用户名: 密码: 验证码:
腹部开放伤合并海水浸泡大鼠肠屏障功能损害的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肠屏障功能障碍(Intestine barrier functional disturbance,IBFD)是机体在各种临床危重病、外科手术及严重创伤后的常见并发症,具有较高的发病率,其发生机制尚未完全清楚。目前认为,应激状态下肠黏膜的急性病变涉及肠黏膜保护机制的削弱、损伤因素相对增强以及机体神经内分泌功能失调等诸多方面,是多因素综合作用的结果。肠黏膜屏障损伤及其介导的病理学改变使病情进一步加重。细菌或内毒素可经多途径发生易位,造成肠道细菌易位(bacterial translocation,BT)和肠源性内毒素血症(intestinal endotoxemia),进而启动全身炎症反应综合征(SIRS)并引起多器官功能障碍综合征(MODS)。研究发现,肠道血运障碍、肠道传输功能受损、炎症介质过度释放、氧自由基损伤、免疫功能损害以及肠黏膜上皮细胞凋亡等因素可能在肠屏障功能损伤机制中起着重要作用。保护肠屏障功能对改善预后具有重要意义。
     海上作战时伤员落水并浸泡在碱性、高渗海水中是极常见的现象,这是一种严重的应激状态。前期的研究发现,战伤合并海水浸泡具有以下特点:血液出现高钠血症、高氯、高渗状态,以及严重的水、电解质紊乱,伴有代谢性及呼吸性酸中毒。严重的血流动力学紊乱、血液高凝状态、微循环障碍等,极易引发MODS。在海战伤救治的过程中,已经发现有海水浸泡对消化道屏障的破坏,是阻碍成功救治的难题之一。深入研究腹部开放伤合并海水浸泡对肠屏障功能的影响,为有效综合防治IBFD找出相应的对策,是降低早期伤后死亡率不可缺少的重要环节,也是本研究的目的。
     目的
     1.建立腹部开放伤合并海水浸泡大鼠模型,观察海水浸泡后大鼠血浆DAO、D-乳酸、LPS及肠道细菌易位的变化和肠黏膜组织形态学改变,确定大鼠肠屏障功能变化情况。
     2.探讨腹部开放伤合并海水浸泡大鼠肠屏障功能损害的机制:观察肠蠕动速率的变化,肠组织MDA、SOD的含量,血浆TNF-α、IL-6的水平,肠道内容物SIgA、血浆IgA的变化及肠黏膜上皮细胞凋亡的情况。
     方法
     1.选择健康雄性Wistar大鼠50只,体重230±20g,清洁级,按照随机化原则分组,每组10只,分组情况如下:A组:腹部开放伤合并海水浸泡组(腹腔开放伤后浸泡于人工海水中);B组:单纯腹部开放伤组(单纯腹部开放伤后直接观察而不浸泡于海水或生理盐水);C组:单纯海水浸泡组(大鼠麻醉后未行任何手术,直接将腹部浸泡于人工海水中);D组:腹部开放伤合并生理盐水浸泡组(腹腔开放伤后浸泡于生理盐水中);E组:正常对照组(未行任何处理)。
     2.在腹部开放性创伤和人工海水浸泡双重应激情况下,在应激1小时后,分别用分光光度法检测腹部开放伤合并海水浸泡大鼠血浆DAO和D-乳酸;动态浊度法检测血浆LPS;实验动物脏器细菌定量培养观察细菌易位情况。
     3.按Haglund等评估小肠黏膜上皮损伤指数的方法,光学显微镜下观察肠黏膜组织病理学改变,透射电镜下观察肠黏膜组织超微结构变化。
     4.采用活性炭标记法测定大鼠肠道蠕动速率,分光光度法检测肠组织MDA和SOD,酶联免疫吸附测试(ELISA)法检测血浆TNF-α、IL-6、IgA和肠道内容物SIgA。
     结果
     1.血浆D-乳酸活性检测:腹部开放伤合并海水浸泡组(A组)大鼠血浆D-乳酸活性(7.63±0.72 mg/L)、单纯腹部开放伤组(B组)血浆D-乳酸活性(5.46±0.57mg/L)、腹部开放伤合并生理盐水浸泡组(D组)血浆D-乳酸活性(4.97±0.95mg/L)较正常对照组(E组)大鼠血浆D-乳酸活性(4.06±0.39 mg/L)显著升高(P<0.01),单纯海水浸泡组(C组)血浆D-乳酸活性(3.89±0.55mg/L)较E组无显著差异(P>0.05);与B组比较,D组血浆D-乳酸活性无显著差异(P>0.05),A、C组血浆D-乳酸活性有显著差异(P<0.01)。
     2.血浆DAO活性检测:大鼠血浆DAO活性A组(6.24±1.54 KU/L)、B组(3.57±1.65 KU/L)、C组(0.42±0.04KU/L)、D组(3.40±1.58KU/L)较E组(0.36±0.04 KU/L)均显著升高(P<0.01);而与B组比较,D组无显著差异(P>0.05),A、C组有显著差异(P<0.01)。
     3.血浆内毒素水平检测:大鼠血浆内毒素水平A组(486.5±116.1 pg/ml)、B组(344.5±51.5 pg/ml)、D组(338.7±54.4 pg/ml)较E组(23.5+10.4 pg/ml)显著升高(P<0.01),C组(23.0±11.7pg/ml)与E组无显著差异(P>0.05);与B组比较,A、C组血浆内毒素有显著差异(P<0.01),D组无显著差异(P>0.05)。
     4.实验动物脏器细菌定量培养:结果显示,正常动物在无菌条件下采集的血浆标本和其他脏器匀浆液标本经细菌培养后,没有菌落出现;A、B、D组血浆、肝脏及肠系膜淋巴结细菌培养后均可见大量菌落出现;与B组相比,A组和D组血培养及肝脏培养菌落数显著上升,且A组结果最高,肠系膜淋巴结培养,D组菌落数显著减少,A组菌落数无明显差异。
     5.小肠黏膜组织形态学观察及评分:C、E组肠黏膜未见损伤,光镜下黏膜结构完整,小肠绒毛上皮完整、细胞排列整齐;A、B、D组均引起多部位的不同程度的肠道损伤,小肠绒毛顶端水肿、间隙增宽;部分区域上皮细胞萎缩,细胞核固缩、碎裂,胞浆嗜酸性变;固有膜毛细血管扩张,红细胞凝聚;淋巴管扩张,淋巴管内淋巴细胞聚集。小肠黏膜损伤评分值分别为:A组(5.10±0.74);B组(2.20±0.78);C组(0.20±0.42);D组(2.50±0.71);E组(0.20±0.42)。A、B、D组损伤程度评分显著高于C、E组(P<0.01);与B组比较,A组肠黏膜组织损伤程度明显加重(P<0.01),B组和D组间无显著差异(P>0.05)。
     6.小肠组织电镜观察:透射电镜下,C、E组大鼠肠上皮细胞微绒毛结构完整,排列整齐,胞浆内含大量线粒体,结构完整,嵴清晰;A、B、D组肠道损伤后肠上皮细胞微绒毛变短,排列不整齐,线粒体肿胀明显,部分嵴溶解消失,较大空泡形成;部分细胞核固缩,核膜表面凹凸不平,染色质集聚于核膜周边形成新月形或环形,呈凋亡的形态改变。
     7.肠蠕动速率检测:检测肠蠕动速率活性炭标记法简单准确。大鼠肠道蠕动速率A组(15.36±1.63%)显著下降(P<0.01),其蠕动速率只为E组(77.94±3.68%)的20%。B组(22.94±0.95%)、C组(32.34±3.58%)、D组(21.30±3.56%)肠蠕动速率显著低于E组(P<0.01),与E组比较,腹部开放伤及海水浸泡能够非常显著地抑制肠道蠕动功能;与B组比较,D组无显著差异(P>0.05),A、C组抑制肠道蠕动功能有显著差异(P<0.01)。
     8.血浆TNF-α浓度检测:大鼠血浆TNF-α浓度A组(105.20±21.17 pg/ml)、B组(68.43±20.09 pg/ml)、C组(67.77±16.57 pg/ml)、D组(57.25±14.21 pg/ml)较E组(40.24±10.29 pg/ml)显著升高(P<0.05);而与B组比较,A组血浆TNF-α浓度显著升高(P<0.01),C、D组无显著差异(P>0.05)。
     9.血浆IL-6浓度检测:大鼠血浆IL-6浓度A组(207.76±42.26 pg/ml)、B组(136.37±27.57 pg/ml)、D组(143.58±33.76 pg/ml)较E组(94.98±17.84 pg/ml)显著升高(P<0.05),C组(107.02±26.09 pg/ml)较E组无显著差异(P>0.05);而与B组比较,A、C组血浆IL-6浓度有显著差异(P<0.05),D组无显著差异(P>0.05)。
     10.肠内容物SIgA含量检测:与E组(99.6±16.7 mg/L)比较,A组(32.26±7.57mg/L)、B组(65.08±10.07 mg/L)、D组(45.84±9.41 mg/L)肠道内容物SIgA含量显著减少(P<0.01),C组(89.98±11.14 mg/L)无显著差异(P>0.05);与B组比较,A、C、D组肠道内容物SIgA含量有显著差异(P<0.01)。
     11.血浆IgA含量检测:与E组(61.73±17.44 mg/L)比较,A组(32.10±10.84 mg/L)、B组(43.62±10.12 mg/L)、D组(38.68±12.98 mg/L)血浆IgA含量显著减少(P<0.01),C组(65.84±8.18 mg/L)无显著差异(P>0.05);与B组比较,A、D组无显著差异(P>0.05),C组有显著差异(P<0.01)。
     12.大鼠肠组织MDA含量检测:腹部开放海水浸泡后,肠上皮细胞应激反应造成肠组织MDA含量明显增加;与E组(2.76±1.97 nmol/mg pro)比较,A组(4.70±1.17 nmol/mg pro)、B组(3.14±0.65 nmol/mg pro)、D组(4.37±1.32 nmol/mgpro)大鼠肠组织MDA含量显著升高(P<0.01),C组(2.13±1.08 nmol/mg pro)大鼠肠组织MDA含量无显著差异(P>0.05);与B组比较,A、C、D组大鼠肠组织MDA含量有显著差异(P<0.05)。
     13.大鼠肠组织SOD含量检测:腹部开放伤合并海水浸泡后,肠上皮细胞应激反应造成肠组织SOD含量明显减少;与E组(4.31±1.40 NU/mg pro)比较,A组(1.57±0.34 NU/mg pro)、D组(2.05±0.43 NU/mg pro)大鼠肠组织SOD含量显著减少(P<0.01),B组(3.43±1.33 NU/mg pro)、C组(4.09±1.70 NU/mg pro)大鼠肠组织SOD含量无显著差异(P>0.05);与B组比较,A、D组大鼠肠组织SOD含量显著减少(P<0.01),C组大鼠肠组织SOD含量无显著差异(P>0.05)。
     14.小肠黏膜上皮细胞凋亡检测:TUNEL法显示,凋亡细胞主要位于小肠绒毛顶部,且随致伤程度的加重有由上向下发展的趋势。C、E组小肠黏膜绒毛顶部可见少量阳性凋亡细胞。A、B、D组小肠黏膜绒毛及隐窝上皮细胞凋亡明显增多。小肠黏膜上皮细胞凋亡指数的变化分别为:A组(45.60±7.0),B组(22.10±3.6),C组(5.10±0.6),D组(24.66±3.5),E组(4.51±0.7)。C、E组小肠黏膜上皮细胞凋亡指数呈现低水平;A、B、D组小肠黏膜上皮细胞凋亡指数均显著高于C、E组(P<0.05);与B组比较,A组小肠黏膜上皮细胞凋亡指数显著增高(P<0.01),D组无显著差异(P>0.05)。
     结论
     1.大鼠腹部开放伤合并海水浸泡动物模型制作成功;腹部开放伤及腹腔海水浸泡双重应激可引起IBFD,肠黏膜通透性增高;出现肠源性内毒素血症和细菌易位,成为创伤后肠源性感染及多器官功能障碍综合征(MODs)发生的原因之一。
     2.腹部开放伤合并海水浸泡大鼠肠道蠕动功能明显受到抑制,出现肠道动力障碍,肠道传输功能受损是肠源性内毒素血症和细菌易位的原因之一。
     3.腹部开放伤合并海水浸泡可导致大鼠肠黏膜屏障功能受损,TNF-α、IL-6等炎症介质及氧自由基参与了腹部开放伤合并海水浸泡继发性炎症反应过程及肠道黏膜细胞损伤。
     4.腹部开放伤合并海水浸泡大鼠肠道免疫功能下降。大量的肠黏膜上皮细胞凋亡是细菌易位和肠源性内毒素血症的重要机制之一。肠道局部免疫功能的紊乱可能是引起整个机体免疫功能紊乱的原因之一。
Background
     Intestine barrier functional disturbance(IBFD) is a usual complication when the organism is having various dangerous deseases,sugery operation or severe injury.It occurs very often.However,its precise pathogenesis is not very clear yet.Current opinion is that acute pathological changes of intestinal mucosa under the stress condition relate to such aspects as weakening of the protective mechanism of intestinal mucosa, relatively strengthening of injury factors and neuroendocrine functional disorder etc., which are the results of synthetic action of multiple factors.Intestinal mucosal injury and the pathological change that it mediates aggregate the condition of illness.Bacteria and endotoxin may translocate through multiple channels,causing BT and intestinal endotoxemia,thus start SIRS which causes MODS.Through study,it is found that the factors of microcirculation disturbance,lesion of enterokinesia function,excess release of mediators of inflammation,injury of oxygen-derived free radicals,lesion of immune function and apoptosis may play important roles in the mechanism of intestinal barrier function.Protection of intestinal barrier function has important significance to the improvement of prognosis.
     It is a usual scene that injured solders fall into and immerse in seawater of alky and hypertonicity,which is a severe stress condition.Previous study finds that seawater immersion wounds have the following characteristics:hypernatremia,hyperchloraemia, hypertonicity and severe electrolyte disturbances accompanied with metabolic and respiratory acidosis.Seawater immersion wounds may cause severe hemodynamics disorder,hypercoagulabale state(HCS) and microcirculation disturbance,which may easily cause MODS.During the remedy of the injured soldier,seawater immersion wounds' injury to intestinal barrier has been found and deemed to be one of the difficult problems to successful remedy.To deeply study the influence of seawater celiac immersion wounds to intestinal barrier function,to find correspondent solutions to effectively and integrally control and remedy IBFD,is a necessary and important component to reduce fatality of seawater immersion wounds,and also the objective of this study.
     Objective
     1.To build the model of rats with open celiac seawater immersion wounds,to observe DAO,D-lactate,level of LPS in plasma,change of BT and histomorphology of intestinal mucosa of rats with open celiac seawater immersion wounds,to ascertain the intestinal barrier function changes of rats.
     2.To explore the mechanism of intestinal barrier function injury of rats with open celiac seawater immersion wounds;to observe the enterokinesia speed change,the contents of MDA and SOD in the intestinal mucosa tissue,level of TNF and IL-6 in plasma,change of SIgA in the intestinal content and IgA in plasma,and the apoptosis of intestinal mucosa.
     Methods
     1.The rat model of open celiac wound was built with fifty male Wistar rats weighing 230±20g which were randomly divided into five equal groups;celiac seawater immersion group with open celiac wounds(Group A),open celiac wounds group without seawater immersion(Group B),abdominal seawater immersion group without open celiac wounds(Group C),celiac physiological saline immersion group with open celiac wounds(Group D) and normal control group(Group E).
     2.Under the dual stress conditions of open celiac wounds and man-made seawater immersion of rats,after immersion stress of 1 hour,to measure DAO,D-lactate in plasma by absorption spectrometry,LPS in plasma by dynamic nephelometry.To observe BT through fixed-quantity bacteria cultivation.
     3.To observe the pathologic change of intestinal mucosa tissue by light microscope and intestinal tissue ultramicrostructure change by TEM,in accordance with such methods as evaluation of intestinal mucosa epithelium tissue injury index.
     4.To measure rats' intestinal peristalsis speed by activated carbon marked method,to measure MDA and SOD in intestinal mucosa tissue by absorption spectrometry,to measure TNF and IL-6 in plasma by ELISA,and SIgA in intestinal content and IgA in plasma.
     Results
     1.Test of the activities of D-lactate in plasma of rats:Compared with that in Group E (4.06±0.39 mg/L),the activities of D-lactate in plasma of rats in Group A(7.63±0.72 mg/L),Group B(5.46±0.57 mg/L) and Group D(4.97±0.95 mg/L) are significantly higher(P<0.01),and that in Group C(3.89±0.55 mg/L) is not significantly different (P>0.05);compared with that in Group B,the activity of D-lactate in plasma of rats in Group D is not significantly different(P>0.05),and those in Groups A and C are significantly different(P<0.01).
     2.Test of the activities of DAO in plasma of rats:Compared with that in Group E (0.36±0.04 KU/L),the activities of DAO in plasma of rats in Group A(6.24±1.54 KU/L), Group B(3.57±1.65 KU/L),Group C(0.42±0.04 KU/L) and Group D(3.4±1.58 KU/L) are significantly higher(P<0.01);while compared with that in Group B,the activity of DAO in plasma of rats in Group D is not significantly different(P>0.05),those in Groups A and C are significantly different(P<0.01).
     3.Test of the LPS levels in plasma of rats:Compared with that in Group E(23.5±10.4 pg/ml),the LPS levels in plasma of rats in Group A(486.5±116.1pg/ml),Group B (344.5±51.5pg/ml) and Group D(338.7±54.4 pg/ml) are significantly higher(P<0.01),and that in Group C(23.0±11.7 pg/ml) is not significantly different(P>0.05);compared with that in Group B,the LPS levels in plasma in Groups A and C are significantly different (P<0.01),and that in Group D is not significantly different(P>0.05).
     4.Bacteria quantization cultivation results of the tested rats' organs:The results manifest that,through bacteria cultivation,no colony occurs in the plasma samples and the homogenate samples of other organs of normal rats collected under the asepsis condition; through bacteria cultivation,large quantities of colonies occur in the plasma,liver and mesenteric lymph node(MLN) in Groups A,B and D;compared with that in Group B, through bacteria cultivation,the amount of colonies occurring in plasma and liver in Groups A and D significantly advances and that in Group A is the most,the amount of colonies occurring in MLN in Group D is significantly less,and that in Group A is not significantly different.
     5.Observation and scores of intestinal mucosa histomorphology:No damage to the intestinal mucosa is seen in Groups C and E,under the light microscope,the intestinal mucosa structures are complete,intestinal chorioepithelium is complete,the cells thereof line up in order.In Groups A,B and D,different degrees of intestinal track damages are seen,edema is seen on top of the intestinal villi,the gaps between the intestinal villi are widened;some chorioepithelium cells shrink;karyopyknosis,nuclear fragmentation, endochylema acidophilia occur;membrane propria mocrangium expansion and RBC agglomeration occur;lymphangiectasis and lymphocyte aggregation in lymphatic vessel occur.Injury scores of the intestinal mucosa are:Group A(5.10±0.74),Group B (2.20±0.78),Group C(0.20±0.42),Group D(2.50±0.71) and Group E(0.20±0.42). The injury degree scores in Groups A,B and D are significantly higher than those in Groups C and E(P<0.01);compared with that in Group B,the degree of injury to intestinal mucosa in Group A is apparently severer(P<0.01).There is no significant injury degree difference between Groups B and D.
     6.Observation of intestinal tissues by the TEM(transmission electron microscope): Under the TEM,the structures of the enterocyte microvilli are complete,and the enterocyte microvilli line up in order,there are large amount of mitochondria in the enterocyte endochylema,and the structures of the mitochondria are complete,the cristae therein are clear in Groups C and E.The enterocyte microvilli in Groups A,B and D, after intestinal track damages,become shorter,and do not line up in order,the mitochondria swell obviously,some cristae disappear,comparatively big vacuolations occur therein;some karyopyknosis occurs,the surface of the nuclear membrane is uneven,caryotin assembles around the nuclear membrane in the form of crescent or ring, presenting the transformation of apoptosis.
     7.Test of the enterokinesia speeds:The activated carbon marked method is easy and accurate to test the enterokinesia speed.The enterokinesia speed of Group A (15.36±1.63%) significantly descends,is only 20%of that of Group E(77.94±3.68%). The enterokinesia speeds of Group B(22.94±0.95%),Group C(32.34±3.58%) and Group D(21.30±3.56%) are significantly lower than that of Group E(P<0.01). Comparing Group E with Group A,it can be seen that celiac seawater immersion and open celiac wounds can significantly inhibit enterokinesia speed.Compared with that of Group B(22.94±0.95%),the enterokinesia speed of Group D is not significantly different (P>0.05),while those of Groups A and C are significantly lower(P<0.01).
     8.Test of the levels of TNF-αin plasma of rats:Compared with that in Group E (40.24±10.29 pg/ml),the levels of TNF-αin plasma of rats in Group A(105.20±21.17 pg/ml),Group B(68.43±20.09 pg/ml),Group C(67.77±16.57 pg/ml) and Group D (57.25±14.21 pg/ml) are significantly higher(P<0.05);while compared with that in Group B,the level of TNF-αin plasma of rats in Group A is significantly higher(P<0.01), and those in Groups C and D are not significantly different(P>0.05).
     9.Test of the levels of IL-6 in plasma of rats:Compared with that in Group E (94.98±17.84 pg/ml),the levels of IL-6 in plasma of rats in Group A(207.76±42.26 pg/ml),Group B(136.37±27.57 pg/ml) and Group D(143.58±33.76 pg/ml) are significantly higher(P<0.01),and that in Group C(107.02±26.09 pg/ml) is not significantly different(P>0.05);while compared with that in Group B,the levels of IL-6 in plasma of rats in Groups A and C are significantly different(P<0.05),and that in Group D is not significantly different(P>0.05).
     10.Test of the levels of SIgA in the intestinal content of rats:Compared with that in Group E(99.60±16.7 mg/L),the levels of SIgA in the intestinal content of rats in Group A(32.26±7.57 mg/L),Group B(65.08±10.07 mg/L) and Group D(45.84±9.41 mg/L) are significantly lower(P<0.01),and that in Group C(89.98±11.14 mg/L) is not significantly different(P>0.05);compared with that in Group B,the levels of SIgA in the intestinal content of rats in Groups A,C and D are significantly different(P<0.01).
     11.Test of the levels of IgA in the plasma of rats:Compared with that in Group E (61.73±17.44 mg/L),the levels of IgA in the plasma of rats in Group A(32.1±10.84 mg/L),Group B(43.62±10.12 mg/L) and Group D(38.68±12.98 mg/L) are significantly lower(P<0.01),and that in Group C(65.84±8.18 mg/L) is not significantly different (P>0.05);compared with that in Group B,the levels of IgA in the plasma of rats in Groups A and D are not significantly different(P>0.05),and that in Group C is significantly different(P<0.01).
     12.Test of the levels of MDA in the intestinal tissues of rats:The stress reaction of intestinal enterocyte causes the level of MDA in the intestinal tissues of rats to advance significantly.Compared with that in Group E(2.76±1.97 nmol/mg pro),the levels of MDA in the intestinal tissues of rats in Group A(4.70±1.17 nmol/mg pro),Group B (3.14±0.65 nmol/mg pro) and Group D(4.37±1.32 nmol/mg pro) are significantly higher (P<0.01),and that in Group C(2.13±1.08 nmol/mg pro) is not significantly different (P>0.05).Compared with that in Group B,the levels of MDA in the intestinal tissues of rats in Groups A,C and D are significantly different(P<0.05).
     13.Test of the levels of SOD in the intestinal tissues of rats:The stress reaction of intestinal enterocyte causes the level of SOD in the intestinal tissues of rats to descend significantly.Compared with that in Group E(4.31±1.40 NU/mg pro),the levels of SOD in the intestinal tissues of rats in Group A(1.57±0.34 NU/mg pro) and Group D (2.05±0.43 NU/mg pro) are significantly lower(P<0.01),and those in Group B (3.43±1.33 NU/mg pro) and Group C(4.09±1.70NU/mg pro) are not significantly different(P>0.05).Compared with that in Group B,the levels of SOD in the intestinal tissues of rats in Groups A and D are significantly lower(P<0.01),and that in Group C is not significantly different.
     14.Test of the apoptosis cells of intestinal mucosa:It is revealed through TUNEL method that:apoptosis cells are mainly on top of the intestinal villi,and with the injury degree aggregating,the apoptosis cells develop downwards;small quantity of positive apoptosis cells are seen on top of the intestinal villi in Groups C and E;apoptosis cells apparently increase on the intestinal mucosa villi and crypto in Groups A,B and D.The variations of the apoptotic indexes(AIs) are:Group A(45.60±7.0),Group B(22.10±3.6),Group C (5.10±0.6),Group D(24.66±3.5) and Group E(4.51±0.7);the AIs of intestinal mucosa in Groups C and E are on low level,in Groups A,B and D are much higher than those in Groups C and E(P<0.05);compared with that in Group B,the AI of intestinal mucosa in Group A apparently increases(P<0.01).There is no significant AI difference between Groups B and D(P>0.05).
     Conclusion
     1.The animal model building of rats with open celiac seawater immersion wounds is successful.Open celiac seawater immersion wounds may cause IBFD,increase of intestinal permeability,appearance of intestinal endotoxemia and bacterial translocation. Open celiac seawater immersion wounds become one of the causes of enterogenic infection and MODS.
     2.Open celiac seawater immersion wounds may inhibit intestinal transit,cause intestinal transit disfunction.Damage to intestinal transit function becomes one of the causes of gut origin endotoxemia and BT.
     3.Open celiac seawater immersion wounds may cause injuries to intestinal mucosal barrier function.TNF-α,IL-6 and oxygen-derived free radicals involve in the inflammatory reaction after the open celiac seawater immersion wounds occur.
     4.Inhibition of the immunological function of rats' intestinal mucosa occurs after the open celiac seawater immersion wounds.Massive apoptosis is one of the mechanisms that cause intestinal mucosal BT.Local immunity disorder of intestinal mucosa may be one of the reasons causing the entire organism immunity disorder.
引文
1.王育红,鹿尔驯,虞积耀,等.海水浸泡腹部开放性损伤对大鼠体液代谢的影响.第二军医大学学报,2000,21(8):786-788.
    2.王育红,鹿尔驯,虞积耀,等.腹部开放性损伤犬经海水浸泡后血液动力学及病理学的变化.中华外科杂志,2000,38(9):700-702.
    3.Grotz M,Regel G,Bastian L,et al,Tscherne H.The intestine as the central organ in the development of multiple organ failure after severe trauma-pathophysiology and therapeutic approaches.ZentralblChir 1998;123:205-217
    4.Wilmore DW,Smith R J,Odwyer ST,et al.The gut:a central organ after surgical stress,Surgery.1988;104(5):917-923
    5.Swank GM,Deitch EA.Role of the gut in multiple organ failure:bacterial translocation and permeability.World J Surg,1996,20(4):411-413
    6.Garside P,Millington O,Smith KM.The anatomy of mucosal immune responses.Ann N YAcad Sci 2004;1029:9-15
    7.Harari Y,Weisbrodt NW,Moody FG.Ileal mucosal response to bacterial toxin challenge.J Trauma 2000;49:306-313
    8.Kiyono H,Kweon MN,Hiroi T,et al.The mucosal immune system:from specialized immune defense to inflammation and allergy.Acta Odontol Scand 2001;59:145-153
    9.吴承掌,黎沾良一氧化氮、内皮素在急性坏死性胰腺炎肠道损伤中的作用.中国普通外科杂志1999;8:210-212
    10.杨永久,高乃荣.内源性一氧化氮对急性坏死性胰腺炎大鼠肠黏膜通透性的影 响.世界华人消化杂志2005:13:389-391
    11.Takahashi Y,Fukushima J,Fukusato T,et al.Prevalence of ischemic enterocolitis in patients with acute pancreatitis.J Gastroenterol 2005;40:827-832
    12.Ammori BJ,Fitzgerald P,Hawkey P,et al.The early increase in intestinal permeability and systemic endotoxin exposure in patients with severe acute pancreatitis is not associated with systemic bacterial translocation:molecular investigation of microbial DNA in the blood.Pancreas 2003;26:18-22
    13.Penalva JC,Martinez J,Laveda R,et al.A study of intestinal permeability in relation to the inflammatory response and plasma endocab IgM levels in patients with acute pancreatitis.J Clin Gastroenterol 2004;38:512-517
    14.Mole DJ,Taylor MA,McFerran NV,et al.The isolated perfused liver response to a 'second hit' of portal endotoxin during severe acute pancreatitis.Pancreatology 2005;5:475-485
    15.Closa D,Folch-Puy E.Oxygen free radicals and the systemic inflammatory response.IUBMB Life 2004;56:185-191
    16.Desai MH,Herndon DN,Rutan RL,et al.Ischemic intestinal complications in patients with burns.Surg Gynecol Obstet,1991,172(4):257-261.
    17.彭曦,汪仕良,冯晋斌,等.早期肠道喂养改善烧伤后肠道血液灌流的实验研究.中华外科杂志,1999,37(8):507-509.
    18.黎君友,吕艺,付小兵,等.二胺氧化酶在创伤后肠道损伤中变化及意义.中国危重病急救医学,2000,12:482-484
    19.Haglund RA,Burleson KO,Kloner RA,et al.Reperfusion injury induces apoptosis in rabbit cardiomyocytes.J Clin Invest.1994,94:1621-1628
    20.苏鸿熙,刘世恒.现代多发伤治疗学.北京:人民军医出版社,1993.52-55
    21.路云,曹诚意,李甫.海军卫生勤务学.北京:海潮出版社,1993.441-448
    22.赖西南.海上作战的伤情特点及早期救治.战创伤参考资料,1997,26(4):1-3
    23.刘建仓,陆松敏,李萍,等.海水浸泡失血性休克大鼠血液动力学的变化.中国病理生理杂志,2001,17(11):11-15
    24.Li H,Lu E,Yu J,et al.Effect of seawater immersion on plasma osmotic pressure and electrolyte balance following open chest trauma.Chin J Traumatol,2002,5(4):219-223
    25.黎沾良.现代危重病学.合肥:安徽科学技术出版社,1998.163-166
    26.吴印爱,王志伟,刘献棠,等.腹腔开放伤并海水浸泡对犬血浆自由基的影响.中华航海医学与高气压医学杂志,2001,8(3):148-150
    27.张鸿祺,周国泰,张愈.灾难医学.北京:北京医科大学协和医科大学联合出版社。1993.717-747
    28.李辉,鹿尔驯,虞积耀,等.胸部开放伤后海水浸泡致多器官功能障碍综合征.中华外科杂志,2000,38(8):630-632
    29.Ljungdahl M,Lundholm M,Katouli M,et al.Bacterial translocation in experimental shock is dependent in the intestinal flora.Scand J Gastroenterol,2000,35:389-397.
    30.Naaber P,Smidt I,Tamme K,et al.Translocation of indigenous microflora in an experimental model of sepsis.J Med Microbiol,2000,49:431-439.
    31.Dai D,Walker WA.Protective nutrients and bacterial colonization in the immature human gut.Adv Pediatr,1999,46:353-382.
    32.Scott CE,Grogan JB.The pathophysiology of biliary obstruction and its effect on phagocytican dimmune function.J SurgRes,1994,57:316-336.
    33.袁建成,肖光夏,周立新,等.肿瘤坏死因子mRNA在严重烫伤大鼠肝脏中的表达及细胞定位.中华外科杂志,1995,33:636-638.
    34.吴仲文,李兰娟,马伟航,等.肠道细菌正常参考值的检测[J]中国微生态学杂志,2001,13(7):314-315.
    35.朱宁川,陈岩.肝病肠道菌群失调与肠源性内毒素血症[J].中国微生态学杂志,2004,16:61-62.
    36.周殿元.肠道菌群和内毒素易位及其防治[J].胃肠病学,2003,8:3-5.
    37.Moore FA.The role of the gastrointestinal tract in post-injury multiple organ failure.Am J Surg 1999;178:449-453
    38.Hassoun HT,Kone BC,Mercer DW,et al.Post-injury multiple organ failure:the role of the gut.Shock 2001;15:1-10
    39.Magnotti LJ,Upperman JS,Xu DZ,et al.Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock.Ann Surg 1998;228:518-527
    40.Zallen G,Moore EE,Tamura DY,et al.Hypertonic saline resuscitation abrogates neutrophil priming by mesenteric lymph.J Trauma 2000;48:45-48
    41.Deitch EA.Role of the gut lymphatic system in multiple organ failure.Curr Opin Crit Care 2001;7:92-98
    42.Nusrat A,Parkos CA,Verkade P,et al.Tight junctions are membrane microdomins.J Cell Sci,2000,113(10):1771-1781
    43. Schroder J, Delmann WE, Winlcler W, et al. Glutamine dipeptide supplemented parenteral nutrition reverses gut atrophy, disaccharidase enzyme activity, and absorption in rats [J]. JPEN,1995, 19:502-506
    44. Roland CR, Coss JA, Mangino MJ, et al. Autoregulation by eicosanoids of human kupffer cell secretory many products [J]. Ann Surg, 1994, 219:389-399
    1 Cuoco L,Montalto M,Jorizzo RA,et al Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diatetics[J].Hepatogastroenterology,2002,49(48):1582-1586.
    2 史洪涛,冷恩仁,陈东风.胃肠动力与肠源性内毒素血症关系的动物实验研究[J].第三军医大学学报,2001,23:1249-1250.
    3 Scott LD.Influence of interdigestive myoelectric complex on enteric flora in rat.Gastroenterology,1982,82(3):737-740.
    4 Runkel NSF,Moody FG,Smith GS,et al.The role of the gut in development of sepsis in acute pancreatitis.J Surg Res,1991,51(1):18-21.
    5 Shikata J,Shida T,Amino K.Experimental study on hemodynamic of small intestine following increased intraluminal pressure.Surg Gynecol Obsttet,1983,156(1):155-8
    6 陈晓理,冯凯祥.肠道动力学改变在急性胰腺炎的病程及治疗中的意义.[J]中国普外基础与临床杂志,1999,6(6):325-327.
    7 van Berge Henegouwen MI,van der Poll T,van Deventer SJ,Gouma DJ.Peritoneal cytokine release after elective gastrointestinal surgery and postoperative complications.American journal of surgery.175(4).1998.311-6.
    8 van der Poll T,Lowry SF.Tumor necrosis factor in sepsis:mediator of multiple organ failure or essential part of host defense? Shock JT.3(1).1995.1-12.
    9 Dinarello CA.Interleukin-1 and interleukin-1 antagonism.Blood JT - Blood 1991;77(8):1627-52.
    10 Fong Y,et al.Surgery.New York:Scientific American 1996;P1-21
    11 Xing Z,Gauldie J,Cox G.et al.IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses.J Clin Invest JT,1998,101(2):311-20.
    12 Biffl WL,Moore EE,Moore FA.et al.Interleukin-6 delays neutrophil apoptosis.Arch Surg JT,1996,131(1):24-9;discussion 29-30.
    13 Tilg H,Trehu E,Atkins MB.et al.Interleukin-6(IL-6) as an anti-inflammatory cytokine:induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55.Blood,1994,83(1):113-8.
    14 Partrick DA,Moore FA,Moore EE.et al.Jack A.Barney Resident Research Award winner.The inflammatory profile of interleukin-6,interleukin-8,and soluble intercellular adhesion molecule-1 in postinjury multiple organ failure.American journal of surgery,1996,172(5):425-9;discussed 429-31
    15 肖莉,王志强.细胞因子对感染性休克作用的新进展.国外医学生理、病理科学与临床分册,2003,23(1):100-102.
    16 Kim PK,Deutschman CS.Inflammatory responses and mediators.Surg Clin of North America,2000,80(3):99-103.
    17 Liu SJ,McHowat J.Stimulation of different phospholipase A2 isoforms by TNF-alpha and IL-Ibeta in adult rat ventricular myocytes.Am J Physiol 1998;275:H1462-H1472
    18 Wang Z,Castresana MR,Detmer K,et al.An IkappaB-alpha mutant inhibits cytokine gene expression and proliferation in human vascular smooth muscle cells.J Surg Res 2002;102:198-206
    19 Theuer J,Dechend R,Muller DN,et al.Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats.BMC Cardiovasc Disord 2002;2:3
    20 吴泽建,张阳德,雷正明,余少鸿.大鼠急性坏死性胰腺炎外周血中的TNF-α,IL-6浓度的动态测定及意义.中国现代医学杂志2003;13:23-25
    21 Helton WS,Gacia R,Oral prostaglandin E2 Prevents gut atrophy during intravenous feeding but not bacterial translocation[J].Arch Surg,1993,128(2):178-184.
    22 Sedman PC,Macfie J,Sagar P,et al.The prevalence of gut translocation in humans.Gastroenterology,1994,107(3):643-649.
    23 Doe WF.The intestinal immune system.Gut,1989;30(12):1679-1685
    24 Alverdy JC,Aoys E.The effect of dexamethasone and endotoxemia administration on biliary IgA and bacterial adherence.J Surg Res,1992;53(11):450-454
    25 Alverdy J,Aoys E.The effect of glucocorticoid administration on bacterial translocation.Ann Surg,1991;214(6):719-723
    26 Diebel LN,Liberati DM,Brown WJ,et al.Secretory immunoglobulin a block hypoxia-augmented bacterial passage across Madin-Darby Canine kidney cell monolayers.J Trauma,1997;43(5):759-763
    27 于勇.IgA在肠道免疫屏障中的作用及其创伤后的改变[J].国外医学创伤与外科基本问题分册,1994,15:15-18.
    28 Leeuwen PAMV,Boermeester MA,Houdi JKJAP,et al.Pretreatment with enteral cholestiramine prevents suppression of the cellular immune system after partial hepatectomy[J].Ann Surg,1995,221:282-290.
    29 Lichtman SM.Bacterial translocation in humans[J].Pediatr Gastroenterol Nutr,2001,33(1):1-10
    30 Dai D,Walker WA.Protective nutrients and bacterial colonization in the immature human gut.Adv Pediatr,1999,46:353-382
    31 黎君友,孙世荣,薛立波,等.烧伤后二胺氧化酶活性的变化.[J]中华整形烧伤外科杂志,1997,113(1):40-42.
    32 Desai MH,Hemdon DN,Rutan RL,et al.Ischemic intestinal complications in patients with bums.Surg Gynecol Obstet,1991,172(4):257-261.
    33 Derr JF,Wyllie AH,Currie AR.Apoptosis:A basic biological phenomenon with wide-ranging implication in tissue kinetics.Br j Cancer 1972;26:239-241
    34 Wyllie AH.What is apoptosis? Histopathology.1986;10:995-1007
    35 Thompson CB.Apoptosis in the pathogenisis and treatment of dosecase.Science 1995;267:1456-1459
    36 Kim JM,Eckmann L,Savidge TC,et al.Apoptosis of human intestinal epithelial cells after bacterial invasion.J Clin Invest 1998;102:1815-182
    37 Ikeda H,Suzuki Y,Suzuki M,et al.Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium.Gut 1998;42:530-537
    38 Swank GM, Lu Q, Xu DZ, et al. Effect of acute-phase and heat-shock stress on apoptosis in intestinal epithelial cells (Caco-2). Crit Care Med 1998; 26: 1213-1217
    39 Jones BA, Gores GJ. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine. Am J Physiol 1997; 273: G1174-G1188
    40 Raab S, Leiser R, Kemmer H, et al. Effects of energy and purines in the diet on proliferation, differentiation, and apoptosis in the small intestine of the pig. Metabolism 1998; 47: 1105-1111
    41 Bzowska M, Guzik K, Barczyk K, et al. Increased IL-10 production during spontaneous apoptosis of monocytes. Eur J Immunol 2002; 32: 2011-2020
    1.Grotz M,Regel G,Bastian L,et al.The intestine as the central organ in the development of multiple organ failure after severe trauma-pathophysiology and therapeutic approaches.ZentralblChir 1998;123:205-217
    2.Wilmore DW,Smith RJ,Odwyer ST,et al.The gut:a central organ after surgical stress,Surgery.1988;104(5):917-923
    3.Swank GM,Deitch EA.Role of the gut in multiple organ failure:bacterial translocation and permeability.World J Surg,1996,20(4):411-413
    4.郑跃杰,段恕诚。肠道细菌易位[J]中国微生态学杂志,2002,14:304-305
    5.阮鹏,张全荣,龚作炯,等.肝炎肝硬化患者血浆D-乳酸、二胺氧化酶和内毒素的检测及其临床意义[J]临床内科杂志,2004,21:93-95
    6.BParboza Junior MS,Silva TM,Guerrant RL,et al.Measurement of intestinal permeability using mannitol and lactulose in children with diarrheal diseases[J]Braz J Med Biol Res,1999,32(12):1499-1504
    7.Murray MJ,Gonze MD,Nowak LR,et al.Serum D-lactate levels as an aid to diagnosing acute intestinal ischemia[J]Am J Surg,1994,167:575-578.
    8.黎君友,孙丹,吕艺,等。肠缺血再灌注对小肠屏障、吸收、通透和传输功能的影响[J]世界华人消化杂志,2004,12:464-466
    9.Odoropoulos G,Lloyd LR,Cousins G,et al.Intraoperative and early postoperative gastric intramucosal pH predicts morbidity and mortality after major abdominal surgery[J]Am Surg,2001,67:303-308.
    10.Nusrat A,Parkos CA,Verkade P et al.Tight junctions are membrane microdomins.J Cell Sci,2000,113(10):1771-1781
    11.Schroder J,Delmann WE,Winlcler W,et al.Glutamine dipeptide supplementd parenteral nutrition reverses gut atrophy,disaccharidase enzyme activity,and absorption in rats[J].JPEN,1995,19:502-506.
    12.Roland CR,Coss JA,Mangino MJ,et al.Autoregulation by eicosanoids of human kupffer cell secretory many products[J]Ann Surg,1994,219:389-399.
    13.Moore FA.The role of the gastrointestinal tract in postinjury multiple organ failure.Am J Surg 1999;178:449-453
    14.Hassoun HT,Kone BC,Mercer DW,et al.Post-injury multiple organ failure:the role of the gut.Shock 2001;15:1-10
    15.Magnotti LJ,Upperman JS,Xu DZ,et al.Gut-derived mesenteric lymph but not portal blood increases endothelial cell permeability and promotes lung injury after hemorrhagic shock.Ann Surg 1998;228:518-527
    16.Zallen G,Moore EE,Tamura DY,et al.Hypertonic saline resuscitation abrogates neutrophil priming by mesenteric lymph.J Trauma 2000;48:45-48
    17.Deitch EA.Role of the gut lymphatic system in multiple organ failure.Curr Opin Crit Care 2001;7:92-98
    18.于勇。IgA在肠道免疫屏障中的作用及其创伤后的改变[J]国外医学创伤与外科基本问题分册,1994,15:15-18.
    19.Leeuwen PAMV,Boermeester MA,Houdi JK JAP,et al.Pretreatment with enteral cholestiramine prevents suppression of the cellular immune system after partial hepatectomy[J]Ann Surg,1995,221:282-290.
    20.Licht man SM.Bacterial translocation in humans[J]Pediatr Gastroenterol Nutr,2001,33(1):1-10
    21.吴仲文,李兰娟,马伟航,等。肠道细菌正常参考值的检测[J]中国微生态学杂志,2001,13(7):314-315
    22.朱宁川,陈岩。肝病肠道菌群失调与肠源性内毒素血症[J]中国微生态学杂志,2004,16:61-62
    23.王忠堂,遥咏明,肖光夏,等。解放军医学杂志,2002,27(9):770-773
    24.Freestone PP,Williams PH,Haigh RD,et al.Growth stinulation of commensal Escherichia coli by catechlamines:a possible contribuloty factor in traumainduced sepsis[J]Shock,2002,18(5):465-470.
    25.周殿元。肠道菌群和内毒素易位及其防治[J]胃肠病学,2003,8:3-5
    26.Cuoco L,Montalto M,Jorizzo RA,et al Eradication of small intestinal bacterial overgrowth and oro-cecal transit in diatetics[J].Hepatogastroenterology,2002,49(48):1582-1586.
    27.史洪涛,冷恩仁,陈东风。胃肠动力与肠源性内毒素血症关系的动物实验研究[J]第三军医大学学报,200l,23:1249-1250
    28.Tamion F,Richard V,Sauger F,et al.Gastric mucosal acidosis and cytokine release in patients with septic shock.Crit Care Med 2003;31:2137-2143
    29.Suk K,Yeou Kim S,Kim H.Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells:involvement of NF-kB pathway in the regulatory processes.Immunol Lett 2001;77:79-85
    30. Izumi T, Saito Y, Kishimoto I, et al. Blockade of the natriuretic peptide receptor guanylyl cyclase-A inhibits NF-kappaB activation and alleviates myocardial ischemia/reperfusion injury. J Clin Invest 2001; 108: 203-213
    31. Antonelli A, Bianchi M, Crinelli R, et al. Modulation of ICAM-1 expression in ECV304 cells by macrophage-released cytokines. Blood Cells Mol Dis 2001; 27: 978-991
    32. Ginis I, Jaiswal R, Klimanis D, et al. TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J Cereb Blood Flow Metab 2002; 22: 142-152
    33. Wright G, Singh IS, Hasday JD, et al. Endotoxin stress-response in cardiomyocytes: NF-kappaB activation and tumor necrosis factor-alpha expression. Am J Physiol Heart Circ Physiol 2002; 282: 872-879
    34. Lakshminarayanan V, Lewallen M, Frangogiannis NG, et al. Reactive oxygen intermediates induce monocyte chemotactic protein-1 in vascular endothelium after brief ischemia, Am J Pathol 2001; 159: 1301-1311
    35. Moine P, McIntyre R, Schwartz MD, et al. NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 2000; 13:85-91
    36. Valen G, Yan ZQ, Hansson GK. Nuclear factor kappa-B and the heart. J Am Coll Cardiol 2001; 38: 307-314
    37. Omoya T, Shimizu I, Zhou Y, et al. Effects of idoxifene and estradiol on NF-kappaB activation in cultured rat hepatocytes undergoing oxidative stress.Liver 2001;21:183-191
    38.Neurath MF,Becker C,Barbulescu K.Role of NF_κB in immune and inflammatory responses in the gut.Gut 1998;43:856-860
    39.Wang Z,Castresana MR,Detmer K,et al.An IkappaB-alpha mutant inhibits cytokine gene expression and proliferation in human vascular smooth muscle cells.J Surg Res 2002;102:198-206
    40.Theuer J,Dechend R,Muller DN,et al.Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats.BMC Cardiovasc Disord 2002;2:3
    41.Liu SJ,McHowat J.Stimulation of different phospholipase A2 isoforms by TNF-alpha and IL-lbeta in adult rat ventricular myocytes.Am J Physiol 1998;275:H1462-H1472
    42.阴建兵,肖江梅,王永奇,王世昌。 急性胰腺炎与肠屏障损伤、细菌移位及内毒素血症。中国煤炭工业医学杂志2005;8:317-320
    43.吴泽建,张阳德,雷正明,余少鸿。大鼠急性坏死性胰腺炎外周血中的TNF-α,IL-6浓度的动态测定及意义。中国现代医学杂志2003;13:23-25
    44.Dickinson E,Tuncer R,Nadler R,et al.NOX,anovel nitric oxide scavenger,reduces bacterial translocation in rats after endotoxin challege[J].Am J Physiol,1999,277(6 pt 1):1281-1287.
    45.Hsu CM,Liu CH.Chen LW.Nitric oxide synthase inhibitor a meliorates oral total parenteral nutrition-induced barrier dysfunction[J].Shock,2000,13(2):135-139.
    46. Herota M, Nozawa F, Okabe A, et al. Relationship between plasma cytokine concentration and multiple organ failure in patients with acute pancreatitis [J]Pancreas, 2000, 21(2): 141-146.
    47. Rahman SH, Ammori BJ, Holmafield J, et al. Intestinal hypoperfusion contributes to gut barrier failure in severe acute pancteatitis [J]. J Gastrointest Surg, 2003, 7(1): 26-35.
    48. Helton WS, Gacia R, Oral prostaglandin E2 Prevents gut atrophy during intravenous feeding but not bacterial translocation[J]. Arch Surg, 1993, 128(2): 178-184.
    49. Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterlogy, 1994, 107(3):643-649.
    50. Kim JM, Eckmann L, Savidge TC, et al. Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest 1998; 102: 1815-182
    51. Ikeda H, Suzuki Y, Suzuki M, et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut 1998; 42:530-537
    52. Swank GM, Lu Q, Xu DZ, et al. Effect of acute-phase and heat-shock stress on apoptosis in intestinal epithelial cells (Caco-2). Crit Care Med 1998; 26: 1213-1217
    53. Jones BA, Gores GJ. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine. Am J Physiol 1997; 273: G1174-G1188
    54. Raab S, Leiser R, Kemmer H, Claus R. Effects of energy and purines in the diet on proliferation,differentiation, and apoptosis in the small intestine of the pig. Metabolism 1998;47:1105-1111
    55.Bzowska M,Guzik K,Barczyk K,et al.Increased IL-10 production during spontaneous apoptosis of monocytes.Eur J Immunol2002;32:2011-2020
    56.王兴鹏,吴恺,王冰娴,徐选福,徐敏,龚自华。谷氨酰胺对急性坏死型胰腺炎大鼠肠道衰竭的治疗作用。中华内科杂志2001:40:815-818
    57.刘俊,裘正军,彭志海,钟福全。肠内营养减少大鼠急性重症胰腺炎继发感染。肠外与肠内营养2001:8:224-226
    58.黎沾良。肠道细菌移位和外科重症。中华外科杂志1998;36:11-12
    59.Al-Omran M,Groof A,Wilke D.Enteral versus parenteral nutrition for acute pancreatitis.Cochrane Database Syst Rev 2003
    60.Marik PE,Zaloga GP.Meta-analysis of parenteral nutrition versus enteral nutrition in patients with acute pancreatitis.BMJ 2004;328:1407

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700