxicol.2012,25,(1),15-34.
    42. Yan, L.; Wang, Y.; Xu, X.; Zeng, C.; Hou, J.; Lin, M.; Xu, J.; Sun, F.; Huang, X.; Dai, L.; Lu, F.;Liu, Y., Can Graphene Oxide Cause Damage to Eyesight? Chem. Res. Toxicol.2012,25,(6),1265-1270.
    43. Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y., Low-toxic and safe nanomaterials bysurface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale2011,3,(2),362-382.
    44. Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D., Biocompatibility ofGraphene Oxide. Nanoscale Res. Lett.2011,6.
    45. Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q., Distribution andbiocompatibility studies of graphene oxide in mice after intravenous administration. Carbon2011,49,(3),986-995.
    46. Yang, K.; Wan, J. M.; Zhang, S. A.; Zhang, Y. J.; Lee, S. T.; Liu, Z. A., In VivoPharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. ACSNano2011,5,(1),516-522.
    47. Zhang, S. A.; Yang, K.; Feng, L. Z.; Liu, Z., In vitro and in vivo behaviors of dextranfunctionalized graphene. Carbon2011,49,(12),4040-4049.
    48. Liu, X.; Tao, H.; Yang, K.; Zhang, S.; Lee, S.-T.; Liu, Z., Optimization of surface chemistry onsingle-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials2011,32,(1),144-51.
    49. Jani, P. U.; Nomura, T.; Yamashita, F.; Takakura, Y.; Florence, A. T.; Hashida, M., Biliaryexcretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteraladministration to male Wistar rats. J.Drug Target.1996,4,(2),87-&.
    50. Furumoto, K.; Ogawara, K.; Yoshida, M.; Takakura, Y.; Hashida, M.; Higaki, K.; Kimura, T.,Biliary excretion of polystyrene microspheres depends on the type of receptor-mediated uptake in rat liver.Biochimica Et Biophysica Acta-General Subjects2001,1526,(2),221-226.
    51. Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.;Brown, S.; MacNee, W.; Donaldson, K., Carbon nanotubes introduced into the abdominal cavity of miceshow asbestos-like pathogenicity in a pilot study. Nat. Nanotech.2008,3,423-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700